用户名: 密码: 验证码:
安徽庐枞火山岩盆地中巴家滩岩体的地质地球化学特征和成矿潜力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安徽庐枞火山盆地位于下扬子断陷带内,地处扬子板块北缘,西临郯庐断裂,接近华北与扬子两大板块的拼合带。该区既有橄榄安粗岩和与之相当的富钾侵入岩,又有埃达克岩。既有斑岩型铜矿(沙溪),又有火山—次火山热液脉型铜矿(拔茅山、井边、天头山)。本论文选择位于盆地中心的巴家滩岩体作为主要研究对象,从岩体地质地球化学特征着手,研究了巴家滩岩体的成岩过程及岩浆演化模式,认为巴家滩岩体的岩浆活动可分为2期:第一期主要为辉石二长岩和二长闪长岩类,现以包体形态产出;第二期主要为辉石二长岩、含英辉石二长岩等二长岩类和正长岩类,可分为3个阶段,分别是早阶段的辉石二长岩、中阶段的含英辉石二长岩等二长岩类,晚阶段则为正长岩类;成岩作用是分离结晶和同化混染联合作用。通过对巴家滩成岩成矿年代学、物理化学条件、地球化学特征等的详细研究,确定了巴家滩岩体的形成时代为135Ma,介于砖桥旋回和双庙旋回之间。探讨了与该岩体有关的铜矿化的成因,认为巴家滩主岩体的浸染状黄铁矿化是热液成因的;辉石二长岩包体中团块状的黄铜矿化、斑铜矿化则可能是巴家滩岩体深部可能存在早期的、规模较大的含矿(岩)体被携带上来。通过与该区的沙溪斑岩铜矿的对比,探讨了其铜矿化与埃达克质岩浆作用及相关的地球动力学过程之间的关系,得出巴家滩岩体属于埃达克质岩的范畴。在此基础上,评价了巴家滩岩体具有良好的成矿潜力。
Luzong volcanic basin is located in the LowerYangtze Fault Belt, where is the north margin of Yangtze block. Mugearite, K-rich intrusions and adakite as well as porphyry copper deposit (Shaxi) and volcanic-subvolcanic hydrothermal vein type copper deposits (Bamoshan, Jinbian and Tiantoushan) outcrop in this district. The Bajiatan intrusion, which is sited in the center of the basin, is the main object of this research. Based on the geology and geochemical characteristic of the intrusion, we focus on the intrusion's diagenetic process and magma evolution mechanism. The study shows that the magma activities of Bajiatan intusion can be divided into two stages: the early stage magma activity formed pyroxene monzonite and monzodiorite as enclosures in the main intrusion, the later stage formed monzonite and quartz-bearing monzonite. The later stage of magma activity can be divided into three phases, the early pyroxene monzonite phase, the middle quartz-bearing monzonite phase and late syenite phase. The main diagenesis is fractional crystallization assimilation and contamination. The age of Bajiatan rockbody has been determined to be 135Ma using zircon U-Pb SHRIMP dating, indicating the Bajiatan rockbody formed at time between the Zhuanqiao Cycle and the Shuangmiao Cycle. The genesis of copper metallogenic in Bjiatan intrusion has been discussed. Disseminated pyritization is related to hydrothermal activity, while the nodule-like chalcopyrite and bornite may be formed in the deep and carried to the surface by intrusion. Compared with the Shaxi porphyry copper, the Bajiatan intrusion is thought to be Adakitic rocks. The Bajiatan intrusion has good mineralization potential.
引文
[1] 陈斌,徐备.1996.内蒙古苏左旗地区古生代两类花岗岩类的基本特征和构造意义.岩石学报,12:546~561.
    [2] 陈江峰,郭新生,汤加富,周泰禧.中国东南地壳增长与Nd同位素模式年龄.南京大学学报(自然科学版),1999 (6):20-28.
    [3] 曹荣龙.地幔流体的前缘研究[J].地学前缘,1996,3(4):161~171.
    [4] 曹荣龙,朱寿华.地幔流体与金属成矿作用[A].见:地幔流体与软流层(体)地球化学[M].北京:科学出版社,1996,436~459.
    [5] 陈殿芬.我国一些铜镍硫化物矿床主要金属矿物的特征.岩石矿物学杂质,1995,14(4):345~354.
    [6] 陈培荣,等.盐源斑岩铜矿流体包裹体中黄铜矿子矿物的发现[J].科学通报,1996,41(7):633~635.
    [7] 陈培荣,徐士进,王汝成,等.四川盐源西范坪斑岩铜矿富铜流体物理化学特征和成因.地球化学,1997,26(5):54~61.
    [8] 陈文明.论斑岩铜矿的成因.现代地质,2002,16(1),1~8.
    [9] 陈文明.深源富碱硅热流体与斑岩铜矿含矿斑岩体的成因联系及流体包裹体、斑晶结构证据[J].地学前缘,2001,(4):409~421.
    [10] 陈文明.深源富碱硅热流体与斑岩铜矿含矿斑岩体的成因联系及流体包裹体、斑晶结构证据[J].地学前缘,2001,(4):409~421.
    [11] 常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带.北京:地质出版社,1991
    [12] 邓津辉,史基安,王琪,等.金川镍矿含矿岩体的稀土元素及微量元素地球化学特征.矿物岩石,2003,23(1):61~64.
    [13] 丁汝福.国内外寻找隐伏矿化探新方法研究进展[J].地质与勘探,1999,35(2):30~34.
    [14] 杜乐天.地壳流体与地幔流体间的关系[J].地学前缘.1996,3(4):172~180.
    [15] 郭令智,施央申,马瑞士.西太平洋中新生代大陆边缘和岛弧构造的形成及演化.地质学报,1983,57(1):11~21.
    [16] 耿文辉,姚金炎.中国东部次火山岩型铜银多金属矿床找矿规律.矿产与地质,1999,13(4):193~198.
    [17] 耿文辉,王滋平,姚金炎.中国东部中生代陆相次火山岩型铜银矿床成矿地球化学特征.地质与勘探,2000,36(1):10~13.
    [18] 华仁民,毛景文.试论中国东部中生代成矿大爆发.矿床地质,1999,18(4):291~299
    [19] 华仁民.流体在金属矿床形成过程中的作用和意义—水-岩反应研究进展系 列评述.南京大学学报(地球科学),1993,5(3):351~360.
    [20] 胡瑞忠,毕献武,何明友.哀牢山金矿带矿化剂对金成矿的制约[J].中国科学(D),1998,28(增):24~30.
    [21] 黄许陈,储国正,周捷,等.安徽铜陵地区成矿物质和含矿流体来源问题的探讨.安徽地质,1994,4(3):1~8.
    [22] 候增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩—以西藏和智利斑岩铜矿为例.矿床地质,2003,22(1):1~12.
    [23] 季克俭,吴学汉,张国柄.热液矿床的矿源、水源和热源及矿床分布规律[M].北京:北京科学技术出版社,1989.1~131.
    [24] 贾跃明.流体成矿系统与成矿作用研究[J].地学前缘,1996,3(1):253~258.
    [25] 金章东,朱金初.关于德兴斑岩铜矿的成矿物质来源——与梁祥济研究员商榷[J].地质论评,1998,44:464~469.
    [26] 金章东,朱金初,倪培,等.再论德兴斑岩铜矿成矿物质来源[J].地质论评,2000,46:255~262.
    [27] 金章东,朱金初,王银喜,等.锶、钕同位素对德兴斑岩铜矿元素迁移的示踪.铀矿地质,2001,17(3):156~161.
    [28] 姜耀辉,芮行健,贺菊瑞,等.1999.西昆仑山加里东期花岗岩类构造的类型及其大地构造意义.岩石学报,15:105~115.
    [29] 刘崇民,李应桂.岩浆熔离型Cu-Ni硫化物矿床元素组合和地球化学评价指标.地质与勘探,2001,37(5):6~9.
    [30] 陆德复.流体的运动、涡流及其与矿床形成的关系讨论[J].岩石学报,1998,14(2):232~239.
    [31] 刘凤山.铜镍硫化物矿床成矿理论的新进展.地质科技情报,1993,(2):77~11.
    [32] 卢峰.K、Na——中酸性岩体矿化的重要指示元素.湖北大学学报(自然科学版),1996,2(18):195~201.
    [33] 刘姤群,金维群,张录秀,等.湘东北斑岩型和热液脉型铜矿成矿物质来源探讨.华南地质与矿产,2001,(1):40~47.
    [34] 李厚民,毛景文,陈毓川,等.玄武岩铜矿研究的几点新认识.峨眉地幔柱与资源环境效应学术研讨会文集.2004:27~31.
    [35] 刘洪,邱检生,罗清华,等.安徽庐枞中生代富钾火山岩成因的地球化学制约[J].地球化学,2002,31(2):129~140.
    [36] 刘家军,李志明,刘玉平,等.滇西金满脉状铜矿床成矿年龄讨论.现代地质,2003,17(1):34~39.
    [37] 黎诺.高温气态变岩浆成岩和地液成矿作用[J].中国地质科学院矿床地质研究所所刊,1993,1:28~51.
    [38] 廖启林,蒋少涌.新疆东准噶尔中酸性浅成岩金、铜成矿系列.2001,16(1):7~12.
    [39] 刘树田,连长云,季桂娟.用于寻找隐伏矿床的后生地球化学[J].世界地质,1998,17(2):27~32.
    [40] 林新多,许国建.岩浆成因矽卡岩的某些特征及形成机制初探.现代地质,1989,3(3):351~358.
    [41] 林新多.岩浆热液过渡型矿床的若干特征.现代地质,1998,12(4):485~492.
    [42] 刘显凡,战新志,高振敏,等.云南六合深源包体与富碱斑岩成岩成矿的关系[J].中国科学(D辑),1999,29:413~420.
    [43] 刘月星.铜镍硫化物矿床成矿作用及成矿模式研究.矿产与地质,1997,11(4):225~231.
    [44] 梁有彬,朱文凤,宋国仁,等.金川铜镍型铂族元素矿床地质地球化学特征矿产与地质1997,11(1):1~13.
    [45] 路远发.钟丘洋次火山岩型铜矿床的地质地球化学特征.矿产与地质,1995,9(4).
    [46] 罗照华,A A马拉库舍夫,H A潘妮娅,等.铜镍硫化物矿床的成因——以诺里尔斯克(俄罗斯)和金川(中国)为例.矿床地质,2000,19(4).
    [47] 罗照华,柯珊,谌宏伟.埃达克岩的特征、成因及构造意义.地质通报,2002,21(7):436~440.
    [48] 李兆麟,杨荣勇,孙晓明,等.地质作用中的流体形成演化及成矿作用[J].地学前缘,1996,3(4):237~244.
    [49] 马鸿文.西藏玉龙斑岩铜矿带花岗岩类与成矿(M]。武汉:中国地质大学出版社,1990.
    [50] 毛景文,HoUy STEIN,杜安道,等.长江中下游地区铜金(铜)矿Re—Os年龄测定及其对成矿作用的指示.地质学报,2004,78(1):121~131
    [51] 蒙义峰,杨竹森,曾普胜,等.铜陵矿集区成矿流体系统时限的初步厘定.矿床地质,2004,23(3):271~280.
    [52] 裴荣富,熊群尧.中国特大型金属矿床成矿偏在性与成矿构造聚敛(场)[J].矿床地质,1991,18(1):37~46.
    [53] 邱华宁,孙大中,朱炳泉,等.1998.东川汤丹铜矿床石英真空击碎及其粉末加热~(40)Ar-~(39)Ar年龄谱的含义[J].地球化学,27(4):335~343.
    [54] 邱华宁,J.R.Wijbrans,李献华,等.东川式层状铜矿~(40)Ar-~(39)Ar成矿年龄研究:华南地区晋宁—澄江期成矿作用新证据.矿床地质,2002,21(2):129~136.
    [55] 邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系火山岩的地质、地 球化学特征及岩石成因.地球科学——中国地质大学学报,1996,21(5):546~552.
    [56] 钱青.Adakite的地球化学特征及成因.岩石矿物学杂质,200120(3):297~306.
    [57] 任启江,刘孝善,徐兆文,等.安徽庐枞中生代火山岩地区铜、金、硫矿床成矿预测.“七五”国家重点科技攻关项目研究成果报告,南京大学地球科学系,1990.
    [58] 任启江,刘孝善,徐兆文,等.安徽庐枞中生代火山构造洼地及其成矿作用[M].北京:地质出版社,1991.206.
    [59] 任启江,王德滋,刘孝善,等.安徽庐枞地区巴家滩和矾山—石马滩岩体的时代和岩浆物质来源.科学通报,1991,10:771~773.
    [60] 任启江,杨荣勇,孙冶东,等.安徽庐枞巴家滩岩体岩浆结晶的物理化学条件及其研究意义.矿物岩石,1991,11(3):48~55.
    [61] 芮宗瑶,张洪涛,王龙生,等.1995.吉林延边地区斑岩型—浅成低温热液型金铜矿床[J].矿床地质,14(2):99~126.
    [62] 芮宗瑶,黄崇轲。1984.中国斑岩铜(钼)矿床[M].北京:地质出版社.
    [63] 芮宗瑶,李荫清,王龙生,等.从流体包裹体研究探讨金属矿床成矿条件.矿床地质,2003,22(1):13~23
    [64] 宋彪,张玉海,万渝生等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,48(增刊):26—30
    [65] 宋文霞.安徽枞县拨茅山 牛头山铜矿床地质特征及找矿方向.2002,22(3):95~99.
    [66] 孙冶东,杨荣勇,任启江,等.安徽庐枞地区中生代火山岩系的特征及其形成的构造背景[J].岩石学报,1994,10(1):94~103.
    [67] 涂光炽.庞然大物—与超大型矿床有关的基础研究[M].长沙:湖南科学技术出版社,1996.
    [68] 涂光炽.试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特性—初谈非常规超大型矿床[J].中国科学(D),1998,28(增):1~6.
    [69] 唐仁鲤,罗怀松,李荫清,等.西藏玉龙斑岩铜(钼)矿带地质[M].北京:地质出版社,1995.
    [70] 唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1998.310~315
    [71] 汤中立.中国岩浆硫化物矿床的主要类型.甘肃地质学报,1996,5(1):45~64.
    [72] 汤中立,李文渊.金川铜、镍硫化物(含)铂矿床成矿模式及地质对比.北京:地质出版社,1995.
    [73] 汤中立.金川铜镍硫化物矿床岩浆成矿作用的偏在性.甘肃地质学报,1996, 5(2):73~85.
    [74] 汤中立.中国岩浆硫化物矿床的主要类型.甘肃地质学报,1996,5(1):45~64.
    [75] 汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社,1995.
    [76] 汤中立,任端进,薛增瑞,等.中国镍矿床[A].见:宋叔和主编.中国矿床·上册[M].北京:地质出版社,1989:207~270.
    [77] 汤中立.中国铜镍矿床成矿规律的研究与展望[J].矿床地质,1991,10(3):193~201.
    [78] 吴才来,周王旬若,黄许成,等.铜陵地区中酸性侵入岩年代学研究[J].岩石矿物学杂志,15(4):299~306.
    [79] 吴才来,周若.铜陵地区中酸性侵入岩年代学研究.岩石矿物学杂志,1996,15(4):299~306.
    [80] 王登红.地幔柱的概念、分类、演化与大规模成矿—对中国西南部的探讨[J].地学前缘,2001,8(3):67~72.
    [81] 吴利仁.华东及邻区中、新生代火山岩[M].北京:科学出版社,1984.287.
    [82] 王立本,季克俭,陈东.安基山和铜山铜(钼)矿床中辉钼矿的铼-锇同位素年龄及其意义.岩石矿物杂志,1997,16(2):154~159.
    [83] 王强,许继峰,赵振华等安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约.中国科学,2003,33(4):323~334.
    [84] 王强,许继锋,赵振华.一种新的火成岩——埃达克岩的研究综述.{[J].地球科学进展,2001,16(2):201~208.
    [85] 汪祥云,任启江,吴明安,等.庐江地区铜铁矿堪察研究.“八五”国家科技攻关计划专题成果报告,安徽省地质矿产局327地质队,1995.
    [86] 王小春.玄武岩自然铜矿床的特征—以美国密歇根州基维诺半岛为例.峨眉地幔柱与资源环境效应学术研讨会文集.2004:62~68.
    [87] 吴言昌 论岩浆矽卡岩——一种新类型矽卡岩 安徽地质,1992,(1):13~26
    [88] 吴言昌.初论安徽沿江地区成矿系统的深部构造.岩浆控制.地学前缘,1998,6(2):285~295
    [89] 王焰,张旗,钱青.埃达克岩的地球化学特征及其构造意义.地质科学,2000,35(2):251~256.
    [90] 王彦斌,刘敦一,蒙义峰,等.安徽铜陵新桥铜硫铁金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义[J].中国地质,2004a,31(2):169~173.
    [91] 王彦斌,刘敦一,曾普胜,等.铜陵地区铜官山石英闪长岩锆石SHRIMP的U-Pb年龄及其成因指示[J].岩石矿物学杂志,2004b,23(4).
    [92] 王彦斌,刘敦一,曾普胜,等.安徽朝山矽卡岩型金矿床的辉石闪长岩锆石SHRIMP的U-Pb年龄及其地质意义[J].地球学报,2004c,25(4).
    [93] 王彦斌,唐索寒,王进辉,等.应用黄铁矿矿物Rb/Sr方法确定安徽铜陵新桥铜-硫-铁-金矿床的成矿时代—燕山期成矿作用的证据[J].地质学报,2004d,78(3).
    [94] 王彦斌,刘敦一,曾普胜,等.安徽铜陵地区幔源岩浆底侵作用的时代—朝山辉石闪长岩锆石SHRIMP定年.地球学报,2004,25(4):423~427.
    [95] 王之田,秦克章.中国大型铜矿类型、成矿环境与成矿集中区的潜力[J].矿床地质,1991,10(3):119~120.
    [96] 解广轰,汪云亮,范彩云,等.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制[J].中国科学(D),1998,28(增):31~36.
    [97] 徐庆生,宋学信,张景凯,等.金川超镁铁质岩体矿物化学特征及矿物地质温度计、压力计研究.甘肃地质学报,1994,3(1).
    [98] 熊小林,石满全,陈繁荣.浅成—次火山岩黑云母Cu、Au成矿示踪意义.矿床地质,2001,21(2):107~111.
    [99] 徐义刚,B Orberger,S JReeves.上地幔铂族元素的分异—吉林汪清橄榄岩包体提供的证据[J].中国科学(D),28(3):201~207.
    [100] 邢凤鸣,徐祥.安徽沿江地区橄榄安粗岩系的特点和成因.安徽地质,1998,8(2):8~20.
    [101] 徐章华,汤中立,蔡克勤.金川铜、镍(含PGE)岩浆硫化物矿床母岩浆成分的估计.现代地质,1998,12(4):506~514.
    [102] 徐兆文,徐文艺,邱检生,等.与沙溪斑岩铜(金)矿床有关的石英闪长斑岩地质地球化学特征及形成时代研究.2000,36(4):36~40.
    [103] 谢智,陈江峰,张巽等,北淮阳晓天盆地早白垩世玄武岩地球化学:富集地幔的证据.矿物岩石地球化学通报,2003,22(1):26~31.
    [104] 徐志刚.从构造应力探讨中国东部中生代火山岩成因.地质学报,1985,59(2):109~126.
    [105] 闫峻,陈江峰,喻钢,等.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据.高校地质学报,2003,9(2):195~206.
    [106] 俞沧海.安徽铜陵天马山硫金矿床物质来源探讨.黄金地质,2000,6(1):42~48.
    [107] 姚金炎.关于斑岩铜矿的找矿.矿产与地质,1999,13(2):65~69.
    [108] 叶敬仁.长江中下游铜铁多金属矿带的铅同位素研究及其大地构造与成矿学.大地构造与成矿学,1985,9(4):309~322.
    [109] 杨荣勇,任启江,徐兆文,等.安徽庐枞地区中生代火山岩区巴家滩火山穹隆的研究.地质论评,1996,42(2):136~143.
    [110] 岳书仓,周涛发.长江中下游铜、金成矿带形成的背景.1998,8(4):1~3.
    [111] 于学元,白正华.庐枞地区安粗岩系[J].地球化学,1981,10(1):57~65.
    [112] 颜文,欧阳自远,李朝阳.兰坪—思茅盆地脉状铜矿床黝铜矿的矿物化学.矿物学报,1994,14(4):361~368.
    [113] 朱炳泉,胡耀国,张正伟,等.2002.滇黔地球化学边界似基韦诺(Keweenau)型铜矿床的发现.中国科学(D辑),32(增刊):153-162.
    [114] 朱炳泉,张正伟,胡耀国.2002.滇东北发现具工业价值的火山凝灰角砾岩层控型铜矿床.地质通报,(8-9):21.
    [115] 张臣.1999.内蒙古苏尼特左旗侵入岩谱系单位划分及岩浆演化特征.中国区域地质,(1):46~53.
    [116] 张德会,张文淮,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿德制约.地学前缘,2001,8(3);193~201.
    [117] 张德会.流体的沸腾和混合在热液成矿中的意义.地球科学进展,1997,12(6):546~552.
    [118] 张德全,李大新,赵一鸣,等.1996.五子骑龙矿床—被改造的斑岩铜矿上部带[J].矿床地质,15(2):109~122.
    [119] 郑大中,郑若锋.铜镍硫化物矿床的成矿机理新探.四川地质学报,1999,19(1):38~45.
    [120] 朱光,王道轩,刘国生,等.郯庐断裂带的伸展活动及其动力学背景.地质科学,2001,36(3):269~378.
    [121] 郑海飞,谢鸿森,郭捷.微量元素比值研究岩浆源区成分的可靠性:玄武岩熔融实验研究[J].矿物学报,1998,18(4):541~545.
    [122] 周金城,赵建平,陈克荣.溧水中生代橄榄安粗岩系的构造环境及演化关系.南京大学学报,1994,30(3):504~510.
    [123] 张理刚,王可法,李云彤等.东亚岩石圈块体地质.北京:科学出版社,1995,55,91,215.
    [124] 张理刚,王可法,陈振胜等.中国东部中生代花岗岩类—基底岩石铅同位素构造动力地质学.同位素地球化学研究,浙江大学出版社,1994,287~303.
    [125] 曾普胜,杨竹森,蒙义峰,等.安徽铜陵矿集区燕山期岩浆流体系统时空结构及成矿.矿床地质,2004,23(3):298~308.
    [126] 张旗,王焰,刘伟,等.埃达克岩的特征及其意义.地质通报,2002,21(7):432~435.
    [127] 张旗,王焰,王元龙.埃达克岩与构造环境.大地构造与成矿学,2003,27(2):101~108.
    [128] 自然科学基金委.地球化学[M].北京:科学出版社,1996.
    [129] 周涛发,袁峰,岳书仓,刘晓东.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究.中国科学(D辑),2000a,30(supp):122-128
    [130] 周涛发,岳书仓.长江中下游铜金矿床成矿流体系统的形成条件及演化机理.北京大学学报(自然科学版),2000b,36(5),697-707
    [131] 周涛发,刘晓东,袁峰,赵勇,岳书仓.安徽月山矿田成矿流体中铜、金的迁移形式和沉淀的物理化学条件.岩石学报,2000c,16(4):551-558
    [132] 周涛发,袁峰,岳书仓.安庆铜牛井热液脉型铜、钼、金矿床石英的~(40)Ar-~(39)Ar快中子活化年龄.地质论评,2003,49(2):212-216
    [133] 周泰禧,李学明,赵俊深,等.铜陵铜官山矿田火成岩的同位素地质年龄[J].中国科学技术大学学报,1987,17(30):403~413.
    [134] 周泰禧,李学明,张巽等.北淮阳富碱侵入岩带Pb同位素研究.中国科学技术大学学报,1995,25(4):467~473.
    [135] 朱文凤,吕俊武.金川铜镍矿床铂族元素成矿作用探讨.矿物岩石地球化学通报,2000,19(4):328~332.
    [136] 张文淮,张志刚,伍刚.成矿流体及成矿机制[J].地学前缘,1996,3(4):245~252.
    [137] 翟裕生,姚书振,林新多等.长江中下游地区铁铜矿床.北京:地质出版社,1992
    [138] 翟裕生.关于构造—流体—成矿作用研究的几个问题[J].地学前缘,1996,3(4):230~236.
    [139] 翟裕生,邓军,崔彬,等.成矿系统及综合地质异常[J].现代地质,1999,13(1):99~104.
    [140] 翟裕生,邓军,宋鸿林,等.同生断层对层控超大型矿床的控制[J].中国科学(D),1998,28(3):214~218.
    [141] 翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1992 191~213.
    [142] 赵振华,涂光炽,许继峰,等.中国超大型矿床(Ⅱ)[M].北京:科学出版社,2003,325.
    [143] 张正伟,朱炳泉,张乾,等.滇黔相邻地区上二叠统玄武岩组与铜矿化关系初探.峨眉地幔柱与资源环境效应学术研讨会文集.2004:2~9.
    [144] 张正伟,朱炳泉,常向阳,等.2003.黔西上二叠统玄武岩组上部发现黄铜矿化.矿物学报,23(3):238-239.
    [145] A JNaldrett. Key factor in the genesis of Noril'sk, Sudbury, Jinchuan, Voisey' Bay and other World-class Ni-Cu-PGE deposits: Implications for exploration[J]. Australian Journal of Earth Science, 1997, 44: 283—315
    [146] Araneibi O N, Clark A H. Early magnetite amphibole plagioclase alteration mineralization in the Island-Copper porphyry copper gold molybdenum deposit, British Columbia [J]. Econimic Geology,1996,91:402~438.
    [146] Arribas A Jr. 1995. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300ka in northern Luzon, Philippines[J]. Geology, 23: 337~340.
    [147] Benning L G. 1996. Hydrosulfide complexing of gold (Ⅰ) in hydrothermal solutions from 150 to 500℃ and 500 to 1500 bars[J]. Geochim. Cosmochim. Acta,60:1849~1872.
    [148] Bowan J R, Parry W T, Kropp W P, et al. Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah [J]. Economic Geology, 1987,82:395~428.
    [149] Burham C W. Ohmotoh. Late magmatic and hydrothermal processes in reinformation[A]. Studies in Geophysics, Mineral Resources: Genetic Understanding for Practical Applications[M]. Washington D C: National Academy Press, 1981.62~72.
    [150] Batchelor R A and Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol., 1985(48):43—55.
    [151] Burnham C W, Ohmoto H. Later stage processes of felsic magmatism [J]. Mining Geology (Special Issue), 1980,8:111.
    [152] Bouse R M, Ruiz J, Tittley S R. Lead isotope composition of late Cretaceous and Early Tertiary rocks and sulfide minerals in Arizona: Implications for the sources of plutons and Metals in porphyry copper deposits [J]. Economic Geology, 1999,94:211~244.
    [153] Belousova E A, Griffin W L, O Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 2002, 143: 602—622
    [154] Candela P A. Controls on ore metal ratios in granite-related ore systems:an experimental and computational approach. Trans[J]. Royal Soc. Edinburgh Earth Sci., 1992,83:317~326.
    [155] Candela P A, Piceoli P M. Model ore metal partitioning from melts into vapor and vapor/brine mixtures [A]. In: Thompson J F H, ed. Magmas, Fluids, and Ore Deposits [C]. Ottawa: Mineralogical Association of Canada, 1995,101~127.
    [156] Candela P A. Toward a thermodynamic model for the halogens in magmatic systems: An application to melt vapour apatite equilibrium [J]. Chemical Geology, 1986,57:289~301.
    [157] Cline J S, Bodnar R J. Can economic porphyry copper mineralization be generated by a typical tale-alkaline melt? [J]. Journal of Geophysical Research, 1992,96:8113~8126.
    [158] Carroll M R, Webster J D. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas [J]. Reviews in Mineralogy, 1994,30:231~271.
    [159] Carroll M R, Rutherford M J. sulfur solubility and anhydrite saturation in hydrous magmas [J]. Lunar Planet Science Confference, 1984, ⅩⅤ: 139~140.
    [160] Candela P A. Magmatic ore forming fluids: Thermo dynamic and mass transfer calculation of melt concentrations [J]. Review Economic Geology, 1989,4:203~221.
    [161] Carroll M, Rutherford J M. The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982E1 Chichon trachyandesite and other evolved magmas [J]. Journal of Petrology, 1987,28:781~801.
    [162] Carroll M, Rutherford M J. Sulfide and sulfate saturation in hydrous silicate melts[J]. Journal of Geophysics Researcher, 1985,90:C601~612.
    [163] Defant M Jand Drummond M S. 1990. Derivation of some modem arc magmas by melting of young subducted litho-sphere. Nature, 347:662~665.
    [164] Defant M Jand Drummond M S. 1993. Mount St. Helens:potential example of partial melting of subducted litho-sphere in a volcanic arc. Geology, 21:547~550.
    [165] Defant M J,Rieherson P M,De Boer JZ,et al. 1991 a. Dacite genesis via both slab melting and differentiation:pet-rogenesis of La Yeguada Volcanic Complex,Panama. J. Petrol., 32: 1101~1142.
    [166] Defant M J,Clark L F, Stewart R H,etal.. 1991 b. Andesite and dacite genesis via contrasting processes:the geolo-gy and geochemistry of El Valle Volcano,Panama. Contrib. Mineral. Petrol. ,106:309~324.
    [167] Drummond M S,Defant M Jand Kepezhinskas P K. 1995. The petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. In:Brown M and Piccoli P M. eds. The Origin of Granites and Related Rocks. U. S. Geological Survey Circular,1129:44~45.
    [168] Dilles J H, Einaudi M T. Wall rock alteration and hydrothermal flow paths about the Ann Mason porphyry copper deposit, Nevada—A 6km vertical reconstruction [J]. Economic Geology, 1987,87:1963~2001.
    [169] Dilles J H, Farmer G L, Field C W. Sodium calcium alteration by non-magmatic saline fluid in porphyry copper deposits: results from Yerington, Nevada [J]. Mineralogical Association of Canada Short Courses Series, 1995,23:309~339.
    [170] Dodson M H. Theory of cooling ages In: Lecture in Isotope Geology (eds. E. Jaeger, J. C. Hunziker) Springer-Verlag, 1929:259~274.
    [171] Dodson M H, MaClelland-Brown E. Isotopic and palaeomagnetie evidence for rates of cooling, uplift and erosion. In: The Chronology of Geological Record (ed. N. J.Snelling), Geol Soe, Mem (London),1985,10:315~325.Wu CL, Wang FS, Hao MY, et al.2000.Geochronology of intermediate-acid intrusive rocks from Tongling, Anhui[J].Continental Dynamics,5(1): 15~23.
    [172] Force R E. Laramide alteration of Proterozie diabase: A likely contributor of copper to porphyry systems in Dripping Spring Mountains area, Southeastern Arizona [J]. Economic Geology, 1998, 93: 171~183.
    [173] Fountain R J. Geological relationships in the Panguna porphyry copper deposit, Bougainvilte Island, New Guinea[J]. Economic Geology, 1972, 67: 1049~1064.
    [174] Gammons C H. 1997. Chemical mobility of gold in porphyry-epithermal environment[J]. Econ. Geol. 92: 45~59.
    [175] Giggenbach W F. 1992. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries[J]. Econ. Geol., 87: 1927~1944.
    [176] Gammons C H, Bloom M S, Yu Y. Experimental investigation of the hydrothermal geochemistry of platinum and palladium, I, Solubility of platinum and palladium sulphide minerals in NaCl/H_2SO_4 solutions at 300℃[J]. Geochi mica et Cosmochi mica Acta, 1992, 56: 3881~3894.
    [177] Harrison T M, Armstrong R L, Naeser C W, Harakal J E. Geochronology and thermal history of the coast plutonic complex near Prince Ruport, British Columbia. Can. J. Earth sci, 1979, 16: 406~410.
    [178] Hart S R. The petrology and isotopic mineral age relations of a contact zone in the Front Range, Colorado. J. Geol., 1964, 72: 493~525.
    [179] Hamlyn R P. Precious metals in magnesium low-Ti lavas: implication for metallo-genencsis and sulfur saturation in primary magmas[J]. Geochi mica et Cosmochi Acta, 1985, 49: 1797~1811.
    [180] Hedengquist J W. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370: 519~527.
    [181] Heinrich C A. Segregation for metals between magmatic brine and vapour: A fluid inclusion study using PIXE micro analysis[J]. Economic Geology, 1992, 87: 1566~1583.
    [182] Hou Z Q. Ma H W., Khin Zaw, et al. 2003. The Yulong porphyry copper belt: product of large-scale strike-slip faulting in Eastern Tibet[J]. Econ. Geol., 98(imnpress).
    [183] Hattori K. High sulfur magma, a product of fluid discharge from underlying mafic magma: evidence from Mount Pinatubo, Philiphincs [J]. Geology, 1993, 21: 1083~1086.
    [184] Ishihara S, Sasaki A. Sulfur isotopic ratios of the magnetite series and ilmenite series granitoids of sierra Nevada batholith—a reconnaissance study [J]. Geology, 1989, 17: 788~791.
    [185] Imai A, Listaneo E L, Fujii T. Petrological and sulfur isotopic significance of highly oxidized and sulfur rich magma of Mt. Pinatubo, Philippines[J]. Geology, 1993, 21: 699~702.
    [186] Ishihara S. The magnetite series and ilmentite series granitic rocks[J]. Mining Geology, 1977, 27: 293~305.
    [187] Ishihara S. The granitoid series and mineralization[J]. Economic Geology, 1981, 75th Anniversary Volume: 458~484.
    [188] Keays R R. Principles of mobilization(dissolution) of metals in marie and ultramaric rocks—the role of immiscible magmatic sulphides in the generation of hydrothermal gold and volcanogenic massive sulphide deposits[J]. Ore Geol. Reviews, 1987, 2: 47~63
    [189] Kay S M, Ramos V A and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab- melting prior to ridge-trench collision in southern South America. The Journal of Geology, 101: 703~714.
    [190] Krupp R E, Seward T M. Transport and deposition of metals in the Rotokawa gedthermal system, New Zealand. Mineralium Deposita, 1990, 25: 73~81.
    [191] Kirkham R V. and Sinclair W D. 1995. Porphyry copper, gold, molybdenum, tungsten, tin and sillver[A]. Geology of Canadian mineral deposit type[J]. Geol. N. Am., P1: 421~446.
    [192] Lowenstern J B. Evidence for a copper bearing fluid in magma erupted at the valley of ten thousand smokes, Alaska[J]. Contrib. Mineral. Petrol., 1993, 114: 409~421.
    [193] Le Maitre R W(ed). A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 1989, 193 pp.
    [194] Lang J R, Tittley S R. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and Implications for the genesis of porphyry copper deposits [J]. Economic Geology, 1998, 93: 138~170.
    [195] Lynton S J, Candela P A, Piccoli P M. An experimental study of the partitioning of copper between pyrrhotites and high silica rhyolitic melt[J]. Economic Geology, 1993, 88: 901~915.
    [196] Luhr J F. Experimental phase relations of water-and-sulfur-saturated arc magmas and the 1982 eruptions of E1 Chichon volcano[J]. Journal of Petrology, 1990, 31: 1071~1114.
    [197] Muller D, Groves D I. Direct and indirect associaton between potassie igneous rocks, shoshonite and gold copper deprsits [J]. Ore Geology Reviews, 1993, 8: 383~406.
    [198] Metrich N, Rutherford M J. Experimental study of chlorine behavior in hydrous silicic melts[J]. Geochi mica et Cosmochi Mica Acta, 1992, 56: 607~616.
    [199] Mavrogenes J A, OnellHStC. The relative effects of pressure, temperature and oxygen fugaeity on the solubility of sulfide in mafic magmas[J]. Geochi mica Coschi mica Acta, 1999, 63: 1173~1180.
    [200] Mysen B O, Popp R K. Solubility of sulfur in CaMgSi_2O_6 and NaAlSi_3O_8 melts at high pressure and temperature with controlled O_2 and S_2 [J]. American Journal of Science., 1981, 280: 78~92.
    [201] Mathez E A. Sulfur solubility and magmatic sulfides in submarine basalt glass [J]. Journal of Geophysical Research, 1976, 81: 4269~4276.
    [202] Mullen E D. A minor element discriminate for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 1983(62), pp. 53—62.
    [203] Meschede M. A method of discriminating between different types of mid—ocean ridge basalts and continental tholeiites with the Nb—Zr—Y diagram. Chemical Geology, 1986(56) pp. 207—218.
    [203] Martin H. 1993. The mechanism of petrogenesis of the Archean continental crustcomparison with modem processes. Lithos., 30: 373~388.
    [204] Morris S P. 1995. Slab melting as an expalnation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23: 395~398.
    [205] Me Iames B I A, Cameron E M. Carbonated, alkaline hybridizing melts from a sub arc environment: Mantle wedge samples from the Tabar Lithir—tanga—Feni arc, Papua New Guinea [J]. Earth and Planetary Science Letters, 1994, 122: 125~141.
    [206] Norton D L. Theory of hydrothermal syetems[J]. Ann Review Earth Planet Sci, 1984, 12: 155~178.
    [207] Oxtoby S, Hamilton D L. The discrete association of water with Na_2O and SiO_2 in Na-Al silicate melts [J]. Contrib Mineral Petrol, 1978, 66: 185~188.
    [208] Pan Yusheng. 1996. Geological Evolution of the Karakorum and Kunlun Mountain. Beijing: Seimological Press, 94~136.
    [209] Pallister J S. A basalt trigger for the 1991 eruptions of Pinatubo volcano?[J]. Nature, 1992, 356: 426~428.
    [210] Peter C L ightfoot, Reid R Keays, Gordon G Morrison et al. Geologic and geochemical relationships between the contact sublayer, inclusions, and the main mass of the Sudbury igneous complex: a case study of the whistle mine embayment[J]. Economic Geology and the Bullitin of the society of economic geologist, 1997, 92(6): 647~673.
    [211] Pasteris J D. Mount Pinatubo volcano and "negative" porphyry copper depositd [J]. Geology, 1996, 24: 1075~1078.
    [212] Peng G, Luhr J F, McGee J J. Factors controlling sulfur concentrations in volcanic apatite [J]. American Mineralogist, 1997, 82: 1210~1224.
    [213] Piccoli P, Candela P. Apatite in felsic rocks: A model for the estimation of initial halogen concentrations in the Bishop Tuff(long Valley) and Tuolumne Intrusive suite(Sierra Nevada batholith) magmas [J]. American Journal of Sciences, 1994, 294: 92~135.
    [214] Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation [J]. Geochi mica et Cosmochi Mica Acta, 1992, 56: 5~20.
    [215] Rye R O, Luhr J F, Wasserman M D, Sulfur and oxygen isotopic syste matics of the 1982 eruptions of El Chichon volcano Chiapas, Mexioco [J]. Journal of Vocanology and geothermal Research, 1984, 23: 109~123.
    [216] Richards J P. 1995. Alkalic-type epithermal gold deposits-a reviews[A]. Mineralogical Association of Canada Short Course Series[Z]. Mineralogical Society of Canada. 367~400.
    [217] Spooner E T C. 1993. Magmatie sulphide/volatile interaction as a mechanism for producing chaleophile element enriched Archean Au-quartz epithermal Au-Ag and Au skam hydrothermal ore fluids[J]. Ore Geol. Rev., 7: 359~379.
    [218] Spry P G. 1996. Evidence for a genetic link between gold-silver telluride and porphyry molybdenum mineralization at the Golden Sunlight deposit, Whitehall, Montana: fluid inclusion and stable isotope studies[J]. Econ. Geol., 91: 507~526.
    [219] Sillitoe R H. Gold deposits in western Pacific island arcs: The magmatic connection [J]. Econ. Geol. Monograph, 1989, 6: 274~291.
    [220] Sillitoe R H. Gold-rich porphyry copper deposits and exploration implications [J]. Geological Association of Canada Special Paper, 1995, 40: 465~478.
    [221] Sajona F G. Mury R C, Bellon H, et al.. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21: 1007~1010.
    [222] Stem C R and Killian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol., 123: 263~281.
    [223] Solomon M. Subduction, arc reversal, and the origin of porphyry gold deposits in island arcs[J]. Geology, 1990, 18: 630~633.
    [224] Sheets R W, Nesbitt B E, Muehlenbachs K. Meteroic water component in magmatic fluids from porphyry copper mineralization, Babine Lake area, British Columbia [J]. Geology, 1996, 24: 1091~1094.
    [225] Shinohara H. Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt: Implications for chlorine and metal transport [J]. Geochi mica et Cosmochi Mica Acta, 1994, 58: 5215~5224.
    [226] Sigurdsson H. Pre-eruption compositional grasients and mixing of andesite and anddacie magma erupted from Nevado delRuiz Vilcano, Colombia in 1985 [J]. Journal of Vocanology and geothermal Research, 1990, 41: 127~151
    [227] Sasaki A, Ishihara S. Sulfur isotopic composition of the magnetite series and ilmenite series granitoids in Japan [J]. Contributions to Mineralogy and Petrology, 1979, 68: 107~115.
    [228] Sillitoe R H. Characteristics and controls of the largest porphyry cooper- gold and epidermal gold deposits in the circum-Pacific region [J]. Australian Journal of Earth Sciences, 1997, 44: 373~388.
    [229] Streck J M, Dilles J H. Sulfur revolution of oxidized arc magmas as recorded in apatite from porphyry copper batholith [J]. Geology, 1998, 26: 523~526.
    [230] Tarkian M, Stribrny B. Platinum group elements in porphyry copper deposit, a recormaissance study [J]. Mineralogy and Petrology, 1999, 65: 161~183.
    [231] Takagi T, Tsukimura. Genesis of oxidized and reduced type granite [J]. Economic Geology, 1997, 92: 81~86.
    [232] Williams I S, Buick I S, Cartwright I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reylolds Range, central Australia. J Metamorphic Geol, 1996, 14: 29—47
    [233] Willians T J. Candela P. The partitioning of copper between silicate melts and two phase aqueous fluids: an experimental investigation at lkbar, 800℃ and 0.5kbar, 850℃[J]. Contrib. Mineral. Petrol., 1995, 121: 388~399.
    [234] Webster J D. Exsolution of Cl bearing fluids from chlorine enriched mineralizing granitic magmas and implications for ore metal transport[J]. Geochi mica et Cosmochi Mica Acta, 1997a, 61: 1017~1030.
    [235] Webster J D. Chloride solubility in felsic melts and the role of chloride in magmatic degassing [J]. Journal of Petrology, 1997b, 38: 1793~1807.
    [236] Webster J D, Rebbert C R. Geochemical evidence of fluid saturation in felsic magma determined through experimental investigation of H_2O and Cl solubility in F-enriched rhyolite melts[J]. Contribution to Mineralogy and Petrology, 1998, 132: 198~207.
    [237] Webster J D. Fluid melt interaction involving Cl-rich granites: Experimental study from 2 to 8kbar[J]. Geochi mica et Cosmochi Mica Acta, 1992a, 56: 659~678.
    [238] Webster J D. Water solubility and chlorine partitioning in Cl-rich granitic systems: Effects of melt composition at 2kbar and 800℃[J]. Geochi mica et Cosmochi Mica Acta, 1992b, 56: 679~687.
    [239] Webster J D, Holloway J R. Experimental constrains on the partitioning of Cl between topaz rhyolite melt and H_2O and H_2O+CO_2 fluids: New implications granitic differentiation and ore deposition [J]. Geochi mica et Cosmochi Mica Acta, 1988, 52: 2091~2105.
    [240] Wendlandt R K Sulfur saturation of basalt and andesite melts at high pressures and temperatures [J]. American Mineralogist, 1982, 67: 877~885.
    [241] Whitney J A, Stomer J C. Igeneous sulfides in the Fish canyon tuff and the role of S in ealc-alkaline magmas [J]. Geology, 1983, 11: 99~102.
    [242] Whitney J A. Fugacities of sulfurous gases in pyrrhotite bearing magmas [J]. American Mineralogist, 1984, 60: 69~78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700