用户名: 密码: 验证码:
界面问题和Laplace-Beltrami问题中的有限元超收敛及网格生成优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要围绕二维椭圆界面问题和Laplace-Beltrami问题中的线性有限元的超收敛现象展开研究.对于二维椭圆界面问题,我们用界面拟合网格来离散求解区域,然后用标准线性有限元来离散其模型方程.在适度结构网格的假设下,考虑了界面拟合对超收敛的影响,证明了线性有限元解超逼近于真解的线性插值,并由此导出了二维椭圆界面问题的一个最大模的估计.我们还结合最新顶点加密算法和Borgers算法设计了一个二维界面拟合网格的快速生成算法Borgers算法是一个经典的二维界面拟合网格生成算法,其基本思想是在一致网格的基础上,把界面附近的网格结点扰动到界面上,然后对于界面附近被扰动的小四边形,选择适当的对角线来拟合界面和保持网格质量.对于适当光滑界面,可以证明Borgers算法生成的界面拟合网格是拟一致的和正则的.但对于结构复杂的界面,Borgers算法需要很密的一致网格来很好的拟合界面,这就使后续的计算浪费了很多不必要的计算量.改进后的Borgers算法,可以用较少的网格点更好地拟合复杂的界面,且能保证生成的网格的正则性.改进后的算法生成的界面拟合网格还有一定的结构性,可以利用现有的粗化算法得到一组嵌套网格.基于这组嵌套网格,我们设计了一个高效的多重网格解法器来求解相应的代数系统,数值试验表明这个解法器关于问题的规模和扩散系数的间断都是稳健的.我们的网格生成算法所用的数据结构,局部加密和粗化算法都非常简单,不需要继承树结构来存储网格数据.
     对于Laplace-Beltrami (LB)司题,我们用三角形网格来逼近曲面,用曲面线性有限元来离散模型方程.同样在适度结构网格的假设下,考虑了用三角形网格逼近曲面带来的几何误差对超收敛的影响,证明了曲面线性有限元解超逼近于真解的线性插值.并把平面有限元中的几种梯度恢复格式推广到了曲面有限元上,其中包括简单平均,面积加权平均,全局和局部L2投影,以及Zienkiewicz和Zhu(ZZ)格式,并证明了恢复后的梯度可以更好的逼近真解的梯度.我们还考虑了曲面三角形网格的CVT优化问题,设计了一个足够光滑且能够反映曲面曲率变化的密度函数.实验表明这个密度函数用在曲面三角形网格的Lloyd优化方法中,可以有效改善网格的质量.
In this study, we focus on the superconvergence phenomenon in2D elliptic interface problem and Laplace-Beltrami problem.
     For2D elliptic interface problem, adaptive mesh refinement and the Borgers'algo-rithm are combined to generate a body-fitted mesh which can resolve the interface with fine geometric details. Standard linear finite element method based on such body-fitted meshes is applied to the elliptic interface problem and proven to be superclose to the linear interpolant of the exact solution. Based on this superconvergence result, a maximal norm error estimate is obtained. The basic idea of the Borgers'algorithm is to use a Cartesian grid but perturb only the grid points near the interface onto the interface and choose an appropriate diagonal of perturbed quadrilaterals to fit the interface and maintain the mesh quality. The final body-fitted mesh is shape regular and topologically equivalent to the Cartesian grid. The data structure and meshing algorithms, including local refinement and coarsening, are very simple. In particular, no tree structure is needed. An efficient solver for solving the resulting linear algebraic systems is also developed and shown be robust with respect to both the problem size and the jump of the diffusion coefficients.
     For Laplace-Beltrami problem, superconvergence results and several gradient re-covery methods of finite element methods in flat spaces are generalized to the surface linear finite element method for the Laplace-Beltrami equation on general surfaces with mildly structured triangular meshes. For a large class of practically useful grids, the sur-face linear finite element solution is proven to be superclose to an interpolant of the exact solution of the Laplace-Beltrami equation, and as a result various postprocessing gradient recovery, including simple and weighted averaging, local and global L2-projections, and Zienkiewicz and Zhu (ZZ) schemes are devised and proven to be a better approximation of the true gradient than the gradient of the finite element solution. Numerical experi-ments are presented to confirm the theoretical results. We also design a smooth density function which includes the surface curvature information and can be used in the CVT optimization of surface triangulation. The numerical tests show that the density function is effective to improve the quality of the surface triangulation.
引文
[1]I. Babuska and A. K. Aziz. On the angle condition in the finite element method. SIAMJ. Numer. Anal,13(2):pp.214-226,1976.
    [2]I. Babuska, T. Strouboulis, C. Upadhyay, and S. Gangaraj. Computer-based proof of the existence of superconvergence points in the finite element method; super-convergence of the derivatives in finite element solutions of laplace's, poisson's, and the elasticity equations. Numerical Methods for Partial Differential Equa-tions,12(3):pp.347-392,1996.
    [3]R. Bank and D. Rose. Some error estimates for the box scheme. SIAM J. Numer. Anal.,24(4):pp.777-787,1987.
    [4]R. E. Bank and J. Xu. Asymptotically exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J. Numer. Anal,41(6):pp.2294-2312,2003.
    [5]R. E. Bank and J. Xu. Asymptotically exact a posteriori error estimators, Part II: General unstructured grids. SIAM J. Numer. Anal,41(6):pp.2313-2332,2003.
    [6]R. E. Bank, J. Xu, and B. Zheng. Superconvergent derivative recovery for la-grange triangular elements of degree p on unstructured grids. SIAM J. Numer. Anal,45:pp.2032-2046,2007.
    [7]E. Bansch, F. Hauβer, O. Lakkis, B. Li, and A. Voigt. Finite element method for epitaxial growth with attachment-detachment kinetics. J. Comput. Phys., 194(2):pp.409-434,2004.
    [8]E. Bansch, P. Morin, and R. H. Nochetto. A finite element method for surface diffusion:the parametric case. J. Comput. Phys.,203(1):pp.321-343,2005.
    [9]J. Bedrossian, J. H. V. Brecht, S. Zhu, E. Sifakis, and J. M. Teran. A second order virtual node method for elliptic problems with interfaces and irregular domains. J. Comput. Phys.,229(18):pp.6405-6426,2010.
    [10]B. Bejanov, J. L. Guermond, and P. D. Minev. A grid-alignment finite ele-ment technique for incompressible multicomponent flows. J. Comput. Phys., 227(13):pp.6473-6489,2008.
    [11]J. D. Boissonnat and S. Oudot. Provably good sampling and meshing of surfaces. Graphical Models,67(5):pp.405-451,2005.
    [12]C. Borgers. A triangulation algorithm for fast elliptic solvers based on domain imbedding. SIAM.J. Numer. Anal,27(5):pp.1187-1196,1990.
    [13]J. H. Bramble and J. T. King. A finite element method for interface prob-lems in domains with smooth boundaries and interfaces. Adv. Comput. Math, 6(1):pp.109-138,1996.
    [14]J. H. Bramble and A. H. Schatz. Higher order local accuracy by averaging in the finite element method. Math. Comp.,31(137):pp.74-111,1977.
    [15]W. K. Burton, N. Cabrera, and F. C. Frank. The growth of crystals and the equi-librium structure of their surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., (866):pp.299-358,1951.
    [16]R. E. Caflisch and B. Li. Analysis of island dynamics in epitaxial growth of thin films. Multiscale Model. Simul.,1(1):pp.150-171,2003.
    [17]C. Carstensen and S. Bartels. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. low order conforming, nonconform-ing, and mixed FEM. Math. Comput.,71(239):pp.945-969,2002.
    [18]C. Chen. Optimal points of the stresses approximated by triangular linear element in fem. J. Xiangtan Univ., l:pp.77-90,1978.
    [19]L. Chen. Mesh smoothing schemes based on optimal Delaunay triangulations. In 13th International Meshing Roundtable, pages 109-120, Williamsburg, VA,2004. Sandia National Laboratories.
    [20]L. Chen. Robust and Accurate Algorithms for Solving Anisotropic Singularities. PhD thesis, Department of Mathematics, The Pennsylvania State University, Uni-versity Park, PA, USA,2005.
    [21]L. Chen. Short implementation of bisection in MATLAB. In P. Jorgensen, X. Shen, C. Shu, and N. Yan, editors, Recent Advances in Computational Sciences-Se-lected Papers from the International Workshop on Computational Sciences and Its Education, pages 318-332,2008.
    [22]L. Chen. iFEM:An Integrated Finite Element Methods Package in MATLAB. Technical Report, University of California at Irvine,2009.
    [23]L. Chen. A new class of high order finite volume methods for second order elliptic equations. SIAM.J. Numer. Anal,47(6):pp.4021-4043,2010.
    [24]L. Chen and M. Holst. Efficient mesh optimization schemes based on Opti-mal Delaunay Triangulations. Comput. Methods Appl. Mech. Engrg,200(9-12):pp.967-984,2011.
    [25]L. Chen and J. Xu. Topics on adaptive finite element methods. In T. Tang and J. Xu, editors, in Adaptive Computations:Theory and Algorithms, pages 1-31. Sci. Pr., Beijing,2007.
    [26]L. Chen and C. Zhang. A coarsening algorithm on adaptive grids by newest vertex bisection and its applications. J. Comput. Math.,28(6):pp.767-789,2010.
    [27]Z. Chen, Y. Xiao, and L. Zhang. The adaptive immersed interface finite el-ement method for elliptic and maxwell interface problems. J. Comput. Phys., 228(14):pp.5000-5019,2009.
    [28]Z. Chen and J. Zou. Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math.,79(2):pp.175-202,1998.
    [29]I. Chern and Y. Shu. A coupling interface method for elliptic interface problems. J. Comput. Phys.,225(2):pp.2138-2174,2007.
    [30]A. Demlow. Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal.,47(2):pp.805-827,2009.
    [31]A. Demlow and G. Dziuk. An adaptive finite element method for the laplace-beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal., 45(1):pp.421-442,2007.
    [32]M. Desbrun, M. Meyer, P. Schroder, and A. H. Barr. Implicit fairing of irregular meshes using diffusion and curvature flow. In SIGGRAPH'99:Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pages 317-324, New York, NY, USA,1999. ACM Press/Addison-Wesley Publishing Co.
    [33]Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations:Applica-tions and algorithms. SIAM Rev.,41(4):pp.637-676,1999.
    [34]Q. Du, M. Gunzburger, and L. Ju. Constrained centroidal voronoi tessellations in general surfaces. SIAM J. Sci. Comput.,24(5):pp.1488-1506,2003.
    [35]Q. Du, M. Gunzburger, and L. Ju. Advances in studies and applications of cen-troidal voronoi tessellations. Numer. Math. Theor. Meth. Appl.,3(2):pp.119-142, 2010.
    [36]Q. Du and L. Ju. Finite volume methods on spheres and spherical centroidal voronoi meshes. SIAM J. Numer. Anal.,43(4):pp.1673-1692,2005.
    [37]G. Dziuk. Finite elements for the beltrami operator on arbitrary surfaces. In S. Hildebrandt and R. Leis, editors, Partial Differential Equations and Calcu-lus of Variations, volume 1357 of Lecture Notes in Mathematics, pages 142-155. Springer Berlin-Heidelberg,1988.
    [38]G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58(1):pp.603-611,1990.
    [39]G. Dziuk and C. M. Elliott. Finite elements on evolving surfaces. IMA J. Numer. Anal.,27(2):pp.262-292,2007.
    [40]M. S. Ebeida, R. L. Davis, and R. W. Freund. A new fast hybrid adaptive grid generation technique for arbitrary two-dimensional domains. Int. J. Numer. Meth. Engrg.,84(3):pp.305-329,2010.
    [41]H. Edelsbrunner. Triangulations and meshes in computational geometry. Acta Numer.,9:pp.133-214,2000.
    [42]X. Feng and H. Wu. A posteriori error estimates and an adaptive finite element method for the allen-cahn equation and the mean curvature flow. J. Sci. Comput., 24(2):pp.121-146,2005.
    [43]P. J. Frey and L. Marechal. Fast adaptive quadtree mesh generation. In Proceedings of the Seventh International Meshing Roundtable, pages 211-224. Citeseer,1998.
    [44]I. Fried. Condition of finite element matrices generated from nonuniform meshes. AIAA J.,10:pp.219-221,1972.
    [45]M. Garland and P. S. Heckbert. Surface simplification using quadric error met-rics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, SIGGRAPH'97, pages 209-216, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.
    [46]A. Gelas, S. Valette, R. Prost, and W. L. Nowinski. Variational implicit surface meshing. Comput. Graph,33(3):pp.312-320,2009.
    [47]Y. Gong, B. Li, and Z. Li. Immersed-interface finite-element methods for ellip-tic interface problems with non-homogeneous jump conditions. SIAM J. Numer. Anal,46(1):pp.472-495,2008.
    [48]W. Hackbusch. On first and second order box schemes. Computing, 41(4):pp.277-296,1989.
    [49]E. Hebey. Sobolev Spaces on Riemannian Manifolds. Springer Berlin/Heidelberg, New York,1996.
    [50]B. Heimsund, X. Tai, and J. Wang. Superconvergence for the gradient of the finite element approximations by β-projections. SIAM J. Numer. Anal, 40(4):pp.1538-1560,2002.
    [51]M. Holst. Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math,15(1):pp.139-191,2001.
    [52]Y. Huang and J. Xu. Superconvergence of quadratic finite elements on mildly structured grids. Math. Comp.,77(263):pp.1253-1268,2008.
    [53]H. Johansen and P. Colella. A cartesian grid embedded boundary method for pois-son's equation on irregular domains. J. Comput. Phys.,147(1):pp.60-85,1998.
    [54]P. Knupp. Algebraic mesh quality metrics. SIAM J. Sci. Comput., 23(1):pp.193-218,2001.
    [55]R. J. Leveque and Z. Li. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal, 31(4):pp.1019-1044,1994.
    [56]Z. Li. A fast iterative algorithm for elliptic interface problems. SIAMJ. Numer. Anal,35(1):pp.230-254,1998.
    [57]Z. Li. An overview of the immersed interface method and its applications. Tai-wanese J. Math,7(1):pp.1-49,2003.
    [58]Z. Li and K. Ito. The immersed interface method:numerical solutions ofPDEs involving interfaces and irregular domains. SIAM, Philadelphia,PA,2006.
    [59]Z. Li, T. Lin, and X. Wu. New cartesian grid methods for interface problems using the finite element formulation. Numer. Math.,96(1):pp.61-98,2003.
    [60]D. Liu and J. Nocedal. On the limited memory bfgs method for large scale opti-mization. Math. Program.,45(1):pp.503-528,1989.
    [61]X. Liu, R. Fedkiw, and M. Kang. A boundary condition capturing method for poisson's equation on irregular domain. J. Comput. Phys.,160:pp.151-178,2000.
    [62]Y. Liu, W. Wang, B. Levy, F. Sun, D. M. Yan, L. Lu, and C. Yang. On cen-troidal voronoi tessellation - energy smoothness and fast computation. ACM Trans. Graph,28(4):pp.1-17,2009.
    [63]S. Lloyd. Least squares quantization in pcm. IEEE T. Inform. Theory., 28(2):pp.129-137,1982.
    [64]C. Loop. Smooth subdivision surfaces based on triangles. Master's thesis, Uni-versity of Utah, Utah, USA,1987.
    [65]U. F. Mayer. Numerical solutions for the surface diffusion flow in three space dimensions, comput. Appl. Math,20(3):pp.361-379,2001.
    [66]K. Mekchay. Convergence of adaptive finite element methods. PhD thesis, De-partment of Mathematics, University of Maryland at College Park, College Park, MD, USA,2005.
    [67]K. Mekchay, P. Morin, and R. H. Nochetto. Afem for the laplace-beltrami op-erator on graphs:Design and conditional contraction property. Math. Comput, 80(274):pp.625-648,2009.
    [68]H. Nguyen. Centroidal Voronoi tessellations for mesh generation:From uniform to anisotropic adaptive triangulations. PhD thesis, The Florida State University, Tallahassee, FL, USA,2008.
    [69]M. Oevermann and R. Klein. A cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J. Comput. Phys., 219(2):pp.749-769,2006.
    [70]P. Persson and G. Strang. A simple mesh generator in matlab. SIAM Rev., (2):pp.329-345, Jun.2004.
    [71]C. Pflaum. Semi-unstructured grids. Comput.,67(2):pp.141-166,2001.
    [72]J. Roitberg and Z. Seftel. A theorem on homeomorphisms for elliptic systems and its applications. MATH USSR SB+,7(3):pp.439-465,1969.
    [73]B. H. Romeny. Geometry-Driven Diffusion in Computer Vision. Kluwer Academic Publishers, Norwell, MA, USA,1994.
    [74]J. S. Sachdev and C. P. T. Groth. A mesh adjustment scheme for embedded bound-aries. In C. Groth and D. Zingg, editors, Computational Fluid Dynamics 2004, pages 109-114. Springer Berlin-Heidelberg, New York,2006.
    [75]G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cam-bridge University Press, Cambridge, UK,2001.
    [76]A. Schatz, I. Sloan, and L. Wahlbin. Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point. SIAM J. Numer. Anal,33(2):pp.505-521,1996.
    [77]J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Comput. Geom.,22(1-3):pp.21-74,2002.
    [78]R. Sibson. Locally equiangular triangulations. Comput. J.,21(3):pp.243-245, 1978.
    [79]G. Simonett. The willmore flow for near spheres. Differential Integral Equations, 14(8):pp.1005-1014,2001.
    [80]E. Stein. Singular integrals and differentiability properties of functions, vol-ume 30. Princeton Univ. Pr.,1970.
    [81]L. B. Wahlbin. Superconvergence in Galerkin finite element methods. Lecture notes in mathematics. Springer,1995.
    [82]H. Xie, K. Ito, Z. Li, and J. Toivanen. A finite element method for interface prob-lems with locally modified triangulations. Moving Interface Problems and Appli-cations in Fluid Dynamics:January 8-March 1,2001, the Institute for Mathemat-ical Sciences, National University of Singapore,466:pp.179-190,2008.
    [83]H. Xie, Z. Li, and Z. Qiao. A finite element method for elasticity interface problems with locally modified triangulations. Int. J. Numer. Anal. Model., 8(2):pp.189-200,2011.
    [84]G. Xu. Geometric Partial Differential Equation Methods in Computational Ge-ometry. Science Press, Beijing, PR China,2008.
    [85]J. Xu. Error estimates of the finite element method for the 2nd order elliptic equa-tions with discontinuous coefficients. J. Xiangtan University, 1:pp.1-5,1982.
    [86]J. Xu and Z. Zhang. Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comp,73:pp.1139-1152,2004.
    [87]J. Xu and Q. Zou. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math., 111(3):pp.469-492,2009.
    [88]M. A. Yerry and M. S. Shephard. A modified quadtree approach to finite element mesh generation. IEEE Comput. Graph. Appl,3(1):pp.39-46,1983.
    [89]K. F. C. Yiu, D. M. Greaves, S. Cruz, A. Saalehi, and A. G. L. Borthwick. Quadtree grid generation:Information handling, boundary fitting and cfd applications. Com-put.& Fluids,25(8):pp.759-769,1996.
    [90]O. C. Zienkiewicz and J. Zhu. The superconvergent patch recovery and a poste-riori error estimates, part 1:The recovery technique. Int. J. Numer. Meth. Engrg., 33(7):pp.1331-1364,1992.
    [91]陈传淼.有限元超收敛构造理论.湖南科学技术出版社,长沙,2001.
    [92]陈传淼,朱起定.有限单元法的一种新估计和应力佳点定理.湘潭大学通讯,1:pp.10-20,1978.
    [93]陈传淼,黄云清.有限元高精度理论.湖南科学技术出版社,长沙,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700