用户名: 密码: 验证码:
静电纺丝制备PSF/MWNTs-Epoxy杂化纳米纤维同步增强增韧CFRP实现机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CFRP复合材料在航天航空领域的广泛应用要求其具有良好的强度及韧性,然而热塑性塑料粒子或胶膜的层间增韧方式难以实现其强度及韧性的同步提高。本文通过将MWNTs的官能化改性制备了MWNTs-Epoxy,以CFRP预浸料贴附的高速转动辊筒作为静电纺丝接收装置,制备了MWNTs-Epoxy高度取向的PSF/MWNTs-Epoxy杂化纳米纤维膜,作为层间夹层用于同步增强增韧CFRP复合材料。本文考察了MWNTs的纯化和官能化改性效果,研究了不同MWNTs-Epoxy含量对PSF/MWNTs-Epoxy杂化纳米纤维膜微观形貌的影响,并讨论了杂化纳米纤维膜对复合材料力学性能影响以及同步增强增韧机理。
     1、利用纯化、混酸化、环氧化等手段制备MWNTs-Epoxy。纯化过程除去了MWNTs表面的无定形碳、金属杂质及碳纳米颗粒。官能化MWNTs-Epoxy的环氧基团接枝率为24.87%。MWNTs-Epoxy在静电纺丝液中分散良好,静电纺丝液的表面张力以及电导率随MWNTs-Epoxy含量的增加而提高。
     2、随着MWNTs-Epoxy含量的升高,PSF/MWNTs-Epoxy杂化纳米纤维的直径逐渐减少,PSF/MWNTs-Epoxy杂化纳米纤维以及嵌于其内部的MWNTs-Epoxy的取向度逐渐提高。MWNTs-Epoxy良好的分散于PSF/MWNTs-Epoxy杂化纳米纤维轴向位置。
     3、与无规取向PSF/MWNTs-Epoxy杂化纳米纤维相比,具有高度取向的MWNTs-Epoxy的PSF/MWNTs-Epoxy杂化纳米纤维对CFRP复合材料同步增强增韧效果更加明显。与未增强增韧的CFRP复合材料相比,CFRP复合材料的弯曲强度、弯曲模量、层间剪切强度和Ⅱ型层间断裂韧性分别增加了120.71%,150.70%,7.20%以及214.28%。MWNTs-Epoxy与CFRP树脂基体具有良好的化学界面结合,可以有效地传递内部应力载荷。扫描电镜(SEM)观察显示,MWNTs-Epoxy在裂纹扩展中的自身弯曲形变、从基体脱落、对裂纹的钉锚以及PSF微球冷拉变形过程对能量的传递和吸收,导致基体内部裂纹发生有效偏转或终止,这四相之间良好相互作用是PSF/MWNTs-Epoxy杂化纳米纤维同步增强增韧CFRP复合材料的主要原理。
The extensive application of CFRP composites in aviation requiresfor more excellent strength and toughness, especially outstandinginterlaminar fracture toughness. The recent modification of CFRP washard to toughen and reinforce CFRP composite simultaneously whileimproving its heat resistance. In this work, the MWNTs werefunctionalized with epoxy-based groups, and alignedpolysulfone(PSF)/MWNTs-Epoxy hybrid nanofibers with highly orientedMWNTs-Epoxy were electrospun by commercial prepreg attached on arotating drum collector. Then PSF/MWNTs-Epoxy hybrids nanofiberswith different MWNTs-Epoxy loading were used to toughen andreinforce CFRP composite simultaneously.
     1. MWNTs-Epoxy was prepared via purification, acidification andepoxidation. Purification removed the amorphous carbon, metalimpurities and carbon nanoparticles from the surface of MWNTs. Thegrafting percent of epoxide group was about24.87%. The dispersion ofMWNTs-Epoxy in organic solvents was excellent while the surface tension and electric conductivity was improved with increasingMWNTs-Epoxy loading.
     2. Aligned PSF/MWNTs-Epoxy hybrid nanofibers with highlyoriented MWNTs-Epoxy were electrospun by commercial prepregattached on a rotating drum collector. The orientation of the hybridnanofibers was perpendicular to carbon fibers in prepreg. Results showedthat the orientation of hybrid nanofibers were improved with increasingMWNTs-Epoxy contents. TEM revealed that an increase in the amount ofMWNTs-Epoxy led to an increase of dispersion homogeneity andorientation degree of MWNTs-Epoxy in hybrid nanofibers.
     3. CFRP composites were fabricated with the PSF/MWNTs-Epoxyhybrid nanofibers&prepreg by mould pressing. SEM indicated that thereformed a network structure between PSF/MWNTs-Epoxy/Carbonfibers/Epoxy in the interlayer of CFRP composites. The interactionbetween the four phase is primary mechanism of PSF/MWNTs-Epoxyhybrids nanofibers toughened and reinforced CFRP compositesimultaneously. Compared to those CFRP composites toughened andreinforced by PSF/MWNTs-Epoxy hybrid nanofibers with randomorientation, the mechanical and thermal properties of CFRP compositeswith aligned PSF/MWNTs-Epoxy hybrid nanofibers were more excellent.The tensile strength, tensile modulus, interlaminar shear strength and GIICexhibited increase of120.71%,150.70%,7.20%,214.28%, respectively.
引文
[1] Daniel C, Davis. Improvements in mechanical properties of a carbon fiber epoxycomposite using nanotube science and technology[J]. Composite Structures,92(2010):2653-2662
    [2]曾莉等.环氧树脂的改性研究进展[J].广州化工,2011,39(22):20-22
    [3] Burto. B. L. The thermo oxidative stability of cured epoxy resin[J]. J Appl Polym Sci,1993,47(10):1821
    [4]胡少坤.环氧树脂增韧改性方法研究进展[J].粘接,2008,29(6):34-51
    [5] Verhere D, Pascault J P, Santereau H, et al. Ruber-modified epoxies Ⅳ. Influence ofmorphobyg on mechanical properties [J]. J Appl Polym Sci,1991,42:293-304
    [6] Bascom W D, Hunston D L. Fractures of elastomer-modified epoxy polymers: a review[J],In: Advances in Chemistry Series No222. Washington, DC:American Chemical Society,1989
    [7] Kwon O, Ward T C. Morphology development of rubber-modified epoxy thermosets[J].In: Proc.19th Annual Meeting of the Adhesion Society[C]. South Carolina,1996:161-165
    [8] Hunston D L, He J, Raghavan D, et al. Limits on toughening of epoxies[A]. Proceedingsof adhesion society meeting[C].1998,200-212
    [9] Zeng M F, Sun X D, Xiao H Q, et al. Investigation of free volume and the interfacial,andtoughening behavior for epoxy resin/rubber composites by positron annihilation[J].Radiation Physics and Chemistry,2008,77(3):245-251
    [10] Bucknall C B. Fracture and failure of multiphase polymers and polymer composites[J].Advances in Polymer Science,1978,27:121-148Kinloch A J, Shaw S J, Tod D A, et al.Deformation and fracture behaviour of a rubber-toughened epoxy(I): Microstructure andfracture studies[J]. Polymer,1983,24(10):1341-1354
    [11] Bucknall C B. Fracture and failure of multiphase polymers and polymer composites[J].Advances in Polymer Science,1978,27:121-148
    [12] Kinloch A J, Shaw S J, Tod D A, et al. Deformation and fracture behaviour of arubber-toughened epoxy(I): Microstructure and fracture studies[J]. Polymer,1983,24(10):1341-1354
    [13] Zhang J. Study on thermoplastic-modified multifunctional epoxies: Influence of heating[J].Composites Science and Technology,69(2009):1172–1179
    [14]梁伟荣,王惠民,郑志才.聚醚砜增韧环氧树脂的结构与性能[J].热固性树脂,1997,4:11-15
    [15]董金虎.增韧剂对环氧树脂玻璃钢性能影响的研究[J].塑料工业,2011,39(11):37-40
    [16] Jo W H, Ko M B. Effect of reactivity on cure and phase separation behaviour in epoxyresin modified with thermoplastic polymer: a Monte Carlo simulation approach[J].Macromolecules1994,27(26):7815-24
    [17] Li P, Cui J, Li S. Studies on the phase separation of a polyetherimide modified epoxyresin,4-kinetic effect on the phase separation mechanism of a blend at different curerates[J]. Macromol Chem Phys,2000,201:699-704
    [18] Girard R E, Vicard V, Pascault J P, et al. Polyetherimide-modified epoxy networks:influence of cure conditions on morphology and mechanical properties[J]. J Appl PolymSci,1997,65:2433-45
    [19]孙以实.环氧树脂水基化改性及其固化[J].热固性树脂,1990,3:1-5
    [20] Ahmad F N, Jaafar M, Palaniandy S, et al. Effect of particle shape of silica mineral on theproperties of epoxy composites.Composites Science and Technology68(2008)346-353
    [21] Balakrishnan S, Start P R, Raghavan D. The influence of clay and elastomer concentrationon the morphology and fracture energy of preformed acrylic rubber dispersed clay filledepoxy nanocomposites[J]. Polymer,2005,46:11255-11262
    [22] Hamad A. Al-Turaif. Effect of nano TiO2particle size on mechanical properties of curedepoxy resin[J]. Progress in Organic Coatings,2010,69:241-246
    [23] S. Zhao, L. Schadler, R. Duncan, H. Hillborg, T. Auletta, Composites Science andTechnology68(2008)2965
    [24] Ritchie, R O, Gilbert, C J, McNaney, J M, Mechanics and mechanisms of fatigue damageand crack growth in advanced materials[J]. Int. J. Solids Struct,2000,73:311-329S.
    [25] Xu H H K, Wei L, Padture N P, et al. Effect of microstructural coarsening on short-cracktoughness properties of silicon nitride[J]. Mater Sci,1995,30:869-878
    [26] Becher P F, Hsueh C H, Alexander K B,et al. Influence of reinforcement content anddiameter on the R-curve response in SiC-whisker-reinforced alumina[J]. J Am Ceram Soc1996,79:298-304
    [27].Foulk I, Cannon J W, Johnson R M, et al. A micromechanical basis for partitioning theevolution of grain bridging in brittle materials[J]. J Mech Phys Solids,2007,55:719-743
    [28]李宏静等两亲性嵌段共聚物增韧环氧树脂[J],高分子材料科学与工程,27(11):61-64
    [29] Jun yeob lee,Jyongsik jang. The effect of mesogenic length on the curing behavior andproperties of liquid crystalline epoxy resins[J]. Polymer,2006(47):30363042
    [30] Shunichi Osada,Shinichi Yano,M.Kurokawa. New types of liquid crystalline epoxy resinscured by a mesogenic hardening compound[J]. Polymer,1996,37(10):1925-1932
    [31]班建峰等.一种液晶聚氨酯的合成及应用[J].高分子材料科学与工程Vol.27(11):9-12
    [32]刘野等,环氧树脂增韧改性技术研究进展和新方法及其机理[J].化学与粘合,2007,129(3):197-201
    [33] Baughman R H, Zakhidov A A, WA D H. Carbon nanotubes-the route towardapplications[J]. Science,2002,297(5582):787-92
    [34] Cao J, Wang Q, Rolandi M, et al. Aharonov-Bohm interference and beating insingle-walled carbon-nanotube interferometers[J]. Phys Rev Lett,2004,93(21):1-4
    [35] Kilbride B E, Coleman J N, Fraysse J, et al. Experimental observation of scaling laws foralternating current and direct current conductivity in polymer-carbon nanotube compositethin flms[J]. J Appl Phys2002,92:4024-4030
    [36] Biercuk M J, Llaguno M C, Radosavljevic M, et al. Carbon nanotube composites forthermal management [J]. Appl Phys Lett,2002,80(15):2767-2769
    [37] Callister W D. The effect of hydroxyl-terminated polybutadiene-gr. Materials science andengineering an introduction.New York: Wiley:2003
    [38] Tibbetts G G, Beetz C P. Mechanical-properties of vapor-grown carbon-fbers[J]. J PhysD-Appl Phys,1987,20(3):292-7
    [39] Yu M, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbonnanotubes under tensile load[J]. Science,2000,287:637-40
    [40] Iijima S, Ichihashi T. Single-shell carbon nanotubes of1-nm diameter[J]. Nature,1993,363(6430):603-5
    [41] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58
    [42] Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universalgraphitic potential[J]. Phys Rev B,2000,62:13104-13110
    [43] Strano M, Moore V C, Miller M K, et al. The role of surfactant adsorption duringultrasonication in the dispersion of single-walled carbon nanotubes[J]. J NanosciNanotechnol,2003,3:81-86
    [44] Moniruzzaman M, Winey K I. Polymer nanocomposites containing carbon nanotubes[J].Macromolecules,2006,39:5194-51205
    [45] Birkin P R, Offn D G, Joseph P F, et al. Cavitation, shock waves and the invasive natureof sonoelectrochemistry[J]. J Phys Chem B,2005,109:16997-167005
    [46] Huang Y Y, Ahir S V, Terentjev E M. Dispersion rheology of carbon nanotubes in apolymer matrix[J]. Phys Rev B,2006,73:125422
    [47] Yang M, Koutsos V, Zaiser M. Interactions between polymers and carbon nanotubes: amolecular dynamics study[J]. J Phys Chem B,2005,109(20):10009-14
    [48] Meysam R, Pascal H. Carbon nanotube–polymer interactions in nanocomposites: Areview[J]. Composites Science and Technology,2011,72:72-84
    [49] Tallury S S, Pasquinelli M A. Molecular dynamics simulations of flexible polymer chainswrapping single-walled carbon nanotubes[J]. J Phys Chem B,2010,114(12):4122
    [50] McCarthy B, Coleman J N, Czerw R, et al. A microscopic and spectroscopic study ofinterac-tions between carbon nanotubes and a conjugated polymer[J]. J Phys Chem B,2002,106(9):2210-2216
    [51] Barber A H, Cohen S R, Wagner H D. Measurement of carbon nanotube-polymerinterfacial strength[J]. Appl Phys Lett,2003,82(23):4140-4142
    [52] Ding W, Eitan A, Fisher FT, et al. Direct observation of polymer sheathing in carbonnanotube-polycarbonate composites[J]. Nano Letters,2003,3(11):1593-1597
    [53] Buffa F, et al. Effect of nanotube functionalization on the properties of single walledcarbon nanotube/polyurethane composites[J]. J Polym Sci Part B: Polym Phys,2007,45(4):490-495
    [54] Peng-Cheng M, Naveed A, Siddiqui, et al. Dispersion and functionalization of carbonnanotubes for polymer-based nanocomposites: A review[J]. Composites: Part A,2010,41:1345-1367
    [55] Koval’C A A, et al. Effect of carbon nanotube functionalization on the structural andmechanical properties of polypropylene/MWCNT composites[J].Macromolec ules,2008,41(20):7536
    [56] Chang C M, Liu Y L. Functionalization of multi-walled carbon nanotubes withnon-reactive polymers through an ozone-mediated process preparation of a wide range ofhigh performance polymer/carbon nanotube composites[J]. Carbon,2010,48(4):1289
    [57] Shaer M S P, Windle A H. Fabrication and characterization of carbon nanotube/poly(vinylalcohol) composites[J]. Adv Mater,1999,11(11):937-941
    [58] Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms incarbon nanotube-polystyrene compos-ites[J]. Appl Phys Lett,2000,76(20):2868-2870
    [59] Ajayan P M, Stephan O, Colliex C, et al. Aligned carbon nanotube arrays formed bycutting a polymer resin-nanotube composite[J]. Science,1994,265(5176):1212-1214
    [60] Xu X, Thwe M M, Shearwood C, et al. Mechanical properties and interfacialcharacteristics of carbon-nanotube–reinforced epoxy thin ilms[J]. Appl Phys Lett,2002,81(15):2833-2835
    [61] Allaoui A, Bai S, Cheng H M, et al. Mechanical and electrical properties of aMWNT/epoxy composite[J]. Compos Sci Technol,2002,62(15):1993-1998
    [62] Breton Y, Desarmot G, Salvetat J P, et al. Mechanical properties of multiwall carbonnanotubes/epoxy composites: influence of network morphology[J]. Carbon,2004,42(5-6):1027-30
    [63] Naveed A, Siddiqui, Shafi U K, et al. Manufacturing and characterization of carbonfibre/epoxy composite prepregs containing carbon nanotubes[J]. Composites: Part A,2011,42:1412-1420
    [64] Barcia F, Soares B G, Gorelova M, et al. The Effect of Hydroxyl-TerminatedPolybutadiene-Gragted Carbon Fiber on the Impact Performace of Carbon Fiber-EpoxyResin Composites. J Appl Polym Sci1999,74:1424-1431
    [65] George R, et al. Strengthening in carbon nanotubes/aluminium (CNT/Al) composites [J].Scripta Mater,2005,53:1159-1163
    [66] Amal M K, Esawi, Mahmoud M. Farag Carbon nanotube reinforced composites: Potentialand current challenges[J]. Materials and Design,2007,28:2394-2401
    [67] Behnam A, et al. Enhancement of mechanical performance of epoxy/carbon fiber laminatecomposites using single-walled carbon nanotubes[J]. Composites Science and Technology,2011,71:1569-1578
    [68] Allaoui A, Bai S, Cheng H M, et al. Mechanical and electrical properties of aMWNT/epoxy composite[J]. Compos Sci Technol,2002,62(15):1993-1998
    [69] Enrique J, Garcia, Brian L, et al. Joining prepreg composite interfaces with aligned carbonnanotubes[J]. Composites: Part A,2008,39:1065-1070
    [70] A. Formhals, Apparatus for Producing Artific ial Filaments from Material such AsCellulose Acetate, US1975504,1934
    [71] Kim J-S, Reneker D. H, Mechanical properties of composites using ultrafine electrospunfibers. Polymer Composites,1999,20(1):124-131.
    [72] Zhang J. Electrospun nanofibre toughened carbon/epoxy composites: Effects ofpolyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness[J].Composites Science and Technology,2010,70:1660-1666
    [73]马彦龙.静电纺丝制备MWNTs/PVA/PEO复合超细纤维[J].合成纤维工业,2010,33(4):24-27
    [74] Ye H, Lam H, Titchenal N, et al. Reinforcement and rupture behavior of carbonnanotubes–polymer nanofibers[J]. Appl Phys Lett,2004,85:1775-1777
    [75] Li G, Li P, Yu Y H, et al. Novel carbon fiber/epoxy composite toughened by elect rospunpolysulfone nanofibers [J]. Materials Letter,2008,62(3):5112514
    [76]袁剑民.多壁碳纳米管表面修饰及热塑性聚合物基复合材料的研究[D].长沙:湖南大学,2009
    [77] Ami Eitan. Kuiyang Jiang. Surface Modification of Multiwalled Carbon Nanotubes:Toward the Tailoring of the Interface in Polymer Composites [J]. Chem. Mater,2003,15:3198-3201
    [78]高云等.拉曼光谱在碳纳米管聚合物复合材料中的应用[J].2010,55(22):2165-2176
    [79] Ji J Y, Sui G, Yang X P. Significant Improvement of Mechanical Properties Observed inHighly Aligned Carbon-Nanotube-Reinforced Nanofibers[J]. J Phys Chem C,2009,113(12):4779-4785
    [80] Li Gang, Li Peng, Zhang Chen,et al. Inhomogeneous toughening of carbon fiber/epoxycomposite using elect rospun polysulfone nanofibrous membranes by in situ phaseseparation [J]. Composites Science and Technology,2008(68):987-994
    [81]王强,刘玲.MWCNTs对碳纤维非褶皱无纺布/环氧层合板力学性能的影响[J/OL].复合材料学报,,():[2012/02/29]. http://www.cnki.net/kcms/detail/11.1801.tb.20120229.0920.004.html
    [82] A. Godara et al. Influence of carbon nanotube reinforcement on the processingand the mechanical behaviour of carbon fiber/epoxy composites CARBON.2009(47):2914-2923
    [83]王秉晖,李刚,刘海洋,等.聚砜纳米纤维膜增韧环氧树脂的反应诱导相分离过程研究[J]..材料工程,2008,增刊(1):270-274
    [84] Ashrafi B, et al. Enhancement of mechanical performance of epoxy/carbon fiber laminatecomposites using single-walled carbon nanotubes[J]. Composites Science and Technology,2011,71:1569-1578

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700