用户名: 密码: 验证码:
基于物理中面功能梯度材料板壳结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度材料(FGM),在宏观与微观上都是非均质复合材料,一般是由陶瓷与金属复合而成,其材料组分从纯陶瓷表面到纯金属表面呈连续梯度变化,导致了材料性质与等效物理参数也是梯度平缓变化。这使得FGM在工程应用中,特别在航天工业、聚变堆与核工业等高温环境中,有着传统纤维-基体复合材料无法比拟的优点。本博士学位论文,基于物理中面的概念与经典非线性板壳理论,建立了关于FGM板、圆柱壳与双曲率扁壳的基本方程。物理中面板壳理论具有面内变形与横向弯曲解耦的特点,又因为控制方程与边界条件简洁,使得分析FGM板壳力学行为的难度降低。
     在线性分析中,用解析的方法分析了FGM板、圆柱壳与双曲率扁壳弯曲、振动与屈曲等力学行为。分析结果表明,FGM板壳的无量纲挠度随着梯度参数的增加而减小,而无量纲振动频率与临界屈曲载荷随着梯度参数的增加而增加。
     在非线性分析中,用Galerkin变分法分析了FGM板壳在热-机载荷作用下的非线性弯曲,大幅度振动,过屈曲等力学行为。主要结论有:
     在对FGM板、圆柱壳与双曲率扁壳的非线性弯曲分析中,在机械载荷作用下FGM板壳的弯曲力学行为介于纯金属于与纯陶瓷之间,但是在热-机载荷联合作用下,FGM板壳的弯曲力学行为并不都是如此。在相同的热载作用下,简支FGM板壳都有较大的初始挠度,固支壳只有微小的初始挠度,而固支板在没有发生热过屈曲变形时无初始挠度。当FGM壳的几何参数大于临界几何参数时,FGM壳随着荷载的增加会发生跳跃失稳现象,其中临界几何参数与边界支撑条件,温度载荷、梯度参数有关。
     在对FGM板壳非线性振动的分析中,当振幅趋近零时,FGM板壳的振动频率趋近线性解,板的振动频率随着振幅的增大而升高,而FGM壳的振动频率随振幅的变化比较复杂。
     在对FGM板过屈曲变形的分析中,简支FGM板的挠度随着边界压力载荷的增加而增加,当压力趋近线性临界屈曲压力时,简支FGM板的挠度趋近零。随着热载荷参数的增加,固支FGM板会发生屈曲分叉,而简支FGM板则不会。在相同热载荷作用的条件下,纯陶瓷的抗热性能高于纯金属板,而具有适当梯度参数的FGM抗热性能可以超过纯陶瓷板,此时可以体现出FGM材料的优越性。
     因为比几何中面FGM板壳理论简洁,所以物理中面FGM板壳理论在工程应用中具有一定的优势。
Functionally gradient materials (FGM) are both macroscopically and microscopically heterogeneous composites which are normally made from a mixture of ceramics and metals with continuous composition gradation from pure ceramic on one surface to full metal on the other. This leads to a gradual and smooth change in the material profile as well as the effective physical properties, making them distinguish from the conventional fiber-matrix composites and preferable in many engineering applications, especially in high temperature environments such as aerospace structures, fusion reactors and nuclear industry. In this paper, the concept of physical neutral surface and classical laminated plate and shell theories are employed to formulate the basic equations of the FGM plates, cylindrical shells and double curved shallow shells. In this theory, stretching-bending coupling effects are decoupled, governing equations and boundary conditions have the simple forms, so analysis and solution procedure of FGM plats and shells are simplified.
     In linear analysis, FGM plates and shells behaviors, which include bending, vibration, bucking, are discussed using analytical method based on physical neutral surface theories. With increased material constant, deflections of FGM plate and shell are decreased, but frequency and critical bucking loading are increased.
     In nonlinear analysis, FGM plates and shells behaviors, which include large deflection bending, large deflection vibration, post-bucking, are discussed using Galerkin variational method. It can be concluded that
     In nonlinear bending analysis of FGM plates, cylindrical shells and double-curved shallow shells, if there is no thermal loading, behaviors of FGM plates and shells are intermediate to that of plates and shells made of pure ceramics and metals in mechanical loading, but this is not true while thermo-mechanical loading are applied. Under the same thermal loading, simply support plates have larger initial deflection, and clamped shells have small initial deflection, but clamped plates have not except for in post-bucking state. When geometry parameter of FGM shells is larger than critical geometry parameter, in which are related with material constant, thermal loading and boundary condition, the maximum deflection has a sudden jump with the increased mechanical loads.
     Under simply support and clamped boundary conditions, deflections of plates are increased with increased mechanical loading. Deflections of simply support plates are larger than clamped plates with or without thermal loading. Deflections of plates with thermal loading are larger than deflections of plates without thermal loading. Under thermal loading, simply support plates have initial deflection, but clamped plates has not except for in post-bucking state. In nonlinear bending analysis of FGM cylindrical and double curved shallow thin shells, the maximum deflection has a sudden jump with the increased mechanical loads.
     In large deflection vibration analysis, when vibration amplitude is closed to zero, nonlinear frequency is closed to linear frequency, frequency of FGM plates are increased with increased vibration amplitude, but frequency of FGM shells are complex with increased vibration amplitude.
     In post-bucking analysis, deflection of simply support plates is closed to zero, when boundary pressure is closed to critical pressure. Deflection of simply support plates increased with increased boundary pressure. With increased thermal loading, clamped FGM plates have bifurcation buckling behavior, but simply support plates has not. Under the same thermal loading, heat resistance of ceramics is better than that of metals, but if material constant is properly selected, that of FGM can be better than that of ceramics, so superiority of FGM can be best presented.
     Physical neutral surface plate and shell theories about FGM have more merits in the engineering application, because they are easier and simpler than classical laminated plate and shell theories based on geometric middle surface.
引文
[1]Niino M, Hirai T, Watanabe R. Functionally gradient materials aimed at heat resisting materials for space plant[J]. Journal of Japan Society of Composite Materials,1987,13(6): 257-264.
    [2]庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J].金属制品,2005,3 1(04):4-9.
    [3]PalDey S, Deevi S C. Single layer and multilayer wear resistant coatings of (Ti,Al)N:a review[J]. Materials Science and Engineering A,2003,342(1-2):58-79.
    [4]张幸红,韩杰才,董世运,等.梯度功能材料制备技术及其发展趋势[J].宇航工艺材料工艺,1999(2):1-5.
    [5]Elkedim O, Cao H S, Guay D. Preparation and corrosion behavior of nanocrystalline iron gradient materials produced by powder processing[J]. Journal of Materials Processing Technology,2002,121(2-3):383-389.
    [6]Zhu J C, Lai Z H, Yin Z D, et al. Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy[J]. Materials Chemistry and Physics,2001,68(1-3):130-135.
    [7]李宇春,田忠良,李志友,等.粉浆浇注法制备较大尺寸金属陶瓷材料的试验研究[J].粉末冶金材料科学与工程,2003,8,(1):75-79.
    [8]付永信,王建江,杜心康,等.热喷涂技术制备功能梯度材料涂层的发展状况[J].材料保护,2006,39(6):41-44.
    [9]林文松.功能梯度材料涂层制备技术的研究进展[J].表面技术,2004,33(4):7-9.
    [10]王蕾,陈文华,谢治凯,等.火焰喷涂梯度功能陶瓷涂层工艺与性能[J].热加工工艺,1998,5:37-38.
    [11]唐建新,张爱斌,陈建平,等.爆炸喷涂工艺原理分析[J].材料保护,2000,33(09):33-34.
    [12]卢国辉,曾鹏,黄惠平,等.爆炸喷涂A1203陶瓷梯度涂层的组织与性能[J].材料工程,2000,4:30-33.
    [13]张卫文,李元元,龙雁,等.半连续铸造法制备AlCu/Al梯度材料[J].中国有色金属学 报,2002,12:188-191.
    [14]张宝生,程荆卫,朱景川,等.离心铸造内生强化A13Ni/Al功能梯度材料[J].哈尔滨工业大学学报,1998,30(2):99-103.
    [15]张健,王玉庆,吴欣强,周本濂.离心铸造原位Al/Mg2Si复合材料组织与性能的研究[J].铸造,1998,9:1-3.
    [16]Zhang Y M, Han J C, Zhang X H, et al. Rapid prototyping and combustion synthesis of TiC/Ni functionally gradient materials[J]. Materials Science and Engineering A, 2001,299(1-2):218-224.
    [17]杨中民,张联盟.用共沉降法制备组分连续变化的梯度材料[J].材料科学与工艺,2002,10(03):326-330.
    [18]Kim S K, Yoo H J. Formation of bilayer Ni-SiC composite coatings by electrodeposition[J]. Surface and Coatings Technology,1998,108-109(1-3):564-569.
    [19]周张健,葛昌纯,李江涛.熔渗·焊接法制备W/Cu功能梯度材料的研究[J].金属学报,2000,36(6):655-658.
    [20]Liu W P, Dupont J N. Fabrication of functionally graded TiC/Ti composites by Laser Engineered Net Shaping[J]. Scripta Materialia,2003,48(9):1337-1342.
    [21]Lee Y D, Erdogan F. Residual/thermal stresses in FGM and laminated thermal barrier coatings[J]. International Journal of Fracture,1994,69(2):1573-2673.
    [22]Fukui Y, Takashima K, Ponton C B. Measurement of Young's modulus and internal friction of an in situ Al-Al3Ni functionally gradient material[J]. Journal of Materials Science, 1994,29(9):2281-2288.
    [23]Markworth A J, Saunders J H. A model of structure optimization for a functionally graded material[J]. Materials Letters,1995,22(1-2):103-107.
    [24]Giannakopoulos A E, Suresh S, Finot M, et al. Elastoplastic analysis of thermal cycling: layered materials with compositional gradients[J]. Acta Metallurgica et Materialia, 1995,43(4):1335-1354.
    [25]Williamson R L, Rabin B H, Drake J T. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces Part Ⅰ. Model description and geometrical effects[J]. Journal of Applied Physics,1993,74(2):1310-1320.
    [26]Drake J T, Williamson R L, Rabin B H. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces Part Ⅱ. Interface optimization for residual stress reduction[J]. Journal of Applied Physics,1993,74(2):1321-1326.
    [27]Arai M, Kambe M, Ogata T, et al. Graded Compositional Design of FGM Compliant Pad for Thermoelectric Conversion Module Based on Residual Thermal Stress[J]. Transactions of the Japan Society of Mechanical Engineers A,1996,62(594):488-492.
    [28]Sumi N, Sugano Y. Dynamic Thermal Stresses in a Functionally Graded Material with Temperature-Dependent Material Properties[J]. Transactions of the Japan Society of Mechanical Engineers A,1995,61(590):2296-2301.
    [29]Sumi N, Sugano Y. Thermally induced stress waves in functionally graded materials with temperature-dependent material properties[J]. Journal of Thermal Stresses,1997,20(3-4): 281-294.
    [30]Bao G, Wang L. Multiple cracking in functionally graded ceramic_metal coatings[J]. International Journal of Solids and Structures,1995,32(19):2853-2871.
    [31]Aboudi J, Pindera M J, Arnold S M. A coupled higher-order theory for functionally graded composites with partial homogenization[J]. Composites Engineering,1995,5(7):771-792.
    [32]Gasik M M, Lilius K R. Evaluation of properties of W-Cu functional gradient materials by micromechanical model[J]. Computational Materials Science,1994,3(1):41-49.
    [33]Gasik M M. Micromechanical modelling of functionally graded materials[J]. Computational Materials Science, Volume 1998,13(1-3):42-55.
    [34]Reddy J N, Chin C D. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of thermal stresses,1998,21(6):593-626.
    [35]Chi S H, Chung Y L. Mechanical behavior of functionally graded material plates under transverse load—Part Ⅰ:Analysis[J]. International Journal of Solids and Structures,2006,43(13):3657-3674.
    [36]Chi S H, Chung Y L. Mechanical behavior of functionally graded material plates under transverse load—Part Ⅱ:Numerical results[J]. International Journal of Solids and Structures, 2006,43(13):3675-3691.
    [37]Erdogan F. Fracture mechanics of functionally graded materials[J]. Composites Engineering, 1995,5(7):753-770.
    [38]吴连元.板壳理论[M].第一版.上海:上海交通大学出版社,1989.
    [39]郑晓静.圆薄板大挠度理论及应用[M].第一版.长春:吉林科学技术出版社,1990.
    [40]周又和.圆薄板在周边面内压力下的自由振动、屈曲和后屈曲[J].兰州大学学报,1993,29(4):57-62.
    [41]周又和,郑晓静.受静载作用圆薄板的非线性振动[J].非线性动力学学报,1994,1(2):185-193.
    [42]周又和.具有中心弹性约束的圆膜片的非线性弯曲[J].兰州大学学报,1994,30(2):23-28.
    [43]Tzou H S, Zhou Y H. Dynamics and control of non-linear circular plates with piezoelectric actuators[J]. Journal of Sound and Vibration,1995,188(2):189-207.
    [44]周又和,郑晓静.变温环境对压电圆板频率主动控制的影响[J].力学学报,1998,30(1):58-64.
    [45]Zhou Y H, Zheng X J. A variational principle on magnetoelastic interaction of ferromagnetic thin plates[J]. Acta Mechanica Solida Sinica,1997,10(1):1-10.
    [46]郑晓静,周又和.D型超导线圈的磁弹性弯曲和屈曲[J].兰州大学学报,1997,33(2):23-31.
    [47]周又和,郑晓静.磁弹性薄板屈曲的研究进展和存在的若干问题[J].力学进展,1995,25(4):525-536.
    [48]周又和,王省哲,郑晓静.矩形铁磁板的磁弹性弯曲与稳定性[J].应用数学和力学,1998,19(7):625-630.
    [49]周又和,郑晓静.软铁磁薄板磁弹性屈曲的理论模型[J].力学学报,1996,28(6):651-660.
    [50]周又和,郑晓静,王省哲.悬臂铁磁板磁弹性耦合作用的力学分析[J].固体力学学报,1998,19(3):239-244.
    [51]周又和,郑晓静.托卡马克聚变堆中环向磁场超导线圈的磁弹性弯曲与稳定性[J].核聚变与等离子体物理,1997,17(2):17-23.
    [52]Zhou Y H, Miya K. A Theoretical Prediction of Natural Frepuency of a Ferromagnetic Beam Plate With Low Susceptibility in an In-Plane Magnetic Field[J]. Journal of Applied Mechanics,1998,65:121-126.
    [53]Zheng X J, Zhou Y H. Magnetoelastic bending and stability of current-carrying coil structures[J]. Acta Mechanica Sinica,1997,13(3):253-263.
    [54]Zhou Y H, Zheng X J. A general expression of ferromagnetic plates in magnetic force for soft complex magnetic fields[J]. International Journal of Engineering Science,1997,35(15): 1405-1417.
    [55]Zhou Y H, Zheng X J, Miya K. Magnetoelastic bending and snapping of ferromagnetic plates in oblique magnetic fields[J]. Fusion Engineering and Design,1995,30(4):325-337.
    [56]Zhou Y H, Zheng X J, Miya K. Magnetoelastic bending and buckling of three-coil superconducting partial torus[J]. Fusion Engineering and Design,1995,30,(3):275-289.
    [57]Zheng X J, Wang X Z. A magnetoelastic theoretical model for soft ferromagnetic shell in magnetic field[J]. International Journal of Solids and Structures,2003,40(24):6897-6912.
    [58]Zhou Y H, Gao Y W, Zheng X J, et al. Buckling and post-buckling of a ferromagnetic beam-plate induced by magnetoelastic interactions[J]. International Journal of Non-Linear Mechanics,2000,35(6):1059-1065.
    [59]Zhou Y H, Gao Y W, Zheng X J. Buckling and post-buckling analysis for magneto-elastic-plastic ferromagnetic beam-plates with unmovable simple supports[J]. International Journal of Solids and Structures,2003,40(11):2875-2887.
    [60]Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[J]. Journal of Applied Mechanics,1951,18:31-38.
    [61]Reissner E. On the theory of bending of elastic plates[J]. Journal of Mathematical Physics, 1944,23:184-194.
    [62]Reissner E. Reflections on the theory of elastic plates[J]. Applied Mechanics Reviews, 1985,38(11):1453-1464.
    [63]Reddy J N. On the Generalization of Displacement-Based Laminate Theories[J]. Applied Mechanics Reviews,1989,42(11):S213-S222.
    [64]Reddy J N. Dynamic (Transient) Analysis of Layered Anisotropic Composite-Material Plates[J]. International Journal for Numerical Methods in Engineering,1983,19:237-255.
    [65]谭惠丰,于增信,杜星文.层合板六参量几何非线性高阶剪切理论[J].固体力学学报,2000,21(1):19-26.
    [66]Reddy J N. A Simple Higher-Order Theory for Laminated Plates[J]. Journal of Applied Mechanics,1984,51:745-752.
    [67]范家让.强厚度叠层板壳的精确理论[M].第一版.北京:科学出版社,1996.
    [68]Chung Y L, Chen W T. Bending behavior of FGM-coated and FGM-undercoated plates with two simply supported opposite edges and two free edges[J]. Composite Structures,2007,81(2):157-167.
    [69]Navazi H M, Haddadpour H, Rasekh M. An analytical solution for nonlinear cylindrical bending of functionally graded plates[J]. Thin-Walled Structures,2006,44,(11):1129-1137.
    [70]Hsieh J J, Lee L T. An inverse problem for a functionally graded elliptical plate with large deflection and slightly disturbed boundary[J]. International Journal of Solids and Structures, 2006,43(20):5981-5993.
    [71]GhannadPour S A M, Alinia M M. Large deflection behavior of functionally graded plates under pressure loads[J]. Composite Structures,2006,75(1-4):67-71.
    [72]Woo J, Meguid S A. Nonlinear analysis of functionally graded plates and shallow shells[J]. International Journal of Solids and Structures,2001,38(42-43):7409-7421.
    [73]He X Q, Ng T Y, Sivashanker S, et al. Active control of FGM plates with integrated piezoelectric sensors and actuators[J]. International Journal of Solids and Structures,2001,38(9):1641-1655.
    [74]Yang J, Shen H S. Dynamic response of initially stressed functionally graded rectangular thin plates[J]. Composite Structures,2001,54(4):497-508.
    [75]Chen C S. Nonlinear vibration of a shear deformable functionally graded plate[J]. Composite Structures,2005,68,(3):295-302.
    [76]Sundararajan N, Prakash T, Ganapathi M. Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments[J]. Finite Elements in Analysis and Design,2005,42,(2):152-168.
    [77]Woo J, Meguid S A, Ong L S. Nonlinear free vibration behavior of functionally graded plates[J]. Journal of Sound and Vibration,2006,289(3):595-611.
    [78]Allahverdizadeh A, Naei M H, Bahrami M N. Nonlinear free and forced vibration analysis of thin circular functionally graded plates[J]. Journal of Sound and Vibration,2008,310(4-5): 966-984.
    [79]Chen C S, Tan A H. Imperfection sensitivity in the nonlinear vibration of initially stresses functionally graded plates[J]. Composite Structures,2007,78(4):529-536.
    [80]Ma L S, Wang T J. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings[J]. International Journal of Solids and Structures,2003,40(13-14):3311-3330.
    [81]Yanga J, Shen H S. Non-linear analysis of functionally graded plates under transverse and in-plane loads[J]. International Journal of Non-Linear Mechanics,2003,38(4):467-482.
    [82]Li S R, Zhang J H Zhao Y G. Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection[J]. Thin-Walled Structures,2007,45(5):528-536.
    [83]Li S R, Batra R C. Buckling of axially compressed thin cylindrical shells with functionally graded middle layer[J]. Thin-Walled Structures,2006,44(10):1039-1047.
    [84]Najafizadeh M M, Eslami M R. Buckling analysis of circular plates of functionally graded materials under uniform radial compression[J]. International Journal of Mechanical Sciences,2002,44(12):2479-2493.
    [85]Shariat B A S, Eslami M R. Thermal buckling of imperfect functionally graded plates[J]. International Journal of Solids and Structures,2006,43(14-15):4082-4096.
    [86]Shen H S. Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments[J]. Composites Science and Technology,2002,62(7-8):977-987.
    [87]Shen H S. Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments[J]. Engineering Structures,2003,25(4):487-497.
    [88]Abrate S. Free vibration, buckling, and static deflections of functionally graded plates. Composites Science and Technology,2006,66(14):2383-2394.
    [89]Tsukamoto H. Analytical method of inelastic thermal stresses in a functionally graded material plate by a combination of micro-and macromechanical approaches[J]. Composites Part B:Engineering,2003,34(6):561-568.
    [90]Nguyen T K, Sab K, Bonnet G First-order shear deformation plate models for functionally graded materials[J]. Composite Structures,2008,83(1):25-36.
    [91]Croce L D, Venini P. Finite elements for functionally graded Reissner-Mindlin plates[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(9-11):705-725.
    [92]Arciniega R A, Reddy J N. Large deformation analysis of functionally graded shells[J]. International Journal of Solids and Structures,2007,44(6):2036-2052.
    [93]Ganapathi M. Dynamic stability characteristics of functionally graded materials shallow spherical shells[J]. Composite Structures,2007,79(3):338-343.
    [94]Praveen G N, Reddy J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J]. International Journal of Solids and Structures,1998,35(33): 4457-4476.
    [95]Dai K Y, Liu G R, Han X, et al. Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method[J]. Computers and Structures, 2005,83(17-18):1487-1502.
    [96]Liew K M, He X Q, Kitipornchai S. Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(3-5):257-273.
    [97]Ray M C, Sachade H M. Finite element analysis of smart functionally graded plates[J]. International Journal of Solids and Structures,2006,43(18-19):5468-5484.
    [98]Yang J, Liew K M, Kitipornchai S. Second-order statistics of the elastic buckling of functionally graded rectangular plates[J]. Composites Science and Technology,2005,65(7-8):1165-1175.
    [99]Wu L H. Thermal buckling of a simply supported moderately thick rectangular FGM plate[J]. Composite Structures,2004,64(2):211-218.
    [100]Park J S, Kim J H. Thermal postbuckling and vibration analyses of functionally graded plates[J]. Journal of Sound and Vibration,2006,289,(1-2):77-93.
    [101]Prakash T, Ganapathi M. Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method[J]. Composites Part B: Engineering,2006,37(7-8):642-649.
    [102]Prakash T, Singha M K, Ganapathi M. Thermal postbuckling analysis of FGM skew plates[J]. Engineering Structures,2008,30(1):22-32.
    [103]Wu T L, Shukla K K, Huang J H. Post-buckling analysis of functionally graded rectangular plates[J]. Composite Structures,2007,81,(1):1-10.
    [104]Chen X L, Zhao Z Y, Liew K M. Stability of piezoelectric FGM rectangular plates subjected to non-uniformly distributed load, heat and voltage[J]. Advances in Engineering Software, 2008,39(2):121-131.
    [105]Sohn K J, Kim J H. Structural stability of functionally graded panels subjected to aero-thermal loads[J]. Composite Structures,2008,82,(3):317-325.
    [106]Kadoli R, Ganesan N. Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition[J]. Journal of Sound and Vibration,2006,289(3):450-480.
    [107]Bhangale R K, Ganesan N, Padmanabhan C. Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells[J]. Journal of Sound and Vibration,2006,292(1-2):341-371.
    [108]Shen H S. Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments[J]. International Journal of Mechanical Sciences, 2002,44(3):561-584.
    [109]Yang J, Shen H S. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions[J]. Composites Part B:Engineering,2003,34,(2):103-115.
    [110]Shen H S. Nonlinear thermal bending response of FGM plates due to heat conduction[J]. Composites Part B:Engineering,2007,38(2):201-215.
    [111]Ferreira A J M, Batra R C, Roque C M C, et al. Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method[J]. Composite Structures, 2005,69(4):449-457.
    [112]Yang J, Kitipornchai S, Liew K M. Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates[J]. Computer Methods in Applied Mechanics and Engineering,2003,192(35-36):3861-3885.
    [113]Yang J, Shen H S. Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments[J]. Journal of Sound and Vibration, 2002,255(3):579-602.
    [114]Kitipornchai S, Yang J, Liew K M. Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections[J]. International Journal of Solids and Structures,2004,41(9-10):2235-2257.
    [115]Wu X H, Chen C Q, Shen Y P, et al. A high order theory for functionally graded piezoelectric shells[J]. International Journal of Solids and Structures,2002,39(20): 5325-5344.
    [116]Reddy J N, Cheng Z Q. Frequency correspondence between membranes and functionally graded spherical shallow shells of polygonal planform[J]. International Journal of Mechanical Sciences,2002,44(5):967-985.
    [117]Huang X L, Shen H S, Nonlinear vibration and dynamic response of functionally graded plates in thermal environments[J]. International Journal of Solids and Structures, 2004,41(9-10):2403-2427.
    [118]Kim Y W. Temperature dependent vibration analysis of functionally graded rectangular plates[J]. Journal of Sound and Vibration,2005,284(3-5):531-549.
    [119]Patel B P, Gupta S S, Loknath M S, et al. Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory[J]. Composite Structures,2005,69(3): 259-270.
    [120]Huang X L, Shen H S. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments[J]. Journal of Sound and Vibration, 2006,289(1-2):25-53.
    [121]Liew K M, Yang J, Kitipornchai S. Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading[J]. International Journal of Solids and Structures, 2003,40(15):3869-3892.
    [122]Najafizadeh M M, Heydari H R. Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory[J]. European Journal of Mechanics-A/Solids,2004,23(6):1085-1100.
    [123]Shen H S. Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings[J]. International Journal of Solids and Structures, 2005,42(23):6101-6121.
    [124]Cheng Z Q, Batra R C. Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates[J]. Journal of Sound and Vibration, 2000,229(4):879-895.
    [125]Woo J, Meguid S A, Stranart J C, et al. Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells[J]. International Journal of Mechanical Sciences,2005,47(8):1147-1171.
    [126]Shen H S, Li S R. Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties[J]. Composites Part B:Engineering,2008,39(2):332-344.
    [127]Shen H S. Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties[J]. International Journal of Mechanical Sciences, 2007,49(4):466-478.
    [128]Najafizadeh M M, Heydari H R. An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial compression[J]. International Journal of Mechanical Sciences,2008,50,(3):603-612.
    [129]Shen H S. Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments[J]. Composites Science and Technology,2005,65(11-12):1675-1690.
    [130]Shen H S, Noda N. Postbuckling of FGM cylindrical shells under combined axial and radial mechanical loads in thermal environments[J]. International Journal of Solids and Structures, 2005,42(16-17):4641-4662.
    [131]Shen H S, Noda N. Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments[J]. Composite Structures,2007,77(4):546-560.
    [132]Wang Y, Xu R Q, Ding H J. Three-dimensional solution of axisymmetric bending of functionally graded circular plates[J]. Composite Structures,2010,92(7):1683-1693.
    [133]Nie G J, Zhong Z. Semi-analytical solution for three-dimensional vibration of functionally graded circular plates[J]. Computer Methods in Applied Mechanics and Engineering, 2007,196(49-52):4901-4910.
    [134]Ootao Y, Tanigawa Y. Three-dimensional solution for transient thermal stresses of functionally graded rectangular plate due to nonuniform heat supply[J]. International Journal of Mechanical Sciences,2005,47(11):1769-1788.
    [135]Ootao Y, Tanigawa Y. Three-dimensional solution for transient thermal stresses of an orthotropic functionally graded rectangular plate[J]. Composite Structures,2007,80(1): 10-20.
    [136]Wu X H, Shen Y P, Chen C Q. An exact solution for functionally graded piezothermoelastic cylindrical shell as sensors or actuators[J]. Materials Letters,2003,57(22-23):3532-3542.
    [137]Pelletier J L, Vel S S. An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells[J]. International Journal of Solids and Structures,2006,43(5):1131-1158.
    [138]Wu C P, Tsai Y H. Asymptotic DQ solutions of functionally graded annular spherical shells[J]. European Journal of Mechanics-A/Solids,2004,23(2):283-299.
    [139]Zhu J Q, Chen C, Shen Y, et al. Dynamic stability of functionally graded piezoelectric circular cylindrical shells[J]. Materials Letters,2005,59(4):477-485.
    [140]Bhangale R K, Ganesan N. Free vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite cylindrical shells[J]. Journal of Sound and Vibration,2005,288(1-2):412-422.
    [141]Morimoto T, Tanigawa Y, Kawamura R. Thermal buckling of functionally graded rectangular plates subjected to partial heating[J]. International Journal of Mechanical Sciences,2006,48(9):926-937.
    [142]Abrate S. Functionally graded plates behave like homogeneous plates[J]. Composites Part B: Engineering,2008,39(1):151-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700