用户名: 密码: 验证码:
基于控风和导流机理的湿式冷却塔内部空气动力场的优化与重构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然通风逆流湿式冷却塔是目前我国电力行业应用最广泛的冷却塔型式,其冷却性能的好坏直接影响电站机组的安全经济运行。冷却塔性能会受到本体结构、环境参数和循环水参数等诸多因素的影响。其中,环境侧风对冷却性能的影响日益受到人们的重视,并提出了十字隔墙和导风板等控风措施,但对环境侧风以及控风措施的影响机理并未作出系统化地理论研究。此外,对于规模日益庞大的超大型冷却塔来说,即使在无风条件下,塔内的气水参数分布也变得极不均匀,目前通过调整塔内淋水密度和填料厚度分布的做法并未明显改善冷却性能,因此有必要研究塔内气水参数分布与冷却性能的关系,并提出合理有效的优化措施。
     鉴于此,本文从热态模型实验、正交统计分析、三维数值计算和空气动力场优化理论分析等几个方面着手,研究了变工况下环境侧风对冷却塔热力性能的影响规律以及十字隔墙和导风板等控风措施对冷却性能的作用机理,还研究了无风工况下塔内空气动力场的分布规律并提出了优化和重构塔内空气动力场的有效措施。进行的主要工作如下:
     (1)完善现有的自然通风逆流湿式冷却塔热态模型实验台。采用双层中空隔热隔音玻璃将模型实验台隔离成一个小型密闭空间,增设空调系统和加湿除湿装置,联合已有的环境侧风模拟风机,把原来的实验台架改造成为可变循环水参数、可变环境侧风速度、可变空气热物性的全功能冷却塔热态模型实验台,形成一个空气温度、湿度及侧风可控的环境模拟系统,可以降低环境参数波动所造成的实验误差,增强实验结果的纵向和横向可比性,还可以用来研究环境参数变化对冷却塔性能的影响。
     (2)首次设计了热态模型实验中的冷却塔通风量直接测量系统。在模型塔出风口安装通风管道,将出塔湿空气直接引至室外,在通风管道上安装精密皮托管测量空气流速,进而求得通风量。对通风管道进行优化设计计算以使阻力最小,并在通风管道出口设置引风机来补偿抽力以抵消安装通风管道所引起的附加阻力,补偿值由模型塔出风口的压力反馈来确定。该系统可以直接测得冷却塔实际通风量,以研究环境侧风对冷却塔通风性能的影响。
     (3)为了将前人的研究和本文所做的工作系统化,提出了湿式冷却塔的最优空气动力场理论:在通风量一定的条件下,当冷却塔内部各有效换热横截面上的空气速度场、温度场和湿度场处处一致时,气水之间的传热传质驱动力处处相同,气水换热强度均匀分布,冷却塔的整体冷却性能最佳,定义此时冷却塔内部的空气速度场、温度场和湿度场分布为湿式冷却塔的最优空气动力场。任何趋近最优空气动力场的措施均可以提高冷却塔性能。
     (4)基于湿式冷却塔热态模型实验台,研究了不同环境温度、循环水量和进塔水温下环境侧风对冷却塔热力性能的影响规律,结论如下:存在临界侧风速度vcr对应于侧风下冷却性能的极小值,即当侧风速度vc     (5)通过冷却塔周向进风速度测试、进风均匀性分析以及计算和实测通风量的对比分析研究了环境侧风对冷却塔空气动力场的影响规律,结论如下:定义了进风均匀系数Cu,v以定量描述冷却塔周向进风均匀性,表征塔内空气动力场周向分布的好坏。当通风量一定时,Cu,v越大则塔内空气动力场越均衡,传热传质越均匀,整体冷却性能越好;反之,Cu,v越小则塔内空气动力场差异越大,冷却效率就越低。对实验通风量Ge与计算通风量G进行比较发现,当vc     (6)研究了十字隔墙和导风板两种控风措施对冷却塔热力性能的影响并分析了其作用机理,结论如下:在雨区安装十字隔墙可以优化塔内空气动力场,提高通风量,从而有效改善冷却塔的热力性能,具体效果取决于侧风大小、十字隔墙形状以及安装角度。在低风速下,实型和孔隙十字隔墙均可改善冷却性能;高风速下,孔隙十字隔墙效果更好。在所研究风速范围内,无论是实型还是孔隙十字隔墙,a=0°时的效果均好于a=45°;在风速较高时,a=45°十字隔墙甚至会降低冷却塔的性能。在冷却塔进风口周向上安装导风板,可以有效提高进风均匀性和通风量。进风均匀系数随导风板数量的增加而单调增大,冷却性能增强;而当导风板数量增加到一定程度时,进风阻力迅速增大,通风量减少,因此,导风板数量存在一个最佳值Nb,opt=36,使得冷却塔通风量较大,进风以及换热均匀性也较好,冷却性能最佳。在十字隔墙和导风板耦合作用下,可以有效提高通风量并增强周向进风均匀性,进一步提升冷却性能。
     (7)针对冷却塔内部空气速度场、温度场和湿度场分布不均的问题,提出了雨区合理配风的思想,并通过安装导风管来重新构建塔内空气动力场,提高冷却塔整体换热性能。基于热态模型实验,研究了导风管的不同布置方式(截面形状、截面积、长度、数量等)对冷却塔热力性能的影响规律并分析了其作用机理,结论如下:定义了气温均匀系数Cu,θ以定量描述冷却塔内部空气温度场的均匀性,可以作为塔内空气动力场好坏的评价指标。当通风量一定时,Cu,θ越大,整体冷却性能越好。安装导风管之后,中心区域气温显著降低,外围气温略有升高,同一换热截面上的径向气温分布变得更加均匀,气温均匀系数增大,冷却塔性能提高。安装导风管前后冷却效率的相对增加量普遍大于通风量的相对增加量,这说明在安装导风管之后,冷却塔性能的改善是通风量和塔内空气动力场共同作用的结果。对冷却性能的改善效果由大到小分别为拱形导风管(GG)、圆形导风管(YG)、方形导风管(FG)。导风管对冷却性能的改善效果取决于导风管对中心弱换热区换热性能的强化与导风管占用外围雨区冷却能力这两方面因素的综合作用。在一定的导风管截面积Ag、长度Lg和数量Ng下,当冷却塔内部气水参数分布趋于均匀一致,空气动力场达到最优化时,冷却塔的运行达到最佳状态,热力性能最好,此时所对应的最优工况为GG_A45_L180_N8。还研究得出了对应其他冷却性能极大值的导风管优化布置方式,包括其他条件一定时的极值导风管截面积Ag,opt、长度Lg,opt和数量Ng,opt。当导风管的其他两个参数增大时,其分别对应的Ag,opt、Lg,opt和Ng,opt均有减小的趋势。将导风管尺寸参数无量纲化,便可将实验结论应用于实型塔中。导风板可以提高冷却塔周向进风均匀性,而导风管可以平衡塔内径向的空气速度、温度和湿度分布;二者分别通过优化塔内空气动力场的周向和径向分布,重新构建塔内最优空气动力场,提高整体冷却性能。
     (8)对导风管热态模型实验数据进行了正交化处理,并进行了极差分析和方差分析,定量得出了导风管截面积Ag、长度Lg、数量Ng以及侧风速度Vc对冷却塔性能参数的影响程度,结果显示:v。对Cu,θ、G和η的影响最大,Ng和Ag次之,Lg最小。F显著性检验的结果表明Vc和Ag对η的影响特别显著,Ng对η也有一定的影响,Lg则对η无显著影响,但考虑到误差中包含各因素交互作用的影响,所以实验测量误差对实验结果波动造成的影响较小,结果比较准确。
     (9)建立了导风管和导风板耦合作用下的自然通风逆流湿式冷却塔传热传质和流场分析的三维数值计算模型,并基于某电厂冷却塔的实际运行数据进行了数值模拟,结果表明:传热传质区局部加密后网格数量为762318的网格系统基本可以消除网格数量对计算结果的影响,获得网格无关解。出塔水温计算值与实测值的最大偏差为0.15℃,为对应工况下实测冷却水温降的1.58%,表明所建模型可以准确模拟和预测实型塔的实际运行。无风时,冷却塔中心和外围区域的气水比以及空气温度和湿度分布差异很大,空气动力场极不均衡,导致气温均匀系数较小出塔水温较高。安装导风管可以提高中心区域的气水比,形成低温低湿区,通风量G和气温均匀系数Cu,θ均明显提高,出塔水温t2显著降低。获得了导风管的最优布置方式以及对应于冷却性能极大值的极值参数Ag,opt、Lg,opt和Ng,opt,无量纲化之后与热态模型实验的结果完全一致。在进风口处安装导风板可以消除侧风下雨区侧部导风管内生成的旋涡,进一步均衡塔内气水参数分布,优化塔内空气动力场,提高通风量和气温均匀系数,降低出塔水温。
     本文提出了冷却塔最优空气动力场理论,定义了进风均匀系数和气温均匀系数,二者可以作为冷却塔内部空气动力场好坏的评价指标;初步形成了冷却塔空气动力场重构的理论和方法,获得了导风板和导风管的优化布置方式,可以为冷却塔性能优化提供实际指导,并为进一步研究奠定了理论基础,所得结论具有较强的理论意义和工程价值。
At present, natural draft counterflow wet cooling tower (NDWCT) is the most widely used type of cooling towers in the electric power industry of China. The NDWCT performance has a direct and significant impact on the safe and economic operation of the power station unit. The NDWCT performance is influenced by a number of factors such as tower structure, environmental parameters, and circulating water parameters. Increasingly attention has been paid to crosswinds effect on NDWCT cooling performance. Many wind control measures have been proposed to eliminate the adverse effect of crosswinds, such as crosswalls and air deflectors. But so far, there hasn't been systematic and theoretical research on impacting mechanism of crosswinds and countermeasures. In addition, the scale of NDWCTs is increasing quickly day by day, so the air and water parameters distribution inside NDWCTs becomes rather nonuniform even under windless conditions. And it's helpless to NDWCT performance by adjusting the arrangement of circulating water and fill thickness distribution. Thus, it is necessary to study the relation between air and water distribution and cooling performance, and put forward reasonable and effective optimization measures.
     In view of this, crosswinds effect on NDWCT thermal performance under variable conditions, action mechanism of crosswalls and air deflectors, and optimization and reconstruction of aerodynamic field in NDWCTs were investigated by means of hot model experiment, orthogonal analysis,3D numerical simulation and aerodynamic field optimization theory analysis. The main research efforts are as follows.
     (1) Improvement of the NDWCT hot model test bed. The test bed was isolated into a small confined space with double hollow noise insulation glass. In addition, air conditioning and humidification devices were installed in the little room Uniting the existing crosswind simulation fans, the original test bed transformed into a full-featured hot model bench with variable circulating water parameters, crosswind velocity and air thermalphysical properties. This way, an environment simulation system was established with controllable air temperature, humidity and crosswind velocity. It can reduce the experimental error caused by environmental parameter fluctuations, enhance vertical and horizontal comparability of the experimental results, and can also be used to study the impact of environmental parameters changes on NDWCT performance.
     (2) First design of the directly measuring system for NDWCT air flowrate in the hot model test. Ventilation ducts were installed above the model tower outlet, to lead wet air directly to the outdoor. Precise pitot tube was installed in the ventilation ducts to measure the air velocity, and then the air flowrate was obtained. An optimization design calculation was performed to minimize the resistance of the ventilation ducts. An induced draft fan was installed at ventilation duct outlet to compensate for the pumping power to offset the additional resistance caused by the installation of ventilation ducts. And the compensation value was determined by the pressure feedback at the model tower outlet. The system can directly measure the actual air flowrate of the cooling tower, and the cross wind effect on air intake performance of NDWCTs.
     (3) In order to systematize the work done by the previous studies and this paper, an NDWCT optimal aerodynamic field theory was proposed as follows. Under a certain air flowrate conditions, when the air velocity, temperature and humidity field is the same everywhere within every effective heat transfer cross section in NDWCTs, the heat and mass transfer driving force between air and water will be the same everywhere, the heat exchange intensity between air and water will be uniform, thus, the NDWCT will obtain the optimum performance. In this case, the air velocity, temperature and moisture field inside the cooling tower is defined as optimal aerodynamic field of NDWCTs. Any measures approaching optimal aerodynamic field can improve NDWCT performance.
     (4) Based on the NDWCT hot model test bed, crosswinds effect on NDWCT thermal performance was investigated under different ambient temperature, circulating water flowrate and inlet water temperature. The conclusions are as follows. There exists a critical crosswind vebcity vcr, which results in the minimum NDWCT performance under crosswinds. Thus, when vc is lower than vcr, the cooling performance decreases gradually. When vc is higher than vcr, the cooling performance will gradually improve. Crosswind Froude number was defined as Frc=vc/(?), and this experiment meet the Frc similarity. To keep the same NDWCT operating state, the variation of vc should be proportional to (?). When the ambient temperature decreases, the circulating water flowrate and the inlet water temperature increases, the cooling tower draft increases, and critical crosswind velocity increases correspondingly. Broadly speaking, the environmental parameters, circulating water parameters and structural parameters of the cooling tower all can lead to critical the crosswind speed changes. Nondimensionalize vc into the ratio of vc and the airflow velocity vf at the fill cross section, denoted by the dimensionless crosswind velocity Vc. The experimental results show that Vcr=4, that is, if Vf is known, vcr would be obtained.
     (5) Crosswinds effect on aerodynamic field in NDWCTs was investigated by means of testing NDWCT circumferential intake air velocity, analyzing inlet air uniformity and comparative analysis between the measured and calculated air flowrate. The conclusions are as follows. The inlet uniformity coefficient Cu,v was defined to describe the circumferential air intake uniformity of the cooling tower quantitatively, and evaluate the merits of circumferential distribution ofNDWCT aerodynamic field. Under a certain air flowrate, the larger Cu,v is, the more balanced the tower aerodynamic field is, the more uniform heat and mass transfer intensity is, the better the overall cooling performance is. On the contrary, the smaller Cu,v is, the greater difference the tower aerodynamic field has, and the lower cooling efficiency is. Comparing Ge with G, it is found that when vc     (6) Action mechanism of crosswalls and air deflectors effect on NDWCT thermal performance is investigated, and the conclusions are as follows. Installing crosswalls in the rain zone can optimize NDWCT aerodynamic field, increase the air flowrate, and thereby improve NDWCT thermal performance effectively, which depends on crosswind velocity, crosswall shape and setting angle. Under low crosswinds, solid and porous crosswalls can both enhance cooling performance, while porous crosswalls have better effect at high crosswind velocities. The cooling performance at α=0°is better than that at α=45°. What's more, α=45°crosswalls can even reduce NDWCT performance under higher crosswinds. Installing air deflectors at tower inlet circumferentially can enhance the inlet air uniformity and air flowrate effectively. Cu,v increases along with air deflector quantity, and the cooling performance is improved correspondingly. But when the air deflector quantity increases to a certain number, the air flowing resistance increases sharply, which results in a reduction of air flowrate. Thus, there is an optimum air deflector quantity Nb,opt=36, which leads to a greater air flowrate, better inlet air uniformity and the optimum cooling performance. Installing both crosswalls and air deflectors can effectively improve the air flowrate and enhance the inlet air uniformity, to further enhance the cooling performance.
     (7) Concerning the nonuniformity of air velocity, temperature and humidity field inside NDWCTs, the idea of reasonable air distribution was put forward, and air ducts were suggested installing in the rain zone to reconstruct aerodynamic field and improve cooling performance. Action mechanism of air ducts effect on NDWCT thermal performance was investigated through hot model test. The conclusions are as follows. The air temperature uniformity coefficient Cu,θ is defined to describe the air temperature uniformity inside NDWCTs quantitatively, and to be an evaluation index of the tower aerodynamic field. Under a certain air flowrate, the larger Cu,θ is, the better cooling performance is. Installing air ducts can reduce air temperature in the central zone, elevate air temperature in the peripheral zone, enhance radial uniformity of air temperature, increase Cu,θ and improve cooling efficiency. The relative variation of cooling efficiency is generally larger than that of air flowrate before and after installing air ducts. This indicates that the improvement of cooling performance is the result of joint action by air flowrate and aerodynamic field. From great to little, the effect of improving cooling performance is guide duct (GG), circular duct (YG) and square duct (FG) respectively. The improving effect of air ducts depends on combined action of the heat transfer enhancement in the central zone and the cooling capacity of the rain zone occupied by air ducts. Under certain Ag, Lg and Ng, when the air and water parameter distributions approach to perfect uniformity, and the aerodynamic field reaches the optimum state, the cooling tower has the best performance, corresponding to the optimal layout GG_A45_L180_N8. In addition, other optimized layouts are also investigated corresponding to the maximum value of the cooling performance, including maximum air duct sectional area Ag,opt, length,opt and number Ag,opt under certain other conditions. When the other two parameters of the air duct increase, the corresponding Ag,opt, Lg,opt and Ng,opt all have a decreasing trend. Nondimensionalize the air duct size parameters, and the experimental results can be applied to the real tower. Air deflectors can improve the circumferential air intake uniformity of the cooling tower, and air ducts can balance radial distribution of air velocity, temperature and humidity inside NDWCTs. They can optimize the circumferential and radial distribution of tower aerodynamic field and reconstruct tower optimal aerodynamic field, to improve the overall cooling performance.
     (8) The hot model test data of air ducts was orthogonalized, and range analysis and variance analysis was performed to obtain the effect of Ag, Lg, Ng and vc on NDWCT performance parameters quantitatively. The results are as follows. From great to little, the influence on Cu,θ, G and η is vc, Ng, Ag and Lg respectively. The F significance test results show that vc, and Ag have very significant effect on η, Ng also have a certain effect on η, and Lg has no significant effect, but concerning that the error variance contains the interaction of various factors, so the experimental measurement error effect on the experimental results fluctuations is very little and the results are accurate.
     (9) The3D numerical model for analyzing heat and mass transfer and flow field in NDWCTs with air ducts and deflectors was established. And a numerical simulation was performed based on actual operating data of a power plant cooling tower. The conclusions are as follows. The grid system with762318grids refined in heat and mass transfer zone can eliminate the effect of grid quantity on calculation results and obtain grid-independent solutions. The maximum deviation between calculated and measured outlet water temperature is0.15℃, which is1.58%of the corresponding measured water temperature drop, indicating that the proposed model can accurately simulate and predict the actual operation of the tower. Under windless conditions, there is great difference between the air-water ratio, air temperature and humidity distribution of the central zone and the peripheral zone, and the aerodynamic field is very uneven, resulting in smaller air temperature uniformity coefficient and higher outlet water temperature. Installing air ducts can increase the air-water ratio of the central zone, and reduce the air temperature and humidity, resulting in higher air flowrate and temperature uniformity coefficient and lower outlet water temperature. The optimal arrangement of air ducts and the maximum parameters Ag,opt, Lg, opt and Ng,opt was obtained, and the numerical results are consistent with hot model test data after nondimensionalization. Under crosswind conditions, installing air deflectors at tower inlet can eliminate the vortex generated in the air duct at tower lateral side, further equalize air and water parameters distribution in the tower, to optimize the tower aerodynamic field, improve air flowrate and temperature uniformity coefficient, finally reduce outlet water temperature.
     This paper presents the NDWCT optimal aerodynamic field theory, and defines inlet air uniformity coefficient and temperature uniformity coefficient as evaluation indices for aerodynamic field inside NDWCTs. Besides, cooling tower aerodynamic field reconstruction theory and methods are put forward, and optimal layouts of air deflector s and air ducts are obtained to provide practical guidance for the cooling tower performance optimization, and lay a theoretical foundation for further study. The conclusions have a strong theoretical significance and engineering value.
引文
[1]沈维道,蒋志敏,童钧耕.工程热力学[M].北京:高等教育出版社,2000.
    [2]史佑吉.冷却塔运行与试验[M].北京:水利电力出版社,1990.
    [3]李秀云,林万超,严俊杰,等.冷却塔的节能潜力分析[J].中国电力,1997(10).
    [4]李秀云,严俊杰,林万超.火电厂冷端系统评价指标及诊断方法的研究[J].中国电机工程学报,2001(09).
    [5]杨剑永,张武.大型机组冷却塔节能潜力分析[J].东北电力技术,2010(06).
    [6]胡洪营.环境工程原理[M].北京:高等教育出版社,2005.
    [7]Lewis W K. The evaporation of a liquid into a gas[J]. Transactions of ASME,1922,44: 325-340.
    [8]Lewis W K. The evaporation of a liquid into a gas-A correction[J]. Mechanical Engineering, 1933,55:567-573.
    [9]Walker W H, Lewis W K, McAdams W H, et al. Principles of Chemical Engineering[M].3rd ed. New York:McGraw-Hill,1923.
    [10]Merkel F. Verdunstungskiihlung[J]. VDI-Zeitchrift,1925,70:123-128.
    [11]Missimer J, Wilber K. Examination and comparison of cooling tower component heat transfer characteristics[C]. IAHR Cooling Tower Workshop, Hungary,1982:12-15.
    [12]Khan J, Zubair S M, Yaqub M. Performance characteristics of counter flow wet cooling towers[J]. Energy Conversion and Management,2003,44(13):2073-2091.
    [13]Kroger D G. Air-cooled Heat Exchangers and Cooling Towers[M]. Tulsa, USA:Perm Well Corporation,2004.
    [14]Mills A F. Heat and Mass Transfer[M]. Boston:Richard D Irwin Inc,1995.
    [15]Fisenko S P, Brin A A. Simulation of a cross-flow cooling tower performance[J]. International Journal of Heat and Mass Transfer,2007,50(15-16):3216-3223.
    [16]Fisenko S P, Brin A A, Petruchik A I. Evaporative cooling of water in a mechanical draft cooling tow er[J]. International Journal of Heat and Mass Transfer,2004,47(1):165-177.
    [17]Fisenko S P, Petruchik A I. Toward to the control system of mechanical draft cooling tower of film type[J]. International Journal of Heat and Mass Transfer,2005,48(1):31-35.
    [18]Fisenko S P, Petruchik A I, Solodukhin A D. Evaporative cooling of water in a natural draft cooling tower[J]. International Journal of Heat and Mass Transfer,2002,45(23):4683-4694.
    [19]Petruchik A I, Fisenko S P. Two-dimensional calculation of the parameters of a steam-air mixture in a film-type heat and mass exchanger[J]. Inzhenerno-Fizicheskii Zhurnal,2003,76(5): 81-86.
    [20]Petruchik A I, Solodukhin A D, Fisenko S P. Simulation of cooling of water droplet and film flows in large natural wet cooling towers[J]. Inzhenerno-Fizicheskii Zhurnal,2001,74(1):45-49.
    [21]Petruchik A I, Solodukhin A D, Fisenko S P. Evaporative cooling of water in complex-configuration film spray zones[J]. Journal of Engineering Physics and Thermophysics, 2008,81(1):182-187.
    [22]Berman L D. Evaporative cooling of circulating water[M]. London:Pergamon Press,1961.
    [23]Ranz W E, Marshall W R. Evaporation from drops, Part Ⅰ [J]. Chemical Engineering Progress,1952,48(3):141-146.
    [24]Ranz W E, Marshall W R. Evaporation from drops, Part Ⅱ [J]. Chemical Engineering Progress,1952,48(3):173-180.
    [25]卢江,余敏,陶乐仁,等.水滴蒸发的理论分析与蒸发时间的研究[J].上海理工大学学报,2003(1):36-38.
    [26]Kloppers J C. A critical evaluation and refinement of the performance prediction of wet-cooling towers[D]. Stellenbosch, South Africa:University of Stellenbosch,2003.
    [27]Webb R L. A unified theoretical treatment for thermal analysis of cooling towers, evaporative condensers, and fluid coolers[J]. ASHRAE Trans,1984,90(2):398-415.
    [28]Webb R L, Villacres A. COOLING TOWER PERFORMANCE.[J]. ASHRAE Journal,1984, 26(11):34-40.
    [29]Webb R L, Villacres A. Algorithms for performance simulation of cooling towers, evaporative condensers, and fluid coolers[J]. ASHRAE Trans,1984,90(2):416-458.
    [30]Webb R L, Villacres A. PERFORMANCE SIMULATION OF EVAPORATIVE HEAT EXCHANGERS (COOLING TOWERS, FLUID COOLERS, AND CONDENSERS).[J]. Heat Transfer Engineering,1985,6(2):31-38.
    [31]Jaber H, Webb R L. DESIGN OF COOLING TOWERS BY THE EFFECTIVENESS-NTU METHOD.:Papers Presented at the ASME Winter Annual Meeting.[C]. ASME, USA,8p, New York, NY, USA,1987:8.
    [32]Jaber H, Webb R L. Design of cooling towers by the effectiveness-NTU method[J]. Journal of Heat Transfer,1989,111(4):837-843.
    [33]Braun J E, Klein S A, Mitchell J W. Effectiveness models for cooling towers and cooling coils[J]. ASHRAE Trans,1989,95(2):167-174.
    [34]El-Dessouky H T A, Al-Haddad A, Al-Juwayhel F. A modified analysis of counter flow wet cooling towers[J]. Journal of Heat Transfer,1997,119(3):617-626.
    [35]Halasz B. A general mathematical model of evaporative cooling devices[J]. Revue Generale De Thermique,1998,37(4):245-255.
    [36]Halasz B. Application of a general non-dimensional mathematical model to cooling towers[J]. International Journal of Thermal Sciences,1999,38(1):75-88.
    [37]Soylemez M S. On the optimum performance of forced draft counter flow cooling towers[J]. ENERGY CONVERSION AND MANAGEMENT,2004,45(15-16):2335-2341.
    [38]Zubair S M, Qureshi B A. An improved non-dimensional model of wet-cooling towers[J]. Journal of Process Mechanical Engineering,2006,220:31-41.
    [39]Ren C Q. Corrections to the simple effectiveness-NTU method for counterflow cooling towers and packed bed liquid desiccant-air contact systems[J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,2008,51(1-2):237-245.
    [40]Jin G Y, Cai W J, Lu L, et al. A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems[J]. ENERGY CONVERSION AND MANAGEMENT,2007, 48(2):355-365.
    [41]Poppe H, Rogener M. Berechnung von Ruckkuhlwerken[J]. VDI-Warmeatlas,1991:1-15.
    [42]Bosnjakovic F. Technische Thermodinamik[M]. Dresden:Theodor Steinkopf,1965.
    [43]Bourillot C. On the hypothesis of calculating the water flowrate evaporated in a wet cooling tower[R]. EPRI Report CS-3144-SR,1983.
    [44]Bourillot C. Numerical model for calculating the performance of an evaporative cooling tower[R]. EPRI Report CS-3212-SR,1983.
    [45]Baard T W. Performance characteristics of expanded metal cooling tower fill[D]. Stellenbosch, South Africa:University of Stellenbosch,1998.
    [46]Kloppers J C, Kroger D G. The Lewis factor and its influence on the performance prediction of wet-cooling towers[J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES,2005,44(9): 879-884.
    [47]Kloppers J C, Kroger D G. A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers[J]. International Journal of Heat and Mass Transfer,2005,48(3-4): 765-777.
    [48]Kloppers J C, Kroger D G. A critical investigation into the heat and mass transfer analysis of crossflow wet-cooling towers[J]. Numerical Heat Transfer; Part A:Applications,2004,46(8): 785-806.
    [49]Kloppers J C, Kroger D G. Cooling tower performance evaluation:Merkel, Poppe, and e-NTU methods of analysis[J]. Journal of Engineering for Gas Turbines and Power,2005,127(1):1-7.
    [50]帕坦卡.传热与流体流动的数值计算[M].北京:科学出版社,1984.
    [51]赵振国.逆流塔中影响散质系数的几个因素分析[J].电力建设,1980(01).
    [52]赵振国.横流式冷却塔中填料散质系数的研究[J].水利学报,1981(03).
    [53]胡三季,陈玉玲.冷却塔塑料淋水填料热力及阻力性能分析[J].热力发电,1992:47-52.
    [54]胡三季,陈玉玲.海水冷却塔淋水塔料热力性能研究[J].热力发电,1995:48-51.
    [55]赵振国.冷却塔填料热力特性的新表达式及其应用[J].水动力学研究与进展A辑,1996(06).
    [56]胡三季,陈玉玲,刘廷祥,等.逆流式冷却塔不同高度的PVC淋水填料热力及阻力性能试验研究[J].吉林电力,2003:9-11.
    [57]胡三季,陈玉玲,刘廷祥,等.不同高度淋水填料的热力及阻力性能试验[J].工业用水与废水,2005,36(1):76-78.
    [58]高福东,孙奉仲,王凯.电厂冷却塔填料的发展与研究[J].电站系统工程,2007(05).
    [59]赵顺安,廖内平,宋志勇,等.海水冷却塔淋水填料热力阻力特性研究[J].工业用水与废水,2007(02).
    [60]刘东兴,周亚素,李未,等.逆流密闭式冷却塔中淋水填料热工性能模拟[J].建筑热能通风空调,2009(04).
    [61]陈剑波,王银华,王俊,等.冷却塔淋水填料性能试验研究[J].工业用水与废水,2010(02).
    [62]王建丽.冷却塔填料的改进[J].煤炭科学技术,2003,31(F06):35-36.
    [63]李颂妮,郭宏有,李海鹏.冷却塔填料的改进设想[J].给水排水,2009(7):106-107.
    [64]Tsurikova N P, Pushnov A S, Lagutkin M G. Hydrodynamic tests of regular packing for implementing evaporative cooling process[J]. Chemical and Petroleum Engineering,2011,47(1): 97-103.
    [65]Simpson W M, Sherwood T K. Performance of small mechanical draft cooling towers[J]. American Society of Refrigerating Engineering,1946,52:535-543.
    [66]Dreyer A A, Erens P J. Modelling of cooling tower splash pack[J]. International Journal of Heat and Mass Transfer,1996,39(1):109-123.
    [67]Goshayshi H R, Missenden J F, Tozer R. Cooling tower-an energy conservation resource[J]. Applied Thermal Engineering,1999,19(11):1223-1235.
    [68]Goshayshi H R, Missenden J F, Tozer R. Cooling tower packing:effect of configuration on performance[J]. Building Services Engineering Research and Technology,1999,20(1):23-27.
    [69]Goshayshi H R, Missenden J F. Investigation of cooling tower packing in various arrangements[J]. Applied Thermal Engineering,2000,20(1):69-80.
    [70]Goshayshi H. How to design compact mass transfer packing for maximum efficiency:9th International Conference on Advanced Computational Methods and Experimental Measurements in Heat and Mass Transfer 2006, HT06[C]. WITPress, Southampton, SO40 7AA, United Kingdom, 2006,53:173-180.
    [71]Kelly N W, Swenson L K. Comparative performance of cooling tower packing arrangements[J]. Chemical Engineering Progress,1956,52:263-268.
    [72]Barile R G, Dengler J L. Performance and design of a turbulent bed cooling tower[J]. AIChE Symposium Series,1974,70:154-162.
    [73]Bedekar S V, Nithiarasu P, Seethatamu K N. Experimental investigation of the performance of a counter flow packed bed mechanical cooling tower[J]. Energy,1988,23:943-947.
    [74]Milosavljevic N, Heikkila P. A comprehensive approach to cooling tower design[J]. Applied Thermal Engineering,2001,21(9):899-915.
    [75]Mohiuddin A K M, Kant K. Knowledge base for the systematic design of wet cooling towers. Part Ⅰ:Selection and tower characteristics[J]. International Journal of Refrigeration,1996,19(1): 43-51.
    [76]Mohiuddin A K M, Kant K. Knowledge base for the systematic design of wet cooling towers. Part Ⅱ:Fill and other design parameters[J]. International Journal of Refrigeration,1996,19(1): 52-60.
    [77]Naphon P. Study on the heat transfer characteristics of an evaporative cooling tower[J]. International Communications in Heat and Mass Transfer,2005,32(8):1066-1074.
    [78]Lemouari M, Boumaza M. Experimental investigation of the performance characteristics of a counterflow wet cooling tower[J]. International Journal of Thermal Sciences,2010,49(10): 2049-2056.
    [79]Lemouari M, Boumaza M, Kaabi A. Experimental analysis of heat and mass transfer phenomena in a direct contact evaporative cooling tower[J]. Energy Conversion and Management, 2009,50(6):1610-1617.
    [80]Lemouari M, Boumaza M, Mujtaba I M. Thermal performances investigation of a wet cooling tower[J]. Applied Thermal Engineering,2007,27(5-6):902-909.
    [81]Kloppers J C, Kroger D G. Loss coefficient correlation for wet-cooling tower fills[J]. Applied Thermal Engineering,2003,23(17):2201-2211.
    [82]Gharagheizi F, Hayati R, Fatemi S. Experimental study on the performance of mechanical cooling tower with two types of film packing[J]. Energy Conversion and Management,2007,48(1): 277-280.
    [83]Sarker M, Kim E, Moon C G, et al. Performance characteristics of the hybrid closed circuit cooling tower[J]. ENERGY AND BUILDINGS,2008,40(8):1529-1535.
    [84]赵顺安.排烟冷却塔的一维设计计算方法[J].水利学报,2005,36(11):1331-1334.
    [85]赵顺安.双系统自然通风逆流式冷却塔的热力计算方法[J].水利学报,2008,39(1):79-82.
    [86]吴祥友,赵振国.用变区域变分原理研究冷却塔的进口阻力问题[J].中国电机工程学报,1988(04).
    [87]胡三季.电厂自然通风冷却塔阻力系数的研究[J].热力发电,1989:25-29.
    [88]赵振国.冷却塔及其流体力学问题[J].力学与实践,1990(02).
    [89]赵振国.横流塔的热力计算—淋水倾斜的影响[J].水利学报,1993(07).
    [90]赵振国,石金铃,陈仙松,等.逆流式然通风冷却塔通风阻力的研究[J].水动力学研究与进展A辑,1993(04).
    [91]王大哲.自然通风冷却塔进塔风量几种计算方法的研究[J].热力发电,1995:31-35.
    [92]赵振国,石金玲,王增顺.冷却塔中配水的试验研究[J].水动力学研究与进展A辑,1999(03).
    [93]吴百龙.冷却塔运行特性研究[D].北京:华北电力大学,2004.
    [94]赵顺安.逆流式自然通风冷却塔中央竖井槽管结合配水水力计算与验证[J].热力发电,2005(10).
    [95]王凯.自然通风湿式冷却塔进风口空气动力场的数值模拟与阻力研究[D].济南:山东大学,2006.
    [96]王凯,孙奉仲,王伟.自然通风湿式冷却塔空气动力场数值分析[J].热力发电,2006(10).
    [97]牛修富,孙奉仲,陈友良.门然通风逆流湿式冷却塔配水的研究与发展[J].电站系统工程,2008(03).
    [98]赵振国,石金玲,陈仙松.冷却塔中雨区的水滴当量直径[J].水动力学研究与进展A辑,1992(01).
    [99]赵振国,石金玲,周常虹,等.冷却塔雨区的热力特性[J].水利学报,2000(03).
    [100]赵顺安,杨平止,石城,等.自然通风逆流式冷却塔外区配水—维热力计算方法[J].热力发电,2009(06).
    [101]Moris S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics,1972,55(2):193-208.
    [102]Liu B M, Haw lad er M N A. Analysis of motion and drag coefficient of water droplets in a natural draft cooling tower[C]. Proceedings of Symposium on Energy Engineering in the 21st century, Hongkong,2000,2:451-458.
    [103]Jia M, Yan J, Ning T, et al. Investigation of influencing factors of limit air-to-water ratio of cooling tower[J]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics,2011, 32(SUPPL.1):134-137.
    [104]游江,周亚素,赵敬德,等.逆流密闭式冷却塔热力特性数值模拟[J].建筑热能通风空调,2010(3):13-16.
    [105]张志刚,工玮,曾德良,等.冷却塔出塔水温的迭代计算方法[J].动力工程学报,2010(05).
    [106]李明.冷端参数变化对冷却塔冷却性能的影响研究[J].东北电力大学学报,2010(01).
    [107]吴双,刘宁.机械通风湿式逆流冷却塔焓差估算方法新发展[J].给水排水,2010(S1).
    [108]阮圣奇,高晋柏.发电厂冷却塔冷却能力的评价分析[J].安徽电力,2010(03).
    [109]戴振会,孙奉仲,王宏国,等.火电厂大型冷却塔运行性能的动态综合分析与评价[J].电站系统工程,2009(02).
    [110]韩琴,刘德有,陈负山,等.大型冷却塔热力计算模型[J].河海大学学报(自然科学版),2009(05).
    [111]韩琴,刘德有,杨志,等.排烟冷却塔的一维热力计算数学模型[J].电力建设,2009(03).
    [112]Brin A, Petruchik A. Thermal calculation of the ejection cooling tower and method of improving its efficiency[J]. Journal of Engineering Physics and Thermophysics,2011,84(2): 287-291.
    [113]Li Y J, You X K, Qiu Q, et al. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type[J]. ENERGY CON VERSION AND MANAGEMENT, 2011,52(1):53-59.
    [114]Mello L, Song T, De Paiva J L. Management of a cooling tower system by experimental characterization[J]. Chemical Engineering Transactions,2011,25:701-706.
    [115]Hajidavalloo E, Shakeri R, Mehrabian M A. Thermal performance of cross flow cooling towers in variable wet bulb temperature[J]. ENERGY CONVERSION AND MANAGEMENT, 2010,51(6):1298-1303.
    [116]Wang M, Tian Z, Liu K. Research on influence factors of cooling tower performance:2011 International Conference of Green Building Materials and Energy-Saving Construction, GBMEC 2011, August 6,2011-August 6,2011 [C]. Trans Tech Publications, Harbin, China,2011,280: 119-123.
    [117]Smrekar J, Kustrin I, Oman J. Methodology for evaluation of cooling tower performance Part 1:Description of the methodology [J]. Energy Conversion and Management,2011,52(11): 3257-3264.
    [118]Smrekar J, Senegacnik A, Fiihrer C. Methodology for evaluation of cooling tower performance Part 2:Application of the methodology and computational aspects of Poppe equations[J]. Energy Conversion and Management,2011,52(11):3282-3289.
    [119]Hosoz M, Ertunc H M, Bulgurcu H. An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower[J]. Expert Systems with Applications,2011,38(11):14148-14155.
    [120]Hosoz M, Ertunc H M, Bulgurcu H. Performance prediction of a cooling tower using artificial neural network[J]. ENERGY CONVERSION AND MANAGEMENT,2007,48(4):1349-1359.
    [121]Russell C M B, McChesney H R, Holder D W, et al. CROSS WIND AND INTERNAL FLOW CHARACTERISTICS OF DRY COOLING TOWERS[J].1978,49(11):20-24.
    [122]Burger R. Modernize your cooling tower[J]. Chemical Engineering Progress,1990,86(9): 37-40.
    [123]NDGJ 89-1989.工业冷却塔测试技术规定[S].能源部电力规划设计管理局,1989.
    [124]CECS 118.冷却塔验收测试规程[S].中国工程建设标准化协会,2000.
    [125]DL-T 1027-2006.工业冷却塔测试规程[S].中华人民共和国国家发展和改革委员会,2006.
    [126]British Standard 4485. Water cooling towers, Part 2:methods for performance testing[S].1988.
    [127]CTI Code ATC-105. CTI Code Tower, Standard specifications, acceptance test for water-cooling towers[S].1990.
    [128]CTI Code ATC-105(97). CTI Code Tower, Standard specifications, acceptance test code for water-cooling towers, vol.1[S].1997.
    [129]Du Preez A F, Kroger D G. Effect of wind on performance of a dry-cooling tower[J]. Heat Recovery Systems & CHP,1993,13(2):139-146.
    [130]Du Preez A F, Kroger D G. Effect of the shape of the tower supports and walls on the performance of a dry-cooling tower subjected to cross winds[J]. Heat Transfer Engineering,1995, 16(2):42-49.
    [131]Du Preez A F, Kroger D G. Effect of the heat exchanger arrangement and wind-break walls on the performance of natural draft dry-cooling towers subjected to cross-winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,58(3):293-303.
    [132]Wei Q, Zhang B, Liu K, et al. A study of the unfavorable effects of wind on the cooling efficiency of dry cooling towers[J]. Journal of Wind Engineering and Industrial Aerodynamics Third Asian-Pacific Symposium on Wind Engineering,1995,54-55:633-643.
    [133]唐革风,苏铭德,符松.横向风影响下空冷塔内外流场的数值研究[J].空气动力学学报,1997(03).
    [134]翟志强,唐革风,符松,等.横向风对自然通风干式冷却塔运行性能影响的实验与数值研究[J].热力发电,1997(03).
    [135]翟志强,朱克勤,符松.横向风对自然通风干式冷却塔空气流场影响的模型实验研究[J].实验力学,1997(02).
    [136]赵振国,石金玲,魏庆鼎,等.自然风对空冷塔的不利影响及其改善措施[J].应用科学学报,1998(01).
    [137]Su M D, Tang G F, Fu S. Numerical simulation of fluid flow and thermal performance of a dry-cooling tower under cross wind condition[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,79(3):289-306.
    [138]翟志强,符松.横风下空冷塔单塔与双塔流场特性及相关改进方案的实验比较研究[J].空气动力学学报,1999,17(1):30-38.
    [139]张晓东,王清照.侧风对自然通风空冷塔冷却性能的影响[J].中国电力,1999(06).
    [140]张晓东,郑永刚,王清照.空冷塔内外流场的数值分析[J].热能动力工程,2000(01).
    [141]Fu S, Zhai Z Q. Numerical investigation of the adverse effect of wind on the heat transfer performance of two natural draft cooling towers in tandem arrangement[J]. Acta Mechanica Sinica/Lixue Xuebao,2001,17(1):24-34.
    [142]Al-Waked R, Behnia M. The performance of natural draft dry cooling towers under crosswind: CFD study[J]. International Journal of Energy Research,2004,28(2):147-161.
    [143]A1-Waked R, Behnia M. The effect of windbreak walls on the thermal performance of natural draft dry cooling towers[J]. Heat Transfer Engineering,2005,26(8):50-62.
    [144]Zhai Z, Fu S. Improving cooling efficiency of dry-cooling towers under cross-wind conditions by using wind-break methods[J]. Applied Thermal Engineering,2006,26(10):1008-1017.
    [145]刘志云,王栋,林宗虎.侧向风对自然通风直接空冷塔性能影响的数值分析[J].动力工程,2008(06).
    [146]Zhao W, Liu P. Effect of wind on recirculation of direct air-cooled condenser for a large power plant:2009 Asia-Pacific Power and Energy Engineering Conference, APPEEC 2009, March 27,2009-March 31,2009[C]. Inst. of Elec. and Elec. Eng. Computer Society, Wuhan, China, 2009:Wuhan University; IEEE Power and Energy Society; Chinese Society for Electrical Engineering; Scientific Research Publishing.
    [147]Zhao W, Liu P. Experimental investigation on thermal flow field characteristics of a direct air-cooled system for a large power plant[J]. Yingyong Jichu yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering,2009,17(4):605-613.
    [148]Wang J, Zeng M, Wang Q, et al. Numerical investigation on performance of natural draft dry-cooling towers with different cooling delta angles[J]. Chemical Engineering Transactions,2011, 25:809-814.
    [149]李晓伟,张丽,吴莘馨,等.高温气冷堆余热排出系统空冷塔内流场数值计算[J].核动力工程,2011,32(3):58-62.
    [150]Grange J L, Simon J Y. Behaviour of cross flow and natural draft cooling tower in the presence of wind[C]. IAHR Cooling Tower Workshop, Budapest, Hungary,1982.
    [151]Bender T J, Bergstrom D J, Rezkallah K S. Study on the effects of wind on the air intake flow rate of a cooling tower:Part 3. Numerical study[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,64(1):73-88.
    [152]Bender T J, Bergstrom D J, Rezkallah K S. Study on the effects of wind on the air intake flow rate of a cooling tower:Part 2. Wind tunnel study[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,64(1):61-72.
    [153]Derksen D D, Bender T J, Bergstrom D J, et al. Study on the effects of wind on the air intake flow rate of a cooling tower:Part Ⅰ. Wind tunnel study[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,64(1):47-59.
    [154]Al-Waked R, Behnia M. CFD simulation of wet cooling towers[J]. Applied Thermal Engineering,2006,26(4):382-395.
    [155]Al-Waked R, Behnia M. Enhancing performance of wet cooling towers[J]. Energy Conversion and Management,2007,48(10):2638-2648.
    [156]Al-Waked R. Crosswinds effect on the performance of natural draft wet cooling towers[J]. International Journal of Thermal Sciences,2010,49(1):218-224.
    [157]高明.侧风环境下自然通风逆流湿式冷却塔传热传质特性的研究[D].济南:山东大学,2007.
    [158]Gao M, Sun F Z, Wang K, et al. Experimental research of heat transfer performance on natural draft counter flow wet cooling tower under cross-wind conditions[J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES,2008,47(7):935-941.
    [159]Gao M, Sun F Z, Zhou S J, et al. Performance prediction of wet cooling tower using artificial neural network under cross-wind conditions[J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES,2009,48(3):583-589.
    [160]赵元宾.侧风对于自然通风逆流湿式冷却塔传热传质影响机制的研究[D].济南:山东大学,2009.
    [161]赵元宾,孙奉仲,工凯,等.侧风对湿式冷却塔空气动力场影响的数值分析[J].核动力工程,2008(06).
    [162]赵元宾,孙奉仲,王凯,等.十字隔墙湿式冷却塔冷却特性的数值研究[J].中国电机工程学报,2009(08).
    [163]Chen Y, Sun F, Wang H, et al. Experimental research of the cross walls effect on the thermal performance of wet cooling towers under crosswind conditions[J]. Applied Thermal Engineering, 2011,31(17-18):4007-4013.
    [164]王凯,孙奉仲,赵元宾,等.自然通风冷却塔进风口流场模型的建立及计算[J].山东大学学报(工学版),2008(01).
    [165]赵元宾,孙奉仲,王凯,等.自然通风湿式冷却塔传热传质的三维数值分析[J].山东大学学报(工学版),2008(05).
    [166]Wang K, Sun F, Zhao Y, et al. Experimental research of the guiding channels effect on the thermal performance of wet cooling towers subjected to crosswinds-Air guiding effect on cooling tower[J]. Applied Thermal Engineering,2010,30(5):533-538.
    [167]周兰欣,蒋波.横向风对湿式冷却塔热力特性影响数值研究[J].汽轮机技术,2009(03).
    [168]周兰欣,蒋波,陈素敏.自然通风湿式冷却塔热力特性数值模拟[J].水利学报,2009(02).
    [169]蒋波,周兰欣.自然通风冷却塔加装十字挡风墙数值研究[J].汽轮机技术.2010(03).
    [170]周兰欣,金童,尹建兴,等.火电机组湿式冷却塔加装导流板的数值研究[J].汽轮机技术,2010(01).
    [171]黄惠嘉.双曲线冷却塔空气流场分析及结构优化选型[J].特种结构,2000(03).
    [172]刘明华.双曲线冷却塔结构优化计算与选型[J].电力建设,2000(10).
    [173]Meyer M K, Emery A F. Cost-optimal design for cooling towers[J]. ASHRAE Trans,1995, 37(4):46-55.
    [174]Kloppers J C, Kroger D G. Cost optimization of cooling tower geometry[J]. Engineering Optimization,2004,36(5):575-584.
    [175]Kranc S C. EFFECT OF NONUNIFORM WATER DISTRIBUTION ON COOLING TOWER PERFORMANCE.[J]. Journal of Energy,1983,7(6):636-639.
    [176]Albright M A. PACKED TOWER DISTRIBUTORS TESTED.[J]. Hydrocarbon Processing, 1984,62(9):173-177.
    [177]Hoek P J, Wesselingh J A, Zuiderweg F J. SMALL SCALE AND LARGE SCALE LIQUID MALDISTRI BUTION IN PACKED COLUMNS.[J]. Chemical Engineering Research & Design, 1986,64(6):431-449.
    [178]Kranc S C. CHARACTERIZATION AND INFLUENCE OF WATER DEPOSITION IN COUNTERFLOW COOLING TOWERS.:Maldistribution of Flow and Its Effect on Heat Exchanger Performance. Presented at the 24th National Heat Transfer Conference and Exhibition.[C]. ASME, New York, NY, USA,1987,75:113-118.
    [179]Zuiderweg F J, Hoek P J, Jr Lahm L. Effect of liquid distribution and redistribution on the separating efficiency of packed columns:Distillation and Absorption 1987[C]. Publ by European Federation of Chemical Engineering, Amarousion-Pefki, Greece,1987:217-231.
    [180]Perry D, Nutter D E, Hale A. Liquid distribution for optimum packing performance[J]. Chemical Engineering Progress,1990,86(1):30-35.
    [181]Kranc S C. Performance of counterflow cooling towers with structured packings and maldistributed water flow[J]. Numerical Heat Transfer:An International Journal of Computation and Methodology; Part A:Applications,1993,23(1):115-127.
    [182]Morrison H A, Kranc S C. Modeling of cooling tower performance with nonuniform water and air flow:Proceedings of the 6th AIAA/ASME Thermophysics and Heat Transfer Conference. Part 5 (of 10)[C]. ASME, New York, NY, USA,1994,275:91-101. [183] Bedekar S V, Nithiarasu P, Seetharamu K N. Experimental investigation of the performance of a counter-flow, packed-bed mechanical cooling tower[J]. Energy (Oxford),1998,23(11): 943-947.
    [184]牛修富.侧风环境下自然通风逆流湿式冷却塔的配水系统研究[D].济南:山东大学,2008.
    [185]黄东涛,杜成琪.逆流式冷却塔填料及淋水分布的数值优化设计[J].应用力学学报,2000(01).
    [186]赵顺安,廖内平,徐铭.逆流式自然通风冷却塔二维数值模拟优化设计[J].水利学报,2003(10).
    [187]Khan J, Qureshi B A, Zubair S M. A comprehensive design and performance evaluation study of counter flow wet cooling towers[J]. International Journal of Refrigeration,2004,27(8):914-923.
    [188]刘明.自然通风湿式冷却塔配水特性及气动特性的数值分析[D].济南:山东大学,2004.
    [189]Kranc S C. Optimal spray patterns for counterflow cooling towers with structured packing[J]. Applied Mathematical Modelling,2007,31(4):676-686.
    [190]Williamson N, Armfield S, Behnia M. Numerical simulation of flow in a natural draft wet cooling tower The effect of radial thermofluid fields[J]. APPLIED THERMAL ENGINEERING, 2008,28(2-3):178-189.
    [191]Williamson N, Behnia M, Armfield S. Comparison of a 2D axisymmetric CFD model of a natural draft wet cooling tower and a 1D model[J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,2008,51(9-10):2227-2236.
    [192]Williamson N, Behnia M, Armfield S W. Thermal optimization of a natural draft wet cooling tower[J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH,2008,32(14):1349-1361.
    [193]Vitkovic P, Syrovatka V. Optimal water distribution in the cooling tower[J]. Journal of Flow Visualization and Image Processing,2009,16(4):367-375.
    [194]Lowe H J, Christie D G. Heat transfer and pressure drop data on cooling tower packings and model studies of the resistance of natural draught towers to airflow[C]. Proceedings of the International Heat Transfer Conference, Colorado,1961:933-950.
    [195]Sirok B, Blagojevic B, Novak M, et al. Energy and mass transfer phenomena in natural draft cooling towers[J]. HEAT TRANSFER ENGINEERING,2003,24(3):66-75.
    [196]赵顺安,冯春平,顾建华,等.超大型自然通风逆流式冷却塔的配水设计[J].电力建设,2009(01).
    [197]赵云驰,侯燕鸿,王东海,等.超大型高位收水冷却塔工艺设计探讨[J].给水排水,2009(11):69-72.
    []98]赵云驰,侯燕鸿,王东海,等.超大型自然通风冷却塔工艺设计探讨[J].电力建设,2009(10).
    [199]金熹卿,谢化一,倪季良,等.高位收水冷却塔的设计[J].中国电力,1993(6):39-43.
    [200]赵云驰,侯燕鸿.核电站采用大型横流式自然通风冷却塔可行性探讨[J].给水排水,2011(12):91-94.
    [201]Smrekar J, Oman J, Sirok B. Improving the efficiency of natural draft cooling towers[J]. Energy Conversion and Management,2006,47(9-10):1086-1100.
    [202]Muangnoi T, Asvapoositkul W, Wongwises S. An exergy analysis on the performance of a counterflow wet cooling tower[J]. Applied Thermal Engineering,2007,27(5-6):910-917.
    [203]Ataei A, Panjeshahi M H, Gharaie M. Performance evaluation of counter-flow wet cooling towers using exergetic analysis[J]. Transactions of the Canadian Society for Mechanical Engineering,2008,32(3-4):499-511.
    [204]Muangnoi T, Asvapoositkul W, Wongwises S. Effects of inlet relative humidity and inlet temperature on the performance of counterflow wet cooling tower based on exergy analysis[J]. ENERGY CONVERSION AND MANAGEMENT,2008,49(10):2795-2800.
    [205]Narayan G P, Lienhard V J H, Zubair S M. Entropy generation minimization of combined heat and mass transfer devices[J]. International Journal of Thermal Sciences,2010,49(10):2057-2066.
    [206]Blanco-Marigorta A M, Victoria Sanchez-Henriquez M, Pena-Quintana J A. Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant[J].2010.
    [207]Qureshi B A, Zubair S M. Second-law-based performance evaluation of cooling towers and evaporative heat exc hangers[J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES,2007, 46(2):188-198.
    [208]Qureshi B A, Zubair S M. A complete model of wet cooling towers with fouling in fills[J]. Applied Thermal Engineering,2006,26(16):1982-1989.
    [209]Qureshi B A, Zubair S M. A unified approach to predict evaporation losses in evaporative heat exchangers[J].2011.
    [210]Wang L, Li N P. Exergy transfer and parametric study of counter flow wet cooling towers[J]. APPLIED THERMAL ENGINEERING,2011,31(5):954-960.
    [211]Prigogine I. Introduction to Thermodynamics of Irreversible Processes[M].3rd ed.New York: Wiley,1967.
    [212]Bejan A. Entropy Generation Minimization[M]. Florida:CRC Press,1996.
    [213]Bejan A. SECOND LAW ANALYSIS IN HEAT TRANSFER.[J]. Energy,1979,5(8-9): 721-732.
    [214]Tondeur D, Kvaalen E. EQUIPARTITION OF ENTROPY PRODUCTION. AN OPTIMALITY CRITERION FOR TRANSFER AND SEPARATION PROCESSES.[J]. Industrial and Engineering Chemistry Research,1987,26(1):50-56.
    [215]Sauar E, Ratkje S K, Lien K M. Equipartition of forces:A new principle for process design and optimization[J]. Industrial and Engineering Chemistry Research,1996,35(11):4147-4153.
    [216]过增元,李志信,周森泉,等.换热器中的温差场均匀性原则[J].中国科学E辑:技术科学,1996(1):25-31.
    [217]Balkan F. Comparison of entropy minimization principles in heat exchange and a short-cut principle:EoTD[J]. International Journal of Energy Research,2003,27(11):1003-1014.
    [218]Bertola V, Cafaro E. A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow[J]. International Journal of Heat and Mass Transfer,2008, 51(7-8):1907-1912.
    [219]Hesselgreaves J E. Rationalisation of second law analysis of heat exchangers[J]. International Journal of Heat and Mass Transfer,2000,43(22):4189-4204.
    [220]Guo Z Y, Zhu H Y, Liang X G. Entransy-A physical quantity describing heat transfer ability[J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,2007,50(13-14): 2545-2556.
    [221]过增元,梁新刚,朱宏晔.(?)——描述物体传递热量能力的物理量[J].自然科学进展,2006(10).
    [222]柳雄斌,孟继安,过增元.换热器参数优化中的熵产极值和(?)耗散极值[J].科学通报,2008,53(24):3026-3029.
    [223]柳雄斌,孟继安,过增元.基于(?)耗散的换热器热阻分析[J].自然科学进展,2008(10).
    [224]柳雄斌,过增元.换热器性能分析新方法[J].物理学报,2009(7):4766-4771.
    [225]许明田,程林,郭江峰.(?)耗散理论在换热器设计中的应用[J].工程热物理学报,2009(12).
    [226]Chen L, Chen Q, Li Z, et al. Optimization for a heat exchanger couple based on the minimum thermal resistance principle[J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,2009,52(21-22):4778-4784.
    [227]夏少军,陈林根,孙丰瑞.换热器(?)散最小优化[J].科学通报,2009(15).
    [228]陈群,任建勋.传质势容耗散极值原理及通风排污过程的优化[J].工程热物理学报,2007,28(3):505-507.
    [229]Chen Q, Yang K D, Wang M R, et al. A new approach to analysis and optimization of evaporative cooling system Ⅰ:Theory[J]. ENERGY,2010,35(6):2448-2454.
    [230]Chen Q, Pan N, Guo Z Y. A new approach to analysis and optimization of evaporative cooling system Ⅱ:Applications[J]. ENERGY,2011,36(5):2890-2898.
    [231]程艳花.自然通风逆流湿式冷却塔基础性能及环境侧风影响的研究[D].济南:山东大学,2007.
    [232]陈友良.自然通风逆流湿式冷却塔空气动力场的优化研究[D].济南:山东大学,2008.
    [233]高明.侧风环境下自然通风逆流湿式冷却塔传热传质特性的研究[D].济南:山东大学,2007.
    [234]王凯.具有导风板的自然通风逆流湿式冷却塔进风阻力研究及性能优化[D].济南:山东大学,2009.
    [235]赵振国.冷却塔[M].北京:中国水利水电出版社,1996.[236]杜广生.工程流体力学[M].北京:中国电力出版社,2005.[237]JJF 1059-1999.测量不确定度评定与表示[S].中国计量科学研究院,1999.
    [238]GUM. Guide to the Expression of Uncertainty in Measurement[J]. ISO,1993.
    [239]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [240]Fluent Incorporated. FLUENT user's guide v6.1[M]. Lebanon:New Hanpshire,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700