用户名: 密码: 验证码:
PLZT光致伸缩特性及光电层合回转薄壳主动控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回转壳结构在航空、航天、民用和国防工业领域有着广泛的应用,其形状控制和振动控制一直是系统设计和工程应用中的重点和难点。利用智能材料来实施有效的主动激励,是目前对回转壳进行主动控制所采取的一种重要方法。但由电、磁信号激发的智能材料,需要复杂的激发装置和连接导线,易引起电磁噪音干扰,而新型的智能材料镧改性锆钛酸铅(PLZT)陶瓷,可将光能转化为机械能,无电磁噪声干扰,适于在太空环境下实施非接触激励及远程控制。因此,本文在对PLZT陶瓷光致伸缩特性研究的基础上,对光电层合回转壳结构的主动控制问题展开研究,旨在为光电类智能结构的工程应用提供理论依据。
     对多能场耦合下PLZT的光致伸缩效应进行研究,揭示了冷光源(LED-UV)照射下的光致伸缩机理;基于PLZT陶瓷等效电学模型,研究了光照强度、PLZT陶瓷长宽比及PLZT陶瓷厚度参数对光致应变的影响,建立了PLZT陶瓷在光照阶段的光致伸缩数学模型,并通过光致伸缩静态实验验证了该数学模型的正确性;对光照停止阶段的残余应变进行研究,给出了残余应变的表达形式及黑暗时间常数与光照时间常数的关系。
     对PLZT陶瓷基光致伸缩作动器的构型及激励特性进行研究。分析了0-1极化式、0-3极化式、双晶片式及多片组合式四种构型下光致伸缩作动器产生光致形变的特点;在确定与被控结构体层合方式的基础上,推导了不同构型下光致伸缩作动器所产生的激励力与力矩;对光致伸缩作动器的激励策略进行了研究,提出了单个光源ON/OFF激励与两个光源双面ON/OFF激励两种激励策略;分析了不同构型光致伸缩作动器的适用性,最后确定0-1极化式光致伸缩作动器作为回转薄壳结构主动控制的作动器构型。
     从弹性薄壳的Love方程出发,推导出光电层合开口圆柱壳、开口薄球壳和抛物薄壳三种典型回转薄壳结构的控制方程;为将光电层合薄壳结构的控制方程由物理空间转换到模态空间,从而实现模态解耦,采用membrane理论对自由边界条件下的开口薄球壳和抛物薄壳的模态振型函数进行推导;利用模态展开方法推导出光电层合开口圆柱壳、开口薄球壳及抛物薄壳的模态控制方程,并给出了相对应的模态控制因子表达式,利用模态控制因子对这三种光电层合回转薄壳结构进行了模态控制分析,为光致伸缩作动器在薄壳结构上的空间布局提供理论依据。
     为实现对光电层合回转薄壳结构的闭环控制,对光电层合回转薄壳结构的主动控制策略进行了研究。在对光电层合智能结构主动控制特性分析的基础上,给出了适合光电层合回转薄壳结构的光源激励策略;提出了基于速度比例反馈的定光强控制和变光强控制两种算法;将光源激励策略与控制算法相结合形成适合光电层合回转薄壳结构的主动控制策略,利用Newmark-β法对闭环控制下光电层合回转薄壳的模态控制方程进行数值分析;以光电层合抛物薄壳为实例,对一阶和二阶模态进行了主动振动控制仿真,仿真分析结果表明,定光强控制效果要优于变光强控制效果,且在同一种控制算法下,作动器的布局会对控制效果产生影响。
     为验证相关理论分析的正确性及主动控制策略的有效性,以光电层合树脂抛物薄壳结构为实例,开展了主动控制实验研究。搭建了实验平台,对两种自由边界实现方式下的抛物壳进行了固有频率测试与分析;对光电层合抛物薄壳进行了主动激励特性实验、电极短接开关控制实验及主动振动控制实验;实验结果证明,光致伸缩作动器对抛物薄壳可产生主动控制力,可抑制抛物薄壳的低阶模态振动,从而验证了本文所提出的光电层合回转薄壳结构主动控制策略的有效性。
The thin shell of revolution is widely used in the aviation, aerospace, civilian and national defense industries. The shape control and vibration control of thin revolution shell structure has always been difficult and important item of the system design and engineering application. By using smart materials to give effective actuation for the purpose of achieving vibration suppression has been a favored way. The smart material activated by electric or magnetic signals can induce electromagnetic noise because of complex accessorial devices and connecting wires.
     The new smart material, lanthanum modified lead zirconate titanate (PLZT), can transform the light energy to the mechanical energy without electromagnetic noise. PLZT is suitable for the non-contact actuation and remote control in the space environment. In this paper, based on the research of the photostrictive characteristics of PLZT ceramics, the active vibration control of the photostrictive laminated thin shell of revolution is studied, which can provide the theoretical base for engineering applications of photostrictive laminated smart structure.
     The photostrictive effect of PLZT with multi-energy field coupling is researched in this paper. Photostrictive mechanism with LED-UV illumination is revealed here.Based on the equivalent electrical model of the PLZT ceramics, the effect of the light intensity, aspect ratio and the thickness of the PLZT ceramics on the photostrictive strain are researched. And the new photostrictive mathematic model of PLZT ceramics with illumination is established. The mathematic model is validated through the photostrictive static experiments. Residual strain light off is studied; the expression of the residual strain and the relationship of the darkness time constant and the illumination time constant are presented.
     The configuration and actuation characteristic of photostrictive actuator made of PLZT are studied, and photodeformation characteristic of 0-1 polarized, 0-3 polarized, bimorph and multi-patch combination configuration is analyzed respectively. Based on the laminated method with controlled structure, actuation force and moment of different configurations are deduced. Actuator’s actuation strategies are investigated and two actuation strategies, ON/OFF actuation with a single light source and double side ON/OFF actuation with two light sources, are presented. The applicability of photostrictive actuators are analyzed, the 0-1 polarized photostrictive actuator is chosen for active control of thin revolution shell.
     Governing equations of photostrictive laminated open cylindrical shell, open spherical thin shell and paraboloidal thin shell are presented based on the Love equations of elastic shell. In order to transform the governing equation of photostrictive laminated thin revolution shell from physical space into mode space which can achieve modes decoupling, mode shape functions of open spherical thin shell and paraboloidal thin shell with free boundary conditions are obtained using membrane theory. Modal control equations of photostrictive laminated these three shells are deduced using modal expansion method, and corresponding modal control factor expressions are given. Using the modal control factor, modal control analysis of the photostrictive laminated these three thin shells of revolution are implemented, which can provide the theory for actuator configuration.
     In order to realize the closed-loop control of the photostrictive laminated thin shell, research on the active vibration control scheme of the photostrictive laminated thin shell is carried out. Based on the active control characteristic analysis for the photostrictive laminated smart structure, suitable illumination scheme for the photostrictive laminated thin shell structure is presented, together with the constant light intensity control and the variable light intensity control algorithm based on velocity proportional feedback. Active control scheme for the photostrictive laminated thin shell structure is obtained through combining the illumination scheme and the control algorithm. Dynamic numerical analysis of the modal control equation of the photostrictive laminated thin shells under the closed-loop control is carried out using Newmark-βmethod. Taking the photostrictive laminated paraboloidal thin shell for example, active vibration control simulation analysis for the 1st and 2nd mode is carried out. Simulation results show that the constant light intensity control is better than the variable light intensity control, and the control effect is affected by the actuator configuration under the same control algorithm.
     In order to verify the correctness of the theory analysis and the effectivity of the active control scheme, active vibration control experiment is carried out by taking the photostrictive laminated paraboloidal thin shell for an instance. The experiment platform is set up. Natural frequency testing and analysis of the paraboloidal thin shell with two kinds of free boundary conditions are carried out. Actuation characteristic experiment, ON/OFF control experiment and active control experiment for the photostrictive laminated paraboloidal thin shell are carried out. Test results show that photostrictive actuator can give active control force to the paraboloidal shell and restrain the low order mode vibration of the photostrictive laminated paraboloidal shell. Thus the active vibration control scheme for the photostrictive laminated thin shell of revolution is effective.
引文
1黄文虎,王心清,张景绘等.航天柔性结构振动控制的若干新进展.力学进展.1997, 27(1):155~163
    2司洪伟.大挠性航天桁架结构动力学建模及其主动模糊控制研究.国防科学技术大学博士论文. 2006: 1~3
    3叶国斌.振动系统加速度均匀度研究.电子科技大学硕士学位论文. 2004:1~5
    4牟全臣,黄文虎,郑钢铁等.航天结构主、被动一体化振动控制技术的研究现状和进展.应用力学学报. 2001(3):1~7
    5李海斌,毕世华,方远乔等.振动主动控制技术现状及发展.振动与冲击. 1998, 17(3): 38-42
    6王加春,李旦,董申.机械振动主动控制技术的研究现状和发展综述.机械强度. 2001, 23(2): 156~160
    7李传兵,廖昌荣,张玉璘等.压电智能结构的研究进展.声电与光. 2002, 24(1): 42~45
    8 R. L.Forward, C. J.Swigert, Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast-Theory, Journal of Spacecraft and Rockets. 1981, 18(1): 5~17
    9 H. S. Tzou, B. J. Liu, D. Cseledy. Optopiezothermoelastic Actions and Micro-Control Sensitivity Analysis of Cylindrical Opto-Mechanical Shell Actuators. Journal of Theoretical and Applied Mechanics. 2002, 3(40): 775~796.
    10 G. H. Haertling, C. E. Land. Hot-Pressed (Pb,La)(Zr, Ti)O3 Ferroelectric Ceramics for Electrooptic Applications. Journal of the American Ceramic Society. 1971, 54(1): 1~11
    11谢菊芳,张端明,王世敏.透明PLZT电光陶瓷材料的制备及应用研究进展.功能材料. 1998, 29(l): l~7
    12厉宝增.关于光电陶瓷PLZT稀土掺杂的发光特性研究及其电光特性的应用.中国科学技术大学博士论文. 2007: 12~14
    13唐章东. PLZT铁电电光薄膜制备工艺研究.电子科技大学硕士论文. 2003: 2~4
    14梁鸿秋. PLZT薄膜电学和光学性能及电光器件原理研究.电子科技大学硕士论文. 2004: 3~4
    15苗彬彬,王君,陈江涛等.铁电PLZT薄膜的最新研究进展.人工晶体学报. 2006, 35(3): 539~543
    16 A. M.Glass, A.Von Der Linde, D. H. Auston, et al. The Photovoltaic and Photorefractive Effects in KDP-type Ferroelectrics. Journal of Electronic Materials. 1975, 4(5): 915
    17 P. S. Brody. High Voltage Photovoltaic Effect in Barium Titanate and Lead Titanate-lead Zirconate Ceramics. Journal of Solid State Chemistry. 1975, 12(3): 193~200
    18 V. M. Fridkin. Photoferroelectrics, Springer Series on Solid State Sciences Vol. 9, edited by M. Cardona, P. Fulde, and H. -J. Queisser (Springer, New York, 1979)
    19 P. Poosanaas, K. Tonooka, K. Uchino. Photostrictive actuators. Mechatronics. 2000, 10:467~487
    20 T. Nakada, D. H. Cao, Y. Morikawa, et al. Study on Optical Servo System (Estimation of Dynamic Characteristics of Bimorph-Type Optical Actuator Using PLZT Elements). The Japan Society of Mechanical Engineers. 1993, 59(564): 206~211
    21 T. Nakada, D. H. Cao, Y. Morikawa, et al. Study on Optical Servo System (Modelling for Photovoltaic Effect in PLZT Element). The Japan Society of Mechanical Engineers. 1993, 58(552): 189~193
    22 S. Y. Chu, Y. Zhou, K. Uchino. Impurity Doping Effect on Photostriction in PLZT Ceramics. Advanced Performance Materials. 1994, 1: 129~143
    23 Sheng-Yuan Chu, Zhou Ye, Kengi Uchino. Photovoltaic Effect for the Linearly Polarized Light in (Pb,La)(Zr,Ti)O3 Ceramics. Smart Materials and Structures. 1994, 3: 114~117
    24 P. Poosanaas, A. Dogan, S. Thakoor, K. Uchino. Dependence of Photostriction on Sample Thickness and Surface Roughness for PLZT Ceramics. 1997 IEEE Ultrasonics Symposium. 1997: 553~556
    25 P. Poosanaasa, A. Dogan, S. Thakoor et al. Influence of sample thickness on the performance of photostrictive ceramics. JOURNAL OF APPLIED PHYSICS. 1998, 84(3): 1508~1511
    26 P. Poosanaas, K. Uchino. Photostrictive Effect in Lanthanum-modified Lead Zirconate Titanate Ceramics near the Morphotropic Phase Boundary. Materials Chemistry and Physics. 1999, 61: 36~41
    27 K. Uchino, M. Aizawa, S. Nomura. Photostrictive effect in (Pb,La)(Zr,Ti)O3 . Ferroelectrics. 1985, 64: 199~208
    28 T. Fukuda, S. Hattori, F. Arai, et al. Characteristics of Optical Actuator-Servomechanisms using Bimorph Optical Piezoelectric Actuator. In: IEEE International Conference on Robotics and Automation, Atlanta, USA, 1993, 618~623
    29 Y. Morikawa, M. Ichiki, T. Nakada. Electrostatic Optical Motor Using PLZT Elements. The Japan Society of Mechanical Engineers. 2003, 69(684): 2101~2106
    30 M. Ichiki, Y. Morikawa, Y. Mabune et al. Electrical Properties of Photovoltaic Lead Lanthanum Zirconate Titanate in an Electrostatic-optical Motor Application. Journal of the European Ceramic Society. 2004, 24: 1709~1714
    31 Y. Morikawa, M. Ichiki, T. Nakada. Electrostatic Optical Motor Using PLZT Elements. The Japan Society of Mechanical Engineers. 2006, 72(718): 1807~1811
    32肖定全.铁电晶体的反常光生伏打效应.压电与声光. 1984, 6:12~20
    33郑鑫森,郑芝凤,束慧君等. PLZT陶瓷中的光致伏特效应的研究.功能材料. 1991, 22(6): 351~355
    34程达明. PLZT光致伸缩陶瓷的制备及其性能与组分关系研究.清华大学硕士学位论文. 2005, 28~37
    35 J. Li, K. Tatagi, B. Zhang. PLZT Ceramics from Mechanically Alloyed Powder and Their Anomalous Photovoltaic Effect. Journal of Materials Science. 2004, 39: 2879~2882
    36 Daming Cheng, Jing-Feng Li. Enhancement of Photovoltaic Effect of PLZT Ceramics by Compositional Optimization and Grain Size Control. Key Engineering Materials. 2005, 280-283: 235~238
    37 Jing-Feng Li, Daming Cheng. Compositional Effect on Piezoelectric and Anomalous Photovoltaic Properties of PLZT Ceramics with Fixed Grain Sizes. Journal of Electroceram. 2007, 21(1-4):267-270
    38杨宜民.新型作动器及其应用.机械工业出版社. 1998: 75~80
    39黄学良,叶飞.基于新型光电材料PLZT的光电机研究.光电工程. 2007, 34(12): 139~143
    40黄学良,叶飞.基于新型光电材料PLZT的光电机结构设计和应用研究.功能材料(增刊). 2007, 38: 396~399
    41唐波.锆钛酸镧铅陶瓷制备及其应用研究.西北工业大学硕士学位论文. 2006: 41~54
    42 P. S. Brody. Optomechanical Bimorph Actuator. Ferroelectrics. 1983, 50:27~32
    43 P. S. Brody, Bethesda, Md. Ferroelectric Photomechanical Actuators. UnitedStated Patent. 1985, Patnent Number: 4,524,294
    44 T. Sada , M. Inoue , K. Uchino. Photostriction in PLZT Ceramics. Journal of the Ceramic Society of Japan.1987,95(5): 545-550
    45 K. Uchino. Micro Walking machine Using Piezoelectric Actuators. Journal of Robotics and Mechatronics. 1989, 12: 44~47
    46 K. Uchino. Photostrictive Actuator. In Proceedings of 1990 IEEE Ultrasonics Symposium, 1990: 721~723
    47 Fukuda, T., Hattori, S., Arai, F. et al. Performance Improvement of Optical Actuator by Double Side Irradiation. IEEE Transactions on Industrial Electronics. 1995, 42(5): 455~461
    48 S. Y. Chu, K. Uchino. Photo-Acoustic Devices Using (Pb, La)(Zr, Ti)O3 Ceramics. Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics. 1994: 743~745
    49 K. Uchino. New Applications of Photostrictive Ferroics. Materials Research Innovations. 1997, 1:163~168
    50 Y. Morikawa, T. Nakada, Bimorph-type Optical Actuator Using PLZT Elements- (Position Control of Optical Actuator by On-off Control). JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing. 1998, 41(4): 860~866
    51 G. Belforte, G. Eula, C. Ferraresi, et al. Mechanical Microactuators with Photostrictive Control. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing. 1998, 41(4): 886~892
    52 H. S. Tzou, C. S. Chou, Nonlinear Optoelectromechanics and Photodeformation of Optical Actuators. Journal of Smart Materials and Structures. 1996, 5: 230~235
    53 B. Liu, H. S. Tzou. Distributed Photostrictive Actuation and Opto-piezoelectricity Applied to Vibration Control of Plates. ASME Journal of Vibration and Acoustics. 1998, 120: 937~943
    54 H. R. Shih, R. Smith, H. S. Tzou,. Photonic Control of Cylindrical Shells with Electro-Optic Photostrictive Actuators. AIAA Journal. 2004, 42(2): 341~347
    55 H. R Shih, J. Watkins, H. S. Tzou. Displacement Control of a Beam Using Photostrictive Optical Actuators. Journal of Intelligent Material Systems and Sturctures. 2005, 16: 355~362
    56 H. R. Shih, H. S. Tzou, M. Saypuri. Structural Vibration Control Using Spatially Configured Opto-electromechanical Actuators. Journal of Sound and Vibration. 2005, 284: 361~378
    57 H. R. Shih, H. S. Tzou. Wireless Control of Parabolic Shells Using Photostrictive Actuators. In Proceedings of IMECE2006, Chicago, USA,2006:1~10
    58 H. R. Shih, H. S. Tzou. Photostrictive Actuators for Photonic Control of Shallow Spherical Shells. Smart Materials and Structures. 2007, 6: 712~717
    59 H. R. Shih, H. S. Tzou, W. L. Walters Jr. Photonic Control of Flexible Structures-Application to a Free-Floating Parabolic Membrane Shell. Smart Materials and Structures. 2009,18: 1~7
    60 D. Sun, L. Tong. Modeling of Wireless Remote Shape Control for Beams Using Nonlinear Photostrictive Actuators. International Journal of Solids and Structures. 2007, 44: 672~684
    61 D. Sun, L. Tong. Theoretical Investigation on Wireless Vibration Control of Thin Beams Using Photostrictive Actuators. Journal of Sound and Vibration. 2008, 312: 182~194
    62 Q. Luo, L. Tong. Constitutive equations for 0-3 polarized PLZT actuators. International Journal of Solids and Structures. 2009, 46:4313~4321
    63 Q. Luo, L. Tong. Constitutive Modeling of Photostrictive Materials and Design Optimization of Microcantilevers. Journal of Intelligent Material Systems and Structures.2009, 00:1~13
    64张显奎,李洪人,许耀铭. PLZT陶瓷的光致电压效应和光致伸缩效应研究.哈尔滨工业大学学报. 1997, 29(3):1~3
    65张显奎,李洪人,许耀铭. PLZT陶瓷的光伏效应研究.功能材料. 1996, 27(4):311~314
    66张显奎,徐本州,许耀铭. PLZT陶瓷双压电晶体型光执行器件动特性研究.仪器仪表学报. 1997, 18(4):349~353
    67李琼,王少萍,梁磊.光控伺服系统建立、建模与仿真.压电与声光. 2007, 29(2):213~215
    68 L. Liang, S. P. Wang, F. Cao. Characteristics of Photo-mechanical Device Using PLZT Wafer. In Proceedings of IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, 2006: 354~357
    69梁磊,王少萍,曹锋等. PLZT陶瓷双晶片的能量传输特性分析.北京航空航天大学学报. 2007, 33(12):1432~1435
    70 LIANG Lei, WANG Shaoping, CAO Feng. Research on Dynamic Characteristic of Optical Drive Servo System with PLZT. In Proc. of SPIE, 2006, 6357:1~5
    71 H. S. Tzou. Piezoelectric Shells (Distributed Sensing and Control of Continua). Dordrecht/Boston/London,1993:40~100
    72 H.S. Tzou, J. P. Zhong. Electromechanics and Vibrations of Piezoelectric Shell Distributed Systems. Journal of Dynamic Systems, Measurement, and Control.1993, 115:507~516
    73 H. S. Tzou, R. V. Howard. A Piezothermoelastic Thin Shell Theory Applied to Active Structures. Journal of Vibration and Acoustics. 1994, 116: 295~300
    74 H. S. Tzou, Y. Bao, V. B. Venkayya. Parametric Study of Segmentend Transducers Laminated on Cylindrincal Shells, Part2: Actuator Patches. Journal of Sound and Vibration. 1996, 197(2): 225~249
    75 H. S. Tzou, J. P. Zhong. Spatially Filtered Vibration Control of Cylindrical Shells. Shock and Vibration. 1995, 3(4): 269~278
    76 H. S. Tzou, Y. Bao. Spatially Filtered Multi-field Responses of Piezothermoelastic Cylindrical Shell Composites. Jornal of Structrual Engineering and Mechanics. 1996, 4(2): 1~14
    77 A. R. Faria, S. F. M. Almeida. Axisymmetric Actuation of Composite Cylindrical Thin Shells with Piezoelectric Rings. Smart Materials and Structures. 1998, 7(6): 843~850
    78 C. Saravanan, N. Ganesan, V. Ramamurti. Analysis of Active Damping in Composite Laminate Cylindrical Shells of Revolution with Skewed PVDF Sensors/Actuators. Composite Structures. 2000, 48: 305~318
    79 R. Kumar, B.K. Mishra, S.C. Jain. Static and Dynamic Analysis of Smart Cylindrical Shell. Finite Elements in Analysis and Design. 2008, 45: 13~24
    80 J. G. DeHaven, H. S. Tzou. Forced response of Cylindrical Shells Coupled with Nonlinear Shape-memory-alloy (SMA) Actuators Regulated by Sinusoidal and Saw-tooth Temperature Profiles. Journal of Engineering Mathematics. 2008, 61:301~313
    81 K. Chandrashekhara, C. P. Smyser and S. Agarwal. Dynamic Modeling and Neural Control of Composite Shells Using Piezoelectric Devices. Journal of Intelligent Material Systems and Structures. 1998, 9:29~42
    82 S. K. Ghaedia, A. K. Misra. Active control of shallow spherical shells Using piezoceramic sheets. In Proceeding of Part of the SPIE Conference on Smart Structures and Integrated Systems, Newport Beach, California, 1999: 890~912
    83 Victor Birman, Gareth J Knowles and John J Murray. Application of Piezoelectric Actuators to Active Control of Composite Spherical Caps. Smart Materials and Structures. 1999, 8: 218~222
    84 V. Birman, St. Louis, Missouri et al. Axisymmetric Dynamics of Composite Spherical Shells with Active Piezoelectric/Composite Stiffeners. Acta Mechanica. 2000, 141: 71~83
    85 P. Smithmaitrie, H.S. Tzou. Micro-control Actions of Actuator Patches Laminated on Hemispherical Shells. Journal of Sound and Vibration. 2004, 277: 691~710
    86 Horn-Sen Tzou, Jianghong Ding, Ichiro Hagiwara. Micro-Control Actions of Segemented Actuator Patches Laminated on Deep Paraboloidal Shells. ISME International Journal. 2002, 45(1): 8~14
    87 H. S. Tzou, J. H. Ding. Actuator Placement and Micro-Actuation Efficiency of Adaptive Paraboloidal Shells. Journal of Dynamic Systems, Measurement, and Control. 2003, 125: 577~584
    88 H. S. Tzou, J.H. Ding. Optimal Control of Precision Paraboloidal Shell Structronic Systems. Journal of Sound and Vibration. 2004, 276: 273~291
    89 J. Qiu, J. Tani. Vibration Control of a Cylindrical Shell Using Distributed Piezoelectric Sensors and Actuators. Journal of Intelligent Material Systems and Sturctures. 1995, 6(4): 474~481
    90 C. Q. Chen, Y. P. Shen, X. M. Wang. Exact Solution of Orthotropic Cylindrical Shell with Piezoelectric Layers under Cylindrical Bending. Journal of Solids and Structures. 1996, 33(3): 4481~4491
    91 Zhou Jianping, Li Daokui, Li Aili. Analysis of Laminated Piezoelectric Cylindrical Shells. Acta Memchanica Sinica. 1999, 15(2): 1446~154
    92 You-He Zhou, H. S. Tzou. Active control of Nonlinear Piezoelectric Circular Shallow Spherical Shells. International Journal of Solids and Structures. 2000, 37: 1663~1677
    93丁皓江,陈伟球,徐荣桥.压电板壳自由振动的三维精确分析.力学季刊. 2001, 22(1): 1~8
    94郑世杰.压电层合板壳的数值分析与控制仿真.宇航学报. 2003, 24(6): 612~615
    95伍晓红,沈亚鹏,陈常青等.压电梯度薄壳的高阶理论解.复合材料学报. 2003, 20(5):100~107
    96 Y. H. Zhang, S. L. Xie, X. N. Zhang.Vibration Control of a Simply Supported Cylindricalshell Using a Laminated Piezoelectric Actuator. Acta Mechanica. 2008,196:87~101
    97 H. H. Yue, Z. Q. Deng, H. S. Tzou. Distributed Signal Analysis of Free-floating Paraboloidal Membrane Shells. Journal of Sound and Vibration. 2007,304(3-5):625-639
    98 H. H. Yue, Z. Q. Deng, H. S. Tzou. Optimal Actuator Locations and Precision Micro-control Actions on Free Paraboloidal Membrane Shells. Communications in Nonlinear Science and Numerical Simulation. 2008, 13:2298~2307
    99张薇.基于PPF的柔性悬臂梁主动振动控制研究.西安电子科技大学硕士论文.2008: 7~9
    100路小波,陶云刚,何延伟.基于极点配置的柔性智能结构主动振动控制.压电与声光. 1997, 19(4):182~184
    101岳洪浩.精密柔性抛物壳智能结构系统及其主动控制研究.哈尔滨工业大学博士论文.2009: 113~119
    102 H. S.Tzou, C. I. Tseng. Distributed Model Identification and Vibration Control of Continua: Piezoelectric Finite Element Formulation and Analysis. ASME Journal of dynamic systems, Measurements, and Control. 1991, 113(3):500~505
    103 T. K. Caughey, C. J. Goh. Analysis and Control of Quasi-Distributed Parameter System. California Inst of Technoligy, Pasadena, CA, Dynamics Lab Report. 1982: 82~83
    104张薇,张菊香.基于PPF的柔性悬臂梁主动振动控制.噪声与振动控制. 2008, 3: 6~9
    105雷凌云,顾仲权.主动阻尼控制中的扩展加速度输出反馈法.振动工程学报. 2003, 16(3): 269~273
    106 J. L. Fanson, T. K. Caughey. Positive Position Feedback Control for Large Space Structures. AIAA Journal. 1990, 28:717~724
    107杨拥民,张华,胡政.正位置反馈的多模态振动主动控制实验.振动工程学报. 2005, 18(3):355~359
    108吕永桂.基于压电致动器的柔性构件振动主动控制技术研究.浙江大学博士论文. 2007: 12~13
    109 M. A. Trindade, A. Benjeddou, R. Ohayon. Piezoelectric Active Vibration Control of Damped Sandwich Beams. Journal of Sound and Vibration. 2001,246(4): 653~677
    110 S. Narayanana, V. Balamuruganb. Finite Element Modelling of Piezolaminated Smart Structures for Active Vibration Control with Distributed Sensors and Actuators. Journal of Sound and Vibration. 2003, 262: 529~562
    111 Xing-Jian Dong, Guang Meng, Juan-Chun Peng. Vibration control of piezoelectric smart structures based on system identification technique: Numerical simulation and experimental study. Journal of Sound and Vibration. 2006, 297: 680~693
    112 Yan-Ru Hu, Alfred Ng. Active Robust Vibration Control of Flexible Structures. Journal of Sound and Vibration. 2005, 288: 43~56
    113胡举喜,邱志平.压电层合板振动的鲁棒控制.北京航空航天大学学报. 2008, 34(8): 874~876
    114刘宇清.智能结构振动主动控制技术研究.南京航空航天大学硕士论文. 2009: 3~4
    115 J. Lin, M.H. Nien. Adaptive Control of a Composite Cantilever Beam with Piezoelectric Damping-modal Actuators/sensors. Composite Structures. 2005, 70: 170~176
    116沈少萍.特征模型自适应控制方法在悬臂梁振动主动控制中的应用.振动与冲击. 2007, 26(11): 115~119
    117 Qu Wenzhong, Sun Jincai, Qiu Yang. Active Control of Vibration Using a Fuzzy Control Method. Journal of Sound and Vibration. 2004, 275: 917~930
    118 M. T. Valoor, K. Chandrashekhara, S. Agarwal. Active Vibration Control of Smart Composite Plates Using Self-adaptive Neuro-controller. Smart Materials and Structures. 2000, 9: 197~204
    119 Manish T. Valoor, K. Chandrashekhara, Sanjeev Agarwal. Self-adaptive Vibration Control of Smart Composite Beams Using Recurrent Neural Architecture. International Journal of Solids and Structures. 2001, 38: 7857~7874
    120陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用. 2008, 44(2):196~200
    121 Tarapada Roy, Debabrata Chakraborty. Optimal Vibration Control of Smart Fiber Reinforced Composite Shell Structures Using Improved Genetic Algorithm. Journal of Sound and Vibration. 2009,319: 15~40
    122陈文英,褚福磊,阎绍泽.智能桁架结构自适应模糊主动振动控制.清华大学学报(自然科学版). 2008, 48(5): 816~819
    123杨志欣,孙宝元,董维杰等.柔性结构振动自适应模糊控制与实验研究.压电与声光. 2001, 23(1): 74~75
    124 L.Meirovitch, H. Baruh. Robustness of the Independent Modal-Space Control Method. Journal of Guidance, Control and Dynamics.1983,6(1):20~25
    125 L.Meirovitch, H. Baruh. Control of Self-adjoint Distributed-Paramenter System.Journal of Guidance and Control.1982, 5:60~66
    126卢连成,张令弥.基于模态滤波器的智能空间桁架结构独立模态控制方法.南京航空航天大学学报.1997,29(5):529~534
    127 Cene H. Haertling. Ferroelectric Ceramics: History and Technology. Journal of the American Ceramic Society. 1999, 82(4): 797~818
    128王永龄.功能陶瓷性能与应用.北京:北京科学技术出版社, 2003: 23~28
    129 M. Ichiki, Y. Morikawa, Y. Mabune. Preparation and Photo-induced Properties of Lead Lanthanum Zirconate Titanate Multilayers. Journal of Physics D: Applied Physics. 2004, 37: 3017~3024
    130 R. D. Blevins. Formulas for Natural Frequency and Mode Shape. New York:Van Nostrand Reinhold Co., 1987
    131 Soedel. Vibrations of Shells and Plates. Marcel Dekker, Inc. 1981:8~47
    132曹志远.板壳振动理论.中国铁道出版社, 1983: 358~370
    133 H. S. Tzou, P. Smithmaitrie, J. H. Ding. Sensor Electromechanics and Distributed Signal Analysis of Piezoelectric-elastic Spherical Shells. Mechanical System and Signal Processing. 2002, 16:185~199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700