用户名: 密码: 验证码:
滇黔相邻地区峨眉山玄武岩地球化学特征及其成自然铜矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
峨眉山玄武岩分布于云、贵、川三省。在滇黔交界处,二叠世玄武岩因为广泛发育自然铜矿化而具有重要的研究意义。本研究通过地质、地层和地球化学的方法探讨本区出露的峨眉山玄武岩的起源、成因和喷发时代,同时用同位素方法探讨玄武岩铜矿成矿。通过本次研究获得以下成果:
     1 探讨了威宁二叠纪玄武岩的成因。通过主量和微量元素地球化学特征研究表明:玄武岩起源于微混染的EMⅡ型富集地幔,岩浆端元矿物为石榴子石二辉橄榄岩。岩浆在上升过程中发生了辉石和橄榄石的分离结晶。微量元素Rb的强烈负异常,表明玄武岩形成后遭到了强烈的热液蚀变。
     2 用恢复Rb-Sr古混合线定年方法确定了本区宣威组底部硅质页岩的成岩年龄为255±12Ma,首次确定了峨眉山玄武岩的喷发上限年龄。
     3 玄武岩铜矿石铅同位素组成~(206)Pb/~(204)Pb=18.078~18.923;~(207)Pb/~(204)Pb=15.463~15.690;~(208)Pb/~(204)Pb=38.301~39.036。通过Pb同位素比较研究,矿石铅同位素组成与玄武岩岩石铅同位素组成相似,成铜物质可能来源于玄武岩的淋滤。
     4 与玄武岩铜矿伴生的沥青和碳质δ~(13)C_(PDB)值变化在—32.3‰~—21‰之间,与自然界δC~(13)储库生物成因的碳同位素组成相符,表明其为有机成因。铜矿石中方解石的碳氧同位素表现出明显的特殊性,以富δ~(18)O_(SMOW)和贫δ~(13)C_(PDB)为特征,δ~(18)O_(SMOW)和δ~(13)C_(PDB)值分别为13.1‰~22.9‰和-32.3‰~-13.5‰。不同矿床碳同位素组成一致,暗示碳为同一来源,均为有机碳。
     5 矿石中石英和方解石中流体包裹体的H-O同位素组成为:δ~(18)O_(矿物-SMOW),14.3‰~18.9‰;δ~(18)O_(水-SMOW),2.8‰~7.2‰;δ~(18)D_(水-SMOW),-63.63‰~-80.6‰。其中流体包裹体均一温度为151~201℃。研究表明,成矿流体来源于建造水与玄武岩发生强烈的水-岩反应所形成的成矿流体。成矿流体通过对流循环方式从玄武岩中萃取成矿物质,有机质对成矿流体的还原和对成矿物质的吸附作用可能是成矿的重要机制。
Emeishan Basalt spreads widely in Yunnan , Guizhou and Sichuan Province. There are variations between the different parts of the Emeishan Basalt. In the junction area of Yunnan and Guizhou Province , the basalt is special for far-ranging nature copper mineralization. This study focus on Emeishan basalt in the junctional area of Yunnan and Guizhou Province. Based on systematic studies on geological, stratigraphic and geochemical characteristics of the volcanic rocks and copper deposits hosted in the rocks, the composition of primary magma and their changes and the time of volcanic activity have been discussed respectively in this paper. Isotope also has been proposed to explain the evolution of Emeishan basalt copper deposits. From this study, following achievements have been obtained:
    1. Based on geochemical characteristics of major elements, trace elements and rare earth elements of the basalts, it is indicated that the primary magma of the basalts is derived from enrich mantle II (EM II) with little contamination, and the basalts end mineral composition is garnet lherzolite, and picrite and olivine fractional crystallization have been occured during magma ascent or emplacement. Intensive activity of hydrothermal fluid has also been suggested to explain Rb's intensive negative anomaly.
    2. The age of the the shale, which overlays Emeishan Basalt Group, have been accessed by iterative reconstruction and regression of Rb-Sr binary isotope paleomixing line. This is different from conventional Rb-Sr dating. From the research, the shale's model age of 255±12 Ma have been dated. This age indicates Emeishan basalts end-eruption happened before 255Ma. It not only supports the study of paleomagnetism of stratum and stratum chronology but also Emeishan basalt main eruption time is nearly 258Ma. This study indicates Rb-Sr isotope chronology is applicable in Mesozoic stratum and 255Ma effectively constraints the upper limit time of Emeishan basalt.
    3 ~(206)pb/ ~(204)pb , ~(207)pb/ ~(204) pb and ~(208) pb/ ~(204) pb of minerals from copper deposits
    are generally from 18.078 to 18.923, from 15.463 to 15.690 and from 38.301 to 39.036, respectively. Pb isotopic compositions of the minerals resemble their host rocks-Emeishan basalt, which indicates the matter of basalt copper deposit originated from Emeishan basalt.
    4. δ~(13)C_(v-pdb) of bitumen and carbonaceous matter from copper ore in basalts range from -32.3%o to -21%o, conforming to the range of Sedimentary organic carbon and Biomass in Nature δ~(13)C reservoirs, which suggested that carbon of the bitumen and the carbonaceous matter did not come from mantle source but bio-source. δ~(18)Osmow and δ~(13)C_(pdb) of calcite from copper ore are generally from 13.1‰ to 22.9‰ and from -32.3‰ to -13.5‰, respectively. It is special in that δ~(18)O is rich while δ~(13)C depleted. Different ore deposit has same carbon isotope composition respectively, which suggests the carbon comes from same source -organic carbon.
    5. δ~(18)O_(矿物-sMOW), ~(18)O_(h2o- smow) and δD_(v-smow) of fluid inclusions in quartz and calcite from copper ore are from 14.3‰ to 18.9‰, from 2.8‰ to 7.2‰ and from -63.6‰ to-80.6‰ respectively ,with a medium-low temperature(151℃to201℃). All
引文
1.丛柏林(主编).攀西古裂谷的形成与演化.北京:科学出版社,1988.
    2.范蔚茗,王岳军,彭头平,苗来成,郭峰.桂西晚古生代玄武岩Ar-Ar和U-Pb年代学及其对峨眉山玄武岩省喷发时代的约束.科学通报,2004,49(18):1892—1900.
    3.冯景兰.西康东南之铜矿.地质论评,1940,5(1—2):149.
    4.傅家谟,贾容芬,刘德汉,施继锡.碳酸岩有机地球化学.北京:科学出版,1989.
    5.福尔.G同位素地质学原理:潘曙兰,乔广生 译,李继亮校.北京:科学出版社1983.
    6.高振敏,张乾,陶琰,罗泰义.峨眉山地幔柱成矿作用分析.矿物学报,2004,24(2):45—54.
    7.广西地质矿产局.广西壮族自治区区域地质志.北京:地质出版社,1985.
    8.贵州省地质矿产局.贵州省地质志.北京:地质出版社,1987.
    9.贵州省地质矿产局.贵州省1∶20万区域地质调查报告—威宁幅,1973.
    10.郭文魁,常印佛,黄崇柯.我国主要类型铜矿成矿和分布的某些问题.地质学报,1978,52(3):169—181.
    11.侯增谦,卢记仁,李红阳,等.中国西南特提斯构造演化—幔柱构造控制.地球学报,1996,17(4):439—453.
    12.候增谦,卢纪仁,汪云亮,等.峨眉火成岩省:结构、成因与特色.地质论评,1999,45(增刊):885—891.
    13.侯增谦,卢记仁,林盛中.峨眉地幔柱轴部的榴辉岩——地幔岩源区:主元素,痕量元素及Sr、Nd、Pb同位素证据.地质学报,2005,79(2):200—219.
    14.胡耀国,朱炳泉,常向阳.滇黔边界大规模自然铜矿化的极端成矿条件耦合.矿床地质,2002,21:390—394.
    15.胡瑞忠,陶琰,钟宏,黄智龙,张正伟.地幔柱成矿系统:以峨眉山地幔柱为例.地学前缘,2005,12(1):42—54.
    16.黄开年.我国西南地区峨眉山玄武岩的岩石地球化学特征及其大地构造意义.北京:中国科学院地质研究所,1986.
    17.黄汲清,陈炳蔚.中国及邻区特提斯海的演化.北京:地质出版社,1987.
    18.黄智龙,陈进,韩润生,等.云南会泽超大型铅锌矿床地球化学成因—兼论峨眉山玄武岩与铅锌矿床成矿的关系.北京,地质出版社,2004.
    19.黄智龙,陈进,刘丛强,等.峨眉山玄武岩与铅锌矿床成矿关系初探——以云南会泽铅锌矿床为例.矿物学报,2001,21(4):681—688.
    20.刘秉光,黄开年.峨眉山玄武岩与裂谷作用[A].地质科学成果选集(第1集).北京:文物出版社,1982.
    21.刘远辉.李进,邓克勇.贵州盘县地区峨眉山玄武岩铜矿的成矿地质条件.地质通报,2003,22(9):713—717.
    22.李昌年.四川攀西裂谷带峨眉玄武岩的岩石学及成因研究.地球科学,1986,11(6):577—584.
    23.李红阳,卢记仁,侯增谦,杨竹森,高振敏,高永丰,王立峰.峨眉地幔柱与超大型矿床.矿床地质,2002,21(增刊):148—151.
    24.李厚民,毛景文,张长青,许虹,陈毓川.滇黔交界地区玄武岩铜矿有机质的组成、结构及成因.地球学报,2004a,78(4):519—526.
    25.李厚民,毛景文,张长青,许虹,陈毓川,王登红.滇黔交界地区玄武岩铜矿同位素地球化学特征.矿床地质,2004b,23(2):232—240.
    26.李厚民,毛景文,徐章宝,陈毓川,张长青,许虹.滇黔交界地区峨眉山玄武岩铜矿化蚀变特征.地球学报,2004c,25(5):495—502.
    27.李厚民,毛景文,王登红,陈毓川,张长青,许虹.滇黔交界地区峨眉山玄武岩铜矿的PGE及微量元素特征.矿床地质,2005,24(3):285—291.
    28.林建英.中国西南三省二叠纪玄武岩的时空分布及其地质特征.科学通报.1985,12:929—932
    29.林建英.峨眉山玄武岩的岩石组合及其地质特征,中国地质科学院成都地质矿产研究所所刊.北京:地质出版社,1987,第8号.
    30.柳贺昌.峨眉山玄武岩与铅锌成矿.地质与勘探,1995,31(4):1—6.
    31.刘红英,夏斌,梁华英,张玉泉.攀西茨达和太和层状岩体时代.高校地质学报,2004,10(2):179—185.
    32.卢记仁.峨眉地幔柱的动力学特征.地球学报,1996,17(4):424—438.
    33.马文璞.区域构造解析——方法理论和中国板块构造.北京:地质出版社,1992.
    34.梅厚均.西南暗色岩深渊分异两个系列的岩石化学特征与铁镍矿化的关系.地球化学,1973,4:219—253.
    35.毛景文,王志良,李厚民,等.云南鲁甸地区二叠纪玄武岩中铜矿床的碳氧同位素对成矿过程的指示.地质论评,2003,49(6):610—615.
    36.彭琪瑞.中国西南之二叠纪基性岩流及其与铜矿之关系.地质论评,1940,5(12):149.
    37.覃振蔚.混合等时线及其在同位素年代学中的意义.中国科学,B辑,1987,17:95—103.
    38.全国矿产储量委员会办公室主编.矿产工业要求参考手册.北京:地质出版社,1987.
    39.任纪舜.论中国南部的大地构造.地质学报,1990,64:275—288.
    40.沈发奎,刘木大.攀枝花裂谷之双峰式火山岩.矿物岩石,1984,4(1):1—15.
    41.宋谢炎,王玉兰,曹志敏等.峨眉山玄武岩、峨眉地裂运动与地幔柱.地质地球化学,1998,1:47—52.
    42.宋谢炎,侯增谦,曹志敏等.峨眉山大火成岩省的岩石地球化学特征及时限.地质学报,2001,75(4):498—506.
    43.宋谢炎,侯增谦,汪云亮,张成江,曹志敏,李佑国.峨眉山玄武岩的地幔热柱成因.矿物岩石,2002,22(4):27—32.
    44.宋谢炎,侯增谦,汪云亮,等.晚古生代—早中生代扬子板块西缘的构造岩浆活动.地质论评,1999,45(增刊):868—871.
    45.四川省地质矿产局.四川省区域地质志.北京:地质出版社,1990.
    46.王登红.地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨.地学前缘,2001,8(3):67—72.
    47.王登红.地幔柱及其成矿作用.北京:地震出版社,1998.
    48.王登红,林文蔚,杨建民,等.试论地幔柱对于我国两大金矿集中区的控制意义.地球学报,1999,20(2):157—162.
    49.王砚耕,王尚彦.峨眉山大火成岩省与玄武岩铜矿.贵州地质,2003,20(1):5—10.
    50.汪云亮,侯增谦,修淑芝,等.峨眉火成岩省地幔柱热异常初探.地质论评,1999,45(增刊):876—879.
    51.汪云亮,李巨初,周蓉生,等.岩浆岩微量元素地球化学原理及其应用—兼论峨眉山玄武岩的成因.成都:科技大学出版社,1993.
    52.汪云亮,李巨初,王旺章.微量元素丰度模式与峨眉山玄武岩的成因.矿物岩石,1989,4:100—105.
    53.吴根耀.攀枝花一西昌古裂谷晚古生带演化.成都理工学院学报,1997,24(2):48—53.
    54.吴开兴.滇西新生代富碱火成岩及其与金成矿关系—以北衙金矿为例.中国科学院博士学位论文,贵阳:中国科学院地球化学研究所,2005.
    55.谢桂青,胡瑞忠,赵军红,蒋国豪.中国东南部地幔柱及其与中生代大规模成矿关系初探.大地构造与成矿学,2001,25(2):179—186。
    56.谢家荣.中国矿床学总论.北京:学术书刊出版社,1963.
    57.肖龙,徐义刚,梅厚钧,沙绍礼.云南宾川地区峨眉山玄武岩地球化学特征:岩石类型及随时间演化规律.地质科学,2003a,38(4):335—351.
    58.肖龙,徐义刚,何斌,峨眉地幔柱—岩石圈的相互作用:来自低钛和高钛玄武岩的Sr—Nd和O同位素证据.高校地质学报,2003b,9(2):207—217.
    59.熊舜华,李建林.峨眉山区晚二叠世大陆裂谷边缘玄武岩系的特征.成都地质学院学报,1984,(1):43—57.
    60.徐义刚,钟孙霖.蛾眉山大火成岩省:地幔柱活动的证据及其熔融条件.地球化学,2001,30(1):1—9.
    61.徐义刚.地幔柱构造、大火成岩省及其地质效应.地学前缘,2002,9(4):341—353.
    62.徐义刚,梅厚钧,许继峰,等.峨眉山大火成岩省中两类岩浆分异趋势及其成因.科学通报,2003.48(4):383—387.
    63.云南省地质矿产局.云南省区域地质志.北京:地质出版社,1990.
    64.郑启钤.贵州境内峨眉山玄武岩的基本特征及其与成矿作用的关系.贵州地质,1985,3(1):1—16.
    65.郑荣才,张锦泉.滇东—黔西南泥盆纪构造格局及岩相古地理演化.成都地质学院学报,1989,16(4):51—60.
    66.张成江,李晓林.峨眉山玄武岩的铂族元素地球化学.岩石学报,1998,14(3):299—304.
    67.张成江.峨眉山玄武岩高场强元素特征及峨眉地幔柱轮廓初探.地质论评,1999,45(增刊):776—779.
    68.张景廉,朱炳泉,张平中,等.塔里木盆地北部沥青、干酪根Pb—Sr—Nd同位素体系及成因演化.地质科学,1998,33(3):310—317.
    69.张招崇,王福生,范蔚茗,等峨眉山玄武岩研究中的一些问题的讨论.岩石矿物学杂志,2001,20(3):239—246.
    70.张招崇,王褐生,郝艳丽,Mahoney JJ.峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束.地质学报,2004,78(2):171—180.
    71.张招崇,王福牛,郝艳丽.峨眉山大火山岩省中的苦橄岩:地幔柱活动证据.矿物岩石地球化学通报.2005,24(1):17—22.
    72.张正伟,朱炳泉,常向阳,等.黔西上二叠统玄武岩组上部发现黄铜矿化.矿物学报,2003,23(2):102.
    73.张正伟,程占东,朱炳泉,等.蛾眉山玄武岩组铜矿化与层位关系研究,地球学报,2004,25(5):503—508.
    74.张正伟,朱炳泉,张乾,陈广浩,许连忠,黄海明,张中山.峨眉山大火山岩省成矿的阶段性.地球科学进展.2006(待刊).
    75.张旗,钱青,王焰,徐平,韩松,贾秀琴.扬子地块西南缘晚古生代基性岩浆岩的性质与古特提斯洋的演化.岩石学报,1999,15(4):576—583.
    76.张云湘,骆耀南,杨崇喜.攀西裂谷.北京:地质出版社,1988.
    77.赵家骧.中国西南部二叠纪玄武岩系成因及其时代的检讨.地质论评,1942,7:4—5.
    78.中国地质科学院,武汉地质学院.中国古地理图集.北京:地图出版社,1985.
    79.钟大赉.滇川西部古特提斯造山带.北京:科学出版社,1998.
    80.朱炳泉,常向阳.地球化学省与地球化学边界.地球科学进展,2001,16(2):153—162.
    81.朱炳泉,张正伟,胡耀国.滇东北发现具工业价值的火山凝灰角砾岩层控型铜矿床.地质通报,2002a,21(7):450.
    82.朱炳泉,胡耀国,张正伟,等.滇黔地球化学边界似基韦诺(Keweenaw)型铜矿床的发现.中国科学(D辑,2002b,32(增刊):153—162.
    83.朱炳泉,常向阳,胡耀国,等.滇—黔边境鲁甸沿河铜矿床的发现与峨眉山大火成岩省找矿新思路.地球科学进展,2002c,27(6):912—917.
    84.朱炳泉,戴檀谟,胡耀国,张正伟,陈广浩,彭建华,涂湘林,刘德汉,常向阳.滇东北峨眉山玄武岩中两阶段自然铜矿化的~(40)Ar/~(39)Ar与U—Th—Pb年龄证据地球化学,2005,34(3):235—247.
    85.朱中一,刘木大.四川龙舟山玄武岩的岩石学特征及成因探讨.地球科学,1986,11(6):570—576.
    86. Ali, J R, Thompson G M, Song X., Wang Y. Emeishan Basalts(SW China) and the'end—Guadalupian'crisis: magnetobiostratigraphic constraints. Journal of the Geological Society, London .2002,159,21-29.
    87. Ali J R, Lo C H, Thompson G M, et al. Emeishan basalt Ar—Ar overprint ages define several tectonic events that affected the western Yangtze platform in the Mesozoic and Cenozoic. Asian Earth Sci, 2004,23: 163—178.
    88. Arth J G. Behaviour of trace element during magmatic processes a summary of theoretical models and their applications.Res.U.S.Geol.Surv., 1976,4:41—47.
    89. Baker M B, Stolper E M. Determining the composition of high—pressure mantle melts using diamond aggregates.Geochim. Cosmochim. Acta, 1994,58:2811—2827.
    90. Barth M G,McDonough W F,Rudnick R L. Tracking the budget of Nb and Ta in the continenta 1 crust. Chem.Geo 1.2000, 165:197—213.
    91. Bohlke J K, Kistler R W. Rb—Sr, K—Ar, and stable isotope evidence for the ages and sources of fluid components of goldhearing quartz veins in the northern Sierra Nevada Foothills metamorphic belt, California.Econ. Geol. 1986,81:296-322.
    92. Boness M, Haack U,Feldmann K H. Rb/Sr—Datierung der hydrothermalen Pb—Zn—Vererzung yon Bad Grund(Harz),BRD.Chem.Erde. 1990,50:1-25.
    93. Boven A,Pasteels P, Punsalan L E, et al. ~(40)Ar/~(39)Ar geochronological constraints on the age and evolution of the Permo—Triassic Emeishan volcanic province, southwest China. Asian Earth Sci, 2002,20:157—175.
    94. Boynton W V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P.(ed.),Rare earth element geochemistry.Elservier,1984:63—114.
    95. Condie K C. Chemical composition and evolution of inaccessible island volcanics.Chem. Geol, 1991,92:251—260.
    96. Courtillot V, Besse D, Vandamme R, et al. Deccan flood basalts at the Cretaceous/Tertiary boundary. Earth Planet Sci. Lett, 1986,80:361—374.
    97. Chung S L,Jahn B M. Plume—lithophere interaction in generation of the Emeishan flood basalts at the Permian Triassic boundary. Geology,1995,23:889—892.
    98. Chung S L,Jahn B M,Wu G Y, et al. The Emeishanflod basalt in SW China:A mantle plume initiation model and its connection with continental break—up and mass extinction at the Permian—Triassic boundary [A].Flower M,Chung S L,Lo C H, et al. Mantle dynamics and plate interaction in east Asia [C]. Washington D C:AGU Monography, 1998,27:47—58.
    99. Chung S L,Lee T Y, Lo C H,et al. Intraplate extension prior to continental extension along the Ailao Shan—Red River shear zone. Geology. 1997,25,311—314.
    100. Dmitriev Y I,Bogatikov O A. Emeishan flood basalts,Yangtze Platform:indications of an aborted oceanic environment. Petrology, 1996,4:407—418.
    101. Fong K L. Field evidences of supergene enrichment of the copper deposits of Szechuan,Sikang and Yunnan. Bulletin of the Geological Society of China, 1947,27:347—358.
    102. Guo F, Fan W M, Wang Y J, et al. When did the Emeishan mantleplume activity start? Geochronological and geochemical evidencefrom ultramafic—mafic dykes in southwestern China.Int'l GeolRev, 2004, 46: 226—234.
    103. Gilg H A and Frei R. Chronology of magmatism and mineralization in the Kassandra mining area, Greece: The potentials and limitations of hydrothermal illites. Geochim. Cosmochim. Acta 1994.58:2107—2122.
    104. Haack U. Datienmg mit Rb/Sr—Mischungslinien? Ber Dtsch Mineral Gesell Beih 1 Eur. Mineral 1990,2(1):86.
    105. Haack U. and Lauterjung J. Rb/Sr dating of hydrothermal overprint in Bad Grund by mixing lines. In Formation of Hydrothermal Vein Deposits—A Case Study on the Pb—Zn, Barite and Fluorite Deposits of the Harz Mountains (eds. P. Moller and V. LUders). Monogr. Ser. Miner. 1993,Dep. 30:103-114.
    106. Hamilton S K. Copper mineralization in the upper part of the Copper Harbor conglomerate at White Pine, Michigan. Econ. Geol., 1967, 62:885—904.
    107. Hinze, W J, and Braile, L W, Chandler V W. A geophysical profile of the southern margin of the midcontinent rift system in western Lake Superior.Tectonics, 1990, 9: 303—310.
    108. Hirose K, Kushiro I. Partial melting of dry.peridotites at high pressures:determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Let., 1993, 114:477—489.
    109. Ho E S, Meyers P A, Mauk J L. Organic geochemical study of mineralization in the Keweewan Nonesuch Formation at White Pine, Michigan.Org. Geochem., 1990,16:229—234.
    110. HoaE S, Maukb J L Relationship between organic matter and copper mineralization in the Proterozoic Nonesuch Formation, northern Michigan.Ore Geology Reviews, 1996, 11:71—87.
    111. Hsu K J, Li J L,Chen H H et al. Tectonics of South China:key to understanding West Pacific geology. Tectonophy. 1990, 183:9—39.
    112. He B,Xu Y G, Chung S L,Xiao L, Wang Y M. Sedimentary evidence for a rapid, kilometer scale crustal doming prior to the eruption of the Emeishan flood basalts.Earth Planet Sci. Lett.2003, 213:391—405.
    113. K.N. Huang, N.D. Opdyke, Magnetostratigraphic investigations on an Emeishan basalt section in western Guizhou province, China, Earth Planet. Sci. Lett. 1998,163:1—14.
    114. IrvineT N, Baragar W R A. A Guide to the chemical classification of the common volcanic rocks.Earth Sci (Canad),1971,8:523—548.
    115. Jagoutz E. The abundances of major, minor and trace elements in the Earth's as derived from primitive ultramafic nodules.Proc Lunar Sci Conf, 1979,10:2031—2050.
    116. Winchester J A. and Floyd P A, Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical Geology, 1977,20:325—343.
    117. Jens Schneider, Udo Haack, and Klaus Sedingk. Rb—Sr dating of epithermal vein mineralization stages in the eastern Harz Mountains (Germany) by paleomixing lines. Geochimiea et Cosmochimica Acta, 2003, 67(10): 1803-1819.
    118. Huang K, Opdyke N D, Magnetostratigraphic investigationsof an Emeishan basalts section in western Guizhou Province, southwest China, abstract, Fall Meeting, American Geophysical Union, supplement to EOS Trans. AGU, 1996, 77:171.
    119. Kogiso T. Tatsumi Y,Shimoda G,Barsczus H G. High (HIMU) ocean island basahs in southern Polynesia: New evidence for whole mantle scale recycling of subdueted oceanic ernst. Geophys. Res. 1997,102:8085—8103.
    120. Koppers A A P, Morgan JP, Morgan JW, and Staudigel H. Testing the fixed hotspot hypothesis using~(40)Ar/~(39) Ar age progressions along seamount trails.Earth Planet. Sci. Lett., 2001, 185:237—252.
    121. Le Maitre R W (ed). A Classification of Igneous Rocks and Glossary of Terms. Blaekwell. Oxford, 1989.
    122. Lightfoot P C, Naldrett A J,GorbacheV N S,Doberty W. Fedorenko V A. Geochemistrv of the Siberian Trap of the NOril'sk area,USSR,with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contrib.Mineral. Petrol, 1990,104:631—644.
    123. Liu K C. An outline of the geological structure in the Weining—Shueicheng area,Kueichou. Bulletin of the Geological Society of China, 1947,27:373—388.
    124. Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations to Permian—Triassic boundary events. Earth Planet Sci Lett, 2002, 198: 449—458.
    125. Luo Z L,Jin Y Z,Zhao X K. The Emei taphrogenesis of the upper Yangtze Platform in south China. Geol Mag, 1990, 127:393—405.
    126. Mahoney J J,Storey M,Duncan R A,Spencer K J, Pringle M. Ge0chemistry and age of the Ontong Java plateau. In The Mesozoic Pacific: Geology, Tectonics, Volcanism (eds. M SPringle et al. ), Am.Geophys.Union Geophys. Monogr,1993,77:233—261.
    127. McDonough W F, Sun S S. Composition of the Earth.Chem .Geo1,1995,120:223—253.
    128. McDonough W F.Constraints on the composition of the continental lithopheric mantle.Earth Planet. Sci.Lett. 1990,101:1—18.
    129. McKenzie D, O'Nions K. Partial melt distributions from inversion of rare earth element concentrations.Petrol,1991,32:1021—1091.
    130. Meschede M. A method of discriminating between different types of mid—ocean ridge basalts and continental tholeiites with the Nb—Zr—Y diagram. Chemical Geology, 1986,56:207—218.
    131. Mitchell A H G, Garson M S. Mineral deposits and global tectonic settings. Academic press, 1981:1—108.
    132. Mullen E D. MnO/TiO_2/P_2O_5: a minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis.Earth Planet.Sci.Lett, 1983,62:53—63.
    133. Norman M D,Garcia M O. Primitive magmas and source characteristics of the Hawaiian plume:petrology and geochemistry of shield picrites. Earth Planet.Sci.Lett, 1999,168:27—44.
    134. Ortega-Zarzosa G. Martinez J R, Dominguez-Espinos O, et al. Formation of copper—based particles trapped in a silica xerogel matrix. Superficiesy Vacio,2000,11: 61—65.
    135. Pearce J A. Statistical analysis of major element patterns in basalts.Petrol.,1976,17:15—43
    136. Pearce J A,Norry M J. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 1979, 69:33—47.
    137. Pearce J A,Mei H J. The volcanic rocks of the 1985 Tibet Geo—traverse:Lhasa and Golmud.Phil Trans Roy Soc London. 1988,A327:169—201.
    138. Paces, J.B., and Bell, K., Nondepleted subcontinental mantle beneath the Superior Province of the Canadian Shield: Nd—Sr isotopic and trace element evidence from Mideontinent rift basalts. Geochim. et Cosmochim. Acta, 1989, 53:2023—2035.
    139. Rollinson. Hugh R. Using Geochemical Data: Evaluation, Presentation, Interpretation. Lungman Group UK Ltd, 1993.
    140. Rudnick R L,Fountain D M. Nature and composition of the continental crust: a lower crustal perspective. Rev.geophys,1995,33:267—309.
    141. Saunders A D,Norry M J,Tamey J. Origin of MORB and chemically depleted mantle reservoirs:trace element constraints. J.Petrol. (Special Lithosphere Issue),1988:415—445.
    142. Schidlowsk. Application of stable isotopes to early biochemical evolution on earth. Ann. Rev. Earth Planet.Sci,1987, 15:47—72.
    143. Stanley S M, Yang X, A double mass extinction at the end of the Paleozoic era. Science 1994,266:1340—1344.
    144. Song X Y, Zhou M F, Hou Z Q, et al. Geochemical constraints on the mantle source of the upper Permian Emeisban continental flood basalts,southwestem China.International Geology Review,2001, 43:213—225.
    145. Song X Y, Zhou M F, Cao Z M, et al. Ni—Cu(PGE) magmatic sulfide deposits in the Yangiiuping area, Permian Eneishan igneous province, SW China. Mineralium Deposita, 2003, 38:831—843.
    146. Sueno S, Cameron M, Papike J J, et al. Tremolite. American Mineralogist,1973,58:649—664.
    147. Sun S S., McDonough W.F. Chemical and isotopic systematic of oceanic basalts:implications for mantle composition and process from Sanders A.D.and Norry M.J (eds),magmatism in ocean basins.Geological Society Special Publiction,1989,42:313—345.
    148. Sun S S. Chemical composition and origin of the earth's primitive mantle. Geochim Cosmochim Acta, 1982,46:179—192.
    149. Taylor S R, Mclennan S M. The Continental Crust:Its composition and Evolution. London:Blackwell Scientific Publications,1985.
    150. Thomsong,Ali J,song X,et al. Emeishan Basalts SW China:reappraisal of the formation's type area stratigraphy and a discussion of its significance as a large igneous province. Geol Soc London,2001,158:593—399.
    151. Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. On causal links between flood basalts and continental breakup.Earth and Planetary Science Letters, 1999, 166: 177—195.
    152. Weaver B L. The origin of ocean island basalt end—member compositions: Trace element and isotopic constraints. Earth Planet. Sci.Lett,1991,104:381—397.
    153. Willson M. Ingneous petrogenesis.London:Unwin Hyman,1989:1—466.
    154. Wooden J L,Czamanske G K, Fedorenko V A,Amdt N T,Chauvel C,Bouse R M,King B S,Knight R J,Siems D F. Isotopic and trace——elelement constraints on mantle and crustal contributions to Siberian continental flood basalt, Noril'sk area Siberia. Geochim Cosmochim. Acta, 1993,57:3677—3704.
    155. Woodhead J D,Devey C W. Geochemisty of the Pitcaim seamounts,I:source character and temporal trends.Earth Planet Sci.lett,1993,116:81—99.
    156. White W M, Duncan R A. Geochemistry and geochronology of the Society Island:New evidence for deep mantle recycling.In Earth Processe :Reading the Isotopic Code(eds. A Basu and SR Hart); Am. Ge0phys.Union Geophys. Monogr,1996,95:183—206.
    157. Xu Y C,Chung S L,Jahn B M,et al. Petrological and geochemical constraints on the petrogenesis of the Emeishan Permo—Triassic Emeishah flood basalts in southwestem China. Lithos,2001,58:145—168.
    158. Xu, Y, Mei H, Xu J, Huang X, Wang Y, Chung S L. Origins of two differentiation trends in the Emeishan flood basalts.Chin. Sci. Bull, 2003, 48:390—394.
    159. Xiao L, Xu Y G, Chung S L,et al. Chemostratigraphic correlation of Upper Permian lavas,from Yunnan Province,China:Extent of the Emeishan large igneous province, International Geology Review,2003,45:754—766.
    160. Xiao L,Xu Y G, Xu J F,He B,Pirajno F. Chemostratigraphy of flood basalts in the Garze—Litang region and Zongza block: implication for western extension of the Emeishan large igneous province,SW China. Acta Geological Sinica,2004a,78(1):61—67.
    161. Xiao L, Xu Y G, Mei H J, Zheng Y F, He B, Pirajno F. Distinct mantle sources, of low—Ti and high—Ti basalts from the western Emeishan large igneous province, SW China:implications for plume—lithosphere interaction. Earth Sci.Planet Lett., 2004b, 228:525—546.
    162. Yang H J, Frey F A, Weis D, Giret A, Pyle D, Michon G. Petrogenesis of the flood basalts forming the northern Kerguelen Archipelago: Implications for the Kerguelen Plume. Petrol, 1998,39:711—748.
    163. Zhang Z, Wang F. Geochemistry of two types of basalts in the Emeishan Basaltic Province: evidence for mantle plume-lithosphere interaction. Acta Geol.Sin,2002,76:229—237.
    164. Zhong H, Zhou X H, Zhou M F, et al. Platinum—group element geochemistry of the Hongge Fe-V-Ti deposit in the Pan-Xi Area, southwestern China. Mineralium Deposita,2002,37:226—239.
    165. Zhong H,Yao Y, Prevec S A,et al. Trac-element and Sr-Nd isotopic geochemistry of the PGE—bearing Xinjie layered intrusion in SW China.Chemical Geology,2004,203:237—252.
    166. Zhou M F, Malpas J, Song X Y, Robinson, P T, Kennedy A K, Sun M. Thompson, G., Yan, D.P., Zhang, C.J. Shrimp zircon geochronology of the Emeishan large igneous province (SW China): implications for double mass extinctions in the Late Permian[A]. Abstracts for Eleventh Goldschmidt Conference, Hot Springs. Virginia.USA, 2001,3519.
    167. Zhou M F, Yan D P, Kennedy A K, Li Q I, Ding J. SHRIMP zircon geochronological and geochemical evidence for Neo—Proterozoic arc—related magmatism along the western of the Yangtze Block, South China. Earth Planet. Sci. Lett, 2002a,196:51-67.
    168. Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end guadalupian mass extinction. Earth Planet Sci Lett, 2002 b,196:113—122.
    169. Zhou M F, Yang Z X, Song X Y, Lesher C M, Keays R R. Magmatic Ni—Cu—(PGE) sulfide deposits in China In: Cabri LJ (ed) The geology, geochemistry, mineralogy, mineral beneficiation of the platinum—group elements. Canadian Institute of Mining, Metallurgy and Petroleum, 2002c, 54(Special):619-636.
    170. Zhou M F, Robinson P T, Lesher C M, Keays R R, Zhang C J, Malpas J.Geochemistry, petrogenesis, and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V-oxide deposits, Sichuan Province, SW China. J Petrol, 2005, 46:2253-2280.
    171. Zhou M F, Zhao J H, Qi L, Su WC, Hu R Z. Zircon U—Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China. Contrib Mineral Petrol,2006,151:1—19.
    172. Zhu B Q, Chang X Y, Qiu H N, Sun D Z. Characteristics of Proterozoic basements on the geochemical steep zones in the continent of China and their implications for setting of super large deposits. Science in China (D), 1998, 41(Supp.):54—64.
    173. Zhu Bingquan, Hu Yaoguo, Zhang Zhengwei et al. Discovery of the copper deposits with features of the Keweenaw type in the border area of Yunnan and Guizhou Province. Science in china(D),2003,46(sup.):60—72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700