用户名: 密码: 验证码:
几种钙钛矿关联氧化物异质结构的制备和磁、电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以锰氧化物为代表的钙钛矿关联氧化物,由于其电子、自旋、轨道和晶格之间存在强烈的关联作用,展现出高温超导、庞磁电阻和多铁性等独特的性质。其中金属-绝缘体转变、电荷/自旋/轨道有序、相分离等物理现象具有丰富的物理内涵,一直是材料科学和凝聚态物理研究的热点之一。近年来,钙钛矿关联氧化物的异质结构引起了学术界的广泛关注。一方面,利用人工设计的异质界面对量子态进行调控,不仅可以实现材料电、磁、光等功能特性的集成,还可以衍生出不同于组分单元的新奇特性。另一方面,通过衬底与薄膜的晶格失配带来的外延应变有效的调控钙钛矿异质结构的电、磁特性。基于此,本文的工作主要集中在对几种钙钛矿锰氧化物异质结构的电、磁特性研究。本文的主要研究内容如下:
     1.利用配备有反射式高能电子衍射仪(RHEED)的激光脉冲沉积技术(PLD)在SrTiO3(001)单晶衬底上制备了一系列[(LaMnO3)n(SrMnO3)n]m (n=1,2,3,4,8和12)超晶格。X射线衍射(XRD)和原子力显微镜(AFM)测量表明超晶格具备尖锐的界面和光滑的表面。在长周期超晶格(n≥3)中,我们发现超晶格的磁性和输运性质强烈依赖于超晶格的周期。在LaMn(/SrMnO3界面,我们观察到由于Mn3+-O-Mn4+双交换作用而产生的界面铁磁性。长周期超晶格可以看作由反铁磁的组分单元LaMnO3层、SrMnO3层和铁磁界面层组成。基于铁磁和反铁磁相互竞争,我们很好的解释了超晶格中可能存在的自旋玻璃现象、增强的磁电阻效应和随着周期数改变而改变的输运机制。而在短周期超晶格(n=1和2)中,超晶格展现出类似电荷有序绝缘体的输运特性,其磁性也明显下降。我们将短周期超晶格中出现的磁、电特性归因于可能存在的电荷有序现象。
     2.采用PLD在SrTiO3(001)和LaAlO3(001)单晶衬底上制备了不同厚度的Pr0.65LA0.05Ca0.3MnO3(PLCMO)外延薄膜。用XRD研究了PLCMO薄膜的晶体结构和应变状态,结果表明薄膜的外延应变随着厚度的增加而减少。我们发现,无论是张应变还是压应变,当应变很大时,PLCMO中的电荷有序绝缘态更加稳定。随着厚度的增加,应变减小,PLCMO的电荷有序温度逐渐下降、电荷有序态失稳,伴随着居里温度和饱和磁矩增加。PLCMO薄膜中电、磁特性随膜厚的变化可以用外延应变引起的晶格畸变来解释。
     3.利用PLD在SrTiO3(001)单晶衬底上制备了一系列[(La0.7Ca0.3MnO3)n(Pro.7Cao.3MnO3)n]m(n=1,2,3,4和8)超晶格和Pr0.7Ca0.3MnO3、 La0.7Ca0.3MnO单层膜。RHEED强度振荡曲线和XRD谱表明了外延薄膜的层状生长模式和周期调制结构。超晶格的输运性质和磁性依赖于超晶格的周期。在短周期超晶格中,我们观察到增强的磁电阻效应、增强的饱和磁化强度。这一现象可以用周期较短时形成的“人工相分离”结构中界面处的Pr0.7Ca0.3MnO电荷有序失稳引起的铁磁自旋排列来解释。基于相均匀性和自旋耦合效应,我们解释了La0.7Ca0.3MnO和Pr0.7Ca0.3MnO的各向异性磁电阻效应随温度的变化。此外,我们发现超晶格的各向异性磁电阻效应依赖于超晶格周期,这可能和超晶格中不对称的多畴结构或MnO6八面体Jahn-Teller畸变有关。
Correlated perovskite oxides, represented by manganites, displays unique properties such as high-temperature superconductivity, colossal magnetoresistivity and multiferroicity, due to strong correlations between spin, charge, orbital and lattice degrees of freedom. Phenomena such as metal-insulator transition, charge/spin/orbital ordering and phase separation have long been hot topics in the field of materials science and condensed matter physics. In recent years, heterostructures composed of different correlated perovskites have attracted much attention. On the one hand, the heterostrcutures provide opportunities to manipulate the competition of various quantum states via artificially designed interfaces, to generate novel functionalities that cannot be found the respective component units. On the other hand, epitaxial strain resulting from the mismatch between the substrate and film lattice offers an additional chance to effectively modulate the magnetic and electrical characteristics of the heterostructures. In this thesis, we discuss deposition of several correlated perovskite heterostructures and their electric and magnetic properties. Major achievements of this thesis include:
     1. A series of [(LaMnO3)n(SrMnO3)n]m (n=1,2,3,4,8and12) superlattices have been deposited on SrTiO3(001) single crystal substrates by pulsed laser depositon, monitored in situ by reflective high-energy electron diffraction. X-ray diffraction and atomic force microscopy studies reveal the sharp interfaces and smooth surface in the superlattices. In long-period superlattices (n≥3), magnetic and transport characteristics are observed to depend strongly on the period of the superlattice. We observs an interfacial ferromagnetism due to Mn3+-O-Mn4+double exchange across the LaMnO3/SrMnO3interface. The long-period superlattices can be regarded as a combination of antiferromagnetic LaMnO3/SrMnO3layers and ferromagnetic interface layers. The spin-glass-like behaviors, the large magnetoresistance and the evolution of the transport mechanism with increasing period in the superlattices are discussed in terms of the competition between the ferromagnetic and antiferromagnetic interactions. However, the short-period superlattices (n=1and2) exhibits reduced magnetization and their transport characteritics are similar to that of an charge ordered insultor. We ascribe this unusual magnetic and electrical properties to the possible charge ordering.
     2. Pr0.65La0.05Ca0.3MnO3(PLCMO) thin films with various thickness have been epitaxially deposited on SrTiO3(001) and LaAlO3(001) single crystal substrates by pulsed laser depositon. Epitaxial strain in films relaxes with increasing film thickness, as evidenced from x-ray diffraction. It is observed that the charge ordered insulating phase is stabilized in strained PLCMO films, no matter it is compressive or tensile. The charge ordering temperature decreases with the decrease of residual strain in PLCMO films. The curie temperature and the saturated magnetic moment in films increase as the strain relaxes with increasing film thickness. The evolutions of the transport and magnetic properties with the change of the film thickness can be understood in terms of the lattice distortion induced by epitaxial strain.
     3. A series of [(La0.7Ca0.3MnO3)n/(Pro.7Cao.3MnO3)n]m (n=1,2,3,4and8) superlattices, Pr0.7Ca0.3MnO3and La0.7Ca0.3MnO3thin films has been deposited on SrTiO3(001) single crystal substrates by pulsed laser depositon. The RHEED intensity oscillation and X-ray diffraction confims the layer-by-layer growth and periodically modulated heterostructures. The transport and magnetic characteristics are observed to depend strongly on the period of the superlattice. It is observed that the magnetoresistivity and saturated magnetization are enhanced in short-period superlattices. This can be ascribed to the artificial phase separation structure in the short-period superlattices, where charge ordered insulating state in Pr0.7Ca0.3MnO3 interface is made unstable by the ferromagnetic La0.7Ca0.3MnO3layer. The evolution of angular dependent magnetoresistance (AMR) effect as a function of temperature in La0.7Ca0.3MnO3and Pr0.7Ca0.3MnO3thin films are explained based on phase homogeneity and spin coupling effects. It is observed that the AMR effect in superlattices also depends on the superlattice period, which may be related to the unsymmetrical multidomain structure or the Jahn-Teller distortion in MnO6octahedron.
引文
[1]Y. Tokura and Y. Tomioka. Colossal magnetoresistive manganites [J]. Journal of Magnetism and Magnetic Materials,1999,200(1):1-23.
    [2]Y. Maeno, H. Hashimoto, K. Yoshida, et al. Superconductivity in a layered perovskite without copper [J]. Nature,1994,372:532-534.
    [3]J. Wang, J. Neaton, H. Zheng, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures [J]. Science,2003,299(5613):1719-1722.
    [4]J. B. Goodenough. Theory of the role of covalence in the Perovskite-Type manganites [La, M(Ⅱ)] MnO3 [J]. Physical Review,1955,100(2):564-573.
    [5]J. Volger. Further experimental investigations on some ferromagnetic oxidic compounds of manganese with perovskite structure [J]. Physica,1954,20(1):49-66.
    [6]C. Zener and R. R. Heikes. Exchange interactions [J]. Reviews of Modern Physics, 1953,25(1):191-198.
    [7]P. Beaud, S. L. Johnson, E. Vorobeva, et al. Ultrafast structural phase transition driven by photo induced melting of charge and orbital order [J]. Physical Review Letters,2009,103(15):155702.
    [8]A. O. Sboychakov, K. I. Kugel, A. L. Rakhmanov, et al. Relationship between orbital structure and lattice distortions in Jahn-Teller systems [J]. Physical Review B, 2011,83(20):205123.
    [9]T. Z. Ward, J. D. Budai, Z. Gai, et al. Elastically driven anisotropic percolation in electronic phase-separated Manganites [J]. Nature Physics,2009,5:885-888.
    [10]N. S. Bingham, P. Lampen, M. H. Pham, et al. Impact of nanostructuring on the magnetic and magnetocaloric properties of microscale phase-separated manganites [J]. Physical Review B,2012,86(6):064420.
    [11]P. Orgiani, A. Y. Petrov, R. Ciancio, et al. Evidence of direct correlation between out-of-plane lattice parameter and metal-insulator transition temperature in oxygen-depleted manganite thin films [J]. Applied Physical Letters,2012,100(4): 042404
    [12]J. Mannhart and D. G. Schlom. Oxide interfaces-an opportunity for electronics [J]. Science,2010,327(5973):1607-1611.
    [13]钱逸泰。结晶化学导论[M]。中国科学技术大学出版社,2005。
    [14]H. L. Yakel. On the structures of some compounds of the perovskite type [J]. Acta Crystallographica,1955,8(7):394-398.
    [15]V. M. Goldschmidt. The laws of crystal chemistry [J]. Naturwissenschaften, 1926,14(21):477-485.
    [16]J. P. Zhou, J. T. Mcdevitt, J. S. Zhou, et al. Effect of tolerance factor and local distortion on magnetic properties of the perovskite manganite [J]. Applied Physical Letters,1999,75(8):1146.
    [17]J. B. Goodenough. Electronic structure of CMR manganite [J]. Journal of Applied Physics,1997,81(8):5330.
    [18]J. R. Sun, G. H. Rao and J. K. Liang. Crystal structure and electronic transport property of perovskite manganese oxides with a fixed tolerance factor [J]. Applied Physical Letters,1997,70(14):1900.
    [19]S. Sagar and M. R. Aaantharaman. On conduction mechanism in paramagnetic phase of Gd based manganite [J]. Bulletin of Materials Science,2012,35(1):41-45.
    [20]H. Y. Hwang, S. W. Cheong and P. G. Radaelli. Lattice Effects on the Magnetoresistance in Doped LaMnO3 [J]. Physical Review Letters,1995,75(5): 914-917.
    [21]S. Satpathy, Z. S. Popovic and F. R. Vukajlovic. Density-functional studies of the electronic structure of the perovskite oxides:La1-xCaxMnO3 [J]. Journal of Applied Physics,1996,79(8):4555-4557.
    [22]沃纳,格朗,吕长志等。半导体器件电子学[M]。电子工业出版社,2005。
    [23]焦正宽,曹光旱。磁电子学[M]。浙江大学出版社,2005。
    [24]K. Kubo and O. Nagao. A Quantum Theory of Double Exchange [J]. Journal of the Physical Society of Japan,1972,33(10):21.
    [25]A. Urushibara, Y. Moritomo, T. Arima, et al. Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3 [J]. Physical Review B,1995,51(20): 14103-14109.
    [26]G. Snyder, R. Hiskes, D. Dicarolis, et al. Intrinsic electrical transport and magnetic properties of Lao.67Ca0.33MnO3 and Lao.67Sro.33Mn03 MOCVD thin films and bulk material [J]. Physical Review B,1996,53(21):14434-14444.
    [27]A. S. Alexandrov and A. M. Bratkovsky. Carrier Density Collapse and Colossal Magnetoresistance in Doped Manganites [J]. Physical Review Letters,1995,82(1): 141-144.
    [28]G. Zhao, V. Smolvaninova, W. Prellier, et al. Electrical Transport in the Ferromagnetic State of Manganites:Small-Polaron Metallic Conduction at Low Temperatures [J]. Physical Review Letters,2000,84(26):6086-6089.
    [29]T. M. Dao, P. S. Mondal, Y. Takamura, et al. Metal-insulator transition in low dimensional La0.75Sr0.25VO3 thin films [J]. Applied Physical Letters,2011,99(11): 112111.
    [30]K. Kadowaki and S. B. Woods. Universal relationship of the resistivity and specific heat in heavy-Fermion compounds [J]. Solid State Communications,1986, 58(8):507-509.
    [31]T. Akimoto, Y. Moritomo, A. Nakamura, et al. Observation of Anomalous Single-Ma Observation of Anomalous Single-Magnon Scattering in Half-Metallic Ferromagnets by Chemical Pressure Control [J]. Physical Review Letters,2000, 85(18):3914-3917.
    [32]Y. Sun, X. Xu, Y. Zhang, et al. Variable-range hopping of small polarons in mixed-valence manganites [J]. Journal of Physics:Condensed Matter,2000,12(50): 10475.
    [33]S. J. May, C. R. Smith, J. W. Kim, et al. Control of octahedral rotations in (LaNiO3)n/(SrMnO3)m superlattices [J]. Physical Review B,2011,83(15):153411.
    [34]M. Viret, L. Ranno, J. M. D. Coey, et al. Colossal magnetoresistance of the variable range hopping regime in the manganites [J]. Journal of Applied Physics,1997, 81(8):4964-4966.
    [35]D. Emin. Vibrational Dispersion and Small-Polaron Motion:Enhanced Diffusion [J]. Physical Review B,1971,3:1321-1337.
    [36]M. Staruch, L. Stan, J. H. Lee, et al. Magnetotransport properties of Pr0.5Ca0.5MnO3 thin films grown by a solution route[J]. Journal of Applied Physics, 2011,110(1):013921.
    [37]Y. Kumar, R. J. Choudhary, R. Kumar, et al. Strain controlled systematic variation of metal-insulator transition in epitaxial NdNiO3 thin films [J]. Journal of Applied Physics,2012,112(7):073718.
    [38]M. L. Medarde. Structural, magnetic and electronic properties of RNiO3 perovskites (R=rare earth) [J]. Journal of Physics:Condensed Matter,1997,9: 1679-1707.
    [39]J. L. Garcia-Munoz, M. A. G. Aranda, A. Alonso, et al. Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO3[J]. Physical Review B,2009,79(13):134432.
    [40]I. V. Nikulin, M. A. Novojilov, A. R. Kaul, et al. Oxygen nonstoichiometry of NdNiO3-δ and SmNiO3-δ [J]. Materials Research Bulletin,2004,39(6):775-791.
    [41]C. Girardot, J. Kreisel, S. Pignard, et al. Raman scattering investigation across the magnetic and metal-insulator transition in rare earth nickelate RNiO3 (R=Sm, Nd) thin films[J]. Physical Review B,2008,78(10):104101.
    [42]G. Catalan. Progress in perovskite nickelate research [J]. Phase Transitions,2008, 81(7):729.
    [43]J. A. Alonso, M. J. Martinezlope, M. T, et al. Metal-Insulator transitions, structural and microstructural evolution of RNiO3 (R= Sm, Eu, Gd, Dy, Ho, Y) perovskites:Evidence for room-temperature charge disproportionation in monoclinic HoNiO3 and YNiO3 [J]. Journal of the American Chemical Society,1999,121(20): 4754.4762.
    [44]P. C. Canfield, J. D. Thompson, S.W.Cheong, et al. Extraordinary pressure dependence of the metal-to-insulator transition in the charge-transfer compounds NdNiO3 and PrNiO3[J]. Physical Review B,1993,47:12357-12360.
    [45]J. P. Attfield, A. L. Kharlanov and H. Yamada. Cation effects in doped La2CuO4 superconductors. Nature,1998,394:157-159.
    [46]P. H. Xiang, S. Asanuma, H. Yamada, et al. Room temperature Mott metal-insulator transition and its systematic control inSm1-xCaxNiO3 thin films [J]. Applied Physical Letters,2010,97(3):032114.
    [47]R. Scherwitzl, P. Zubko, I. G. Lezama, et al. Electric-Field Control of the Metal-Insulator Transition in Ultrathin NdNiO3 Films [J]. Advanced Materials,2010, 22:5517-5520.
    [48]Z. Q. Liu, Y. Ming, W. M. Lu, et al. Tailoring the electronic properties of SrRuO3 films in SrRuO3/LaAlO3 superlattices [J]. Applied Physical Letters,2012, 101(22):223105.
    [49]J. F. Ding, O. I. Lebedev, S. Turner, et al. Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders [J]. Physical Review B,2013,87(5):054428.
    [50]L. Ling, L. Zhang, Z. Zhang, et al. Short-range ordering state and cluster-glass behavior in electron-doped manganite Y0.4Ca0.6MnO3 [J]. Solid State Communications,2010,150(37):1802-1806.
    [51]H. Tanaka and T. kawai. Enhancement of magnetoresistance in spin frustrated (La, Sr) MnO3/LaFeO3 artificial lattices [J]. Solid State Communications,1999,112(4): 201-205.
    [52]J. W. Seo, B. T. Phan, J. Stahn, et al. Relaxor characteristics at the interfaces of NdMnO3/SrMnO3/LaMnO3 superlattices [J]. Physical Review B,2010,82(14): 140405(R).
    [53]R. Prasad, M. P. Singh, P. K. Siwach, et al. Effect of thickness on magnetic phase coexistence and electrical transport in Nd0.51Sr0.49MnO3 films [J]. Applied Physics A,2010,99(4):823-829.
    [54]A. G. Lehmann, F. Gongiu, N. Lampis, et al. Magnetic properties of pseudomorphic epitaxial films of Pro.7Cao.3Mn03 under different biaxial tensile stresses [J]. Physical Review B,2010,82(1):014415.
    [55]E. R. Parra, G. O. Hernandez, J. U. Serna, et al. Interface roughness influence on exchange bias effect in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers [J]. Journal of Materials Science,2010,45(24):6763-6768.
    [56]M. Jungbauer, S. Huhn, M. Michelmann, et al. Exchange bias in La0.7Sr0.3MnO3/SrMnO3/ La0.7Sr0.3MnO3 trilayers [J]. Journal of Applied Physics, 2013,113(17):17D709.
    [57]A. C. Ehrlich, R. Huguenin and D. Rivier. Experiments on the magnetoresistivity and Hall Effect in Ni and Ni alloys:The validity of Kohler's rule [J]. Journal of Physics and Chemistry of Solids,1967,28(2):253-260.
    [58]M. N. Baibich, J. M. Broto, A. Fert, et al. Giant Magnetoresistance of (001) Fe/ (001) Cr Magnetic Superlattices [J]. Physical Review Letters,1988,61(21): 2472-2475.
    [59]S. Jin, T. H. Tiefel, M. Mccormack, et al. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-0 Films [J]. Science,1994,264(5157):413-415.
    [60]G. C. Xiong, Q. Li, H. L. Ju, et al. Giant magnetoresistance in epitaxial Nd0.7Sr0.3MnO3-δ thin films [J]. Applied Physical Letters,1995,66(11):1427-1429.
    [61]L. F. Wang, Z. Huang, X. L. Tan, et al. Pseudomorphic strain induced strong anisotropic magnetoresistance over a wide temperature range in epitaxial La0.67Ca0.33MnO3/NdGaO3 (001) films [J]. Applied Physical Letters,2010,97(24): 242507.
    [62]S. Yuasa. T. Nagahama, A. Fukushima, et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions [J]. Nature Materials,2004,3:868-871.
    [63]X. W. Li, Y. Lu, G. Q. Gong, et al. Epitaxial Lao.67Sro.33Mn03 magnetic tunnel junctions [J]. Journal of Applied Physics,1997,81(8):5509-5511.
    [64]S. Murakami and N. Nagaosa. Colossal magnetoresistance in manganites as a multicritical phenomenon [J]. Physical Review Letters,2003,90(19):197201.
    [65]M. Respaud, J. M. Broto, H. Rakoto, et al. H-T magnetic phase diagrams of electron-doped Sm1-xCaxMnO3:Evidence for phase separation and metamagnetic transitions [J]. Physical Review B,2001,63(14):144426.
    [66]W. Prellier, E. Rauwel Buzin, B. Mercey, et al. Strain effects in charge-ordered Pr0.5Ca0.5MnO3 manganite thin films [J]. Journal of Physics and Chemistry of Solids, 2003,64(9-10):1665-1669.
    [67]P. W. Anderson and H. Hasegawa. Considerations on Double Exchange [J]. Physical Review,1955,100(2):675-681.
    [68]P. G. Gennes. Effects of Double Exchange in Magnetic Crystals [J]. Physical Review,1960,118(1):141-154.
    [69]M. Uehara, S. Mori, C. H. Chen, et al. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites [J]. Nature,1999,399: 560-563.
    [70]G. E. W. Bauer, Y. Tserkovnyak, D. H. Hernanda, et al. Universal angular magnetoresistance and spin torque in ferromagnetic/normal metal hybrids [J]. Physical Review B,2003,67(9):094421.
    [71]Y. Q. Zhang, H. Meng, X. W, et al. Angular dependent magnetoresistance with twofold and fourfold symmetries in A-type antiferromagnetic Nd0.45Sr0.55MnO3 thin film [J]. Applied Physical Letters,2010,97(17):172502.
    [72]Y. Z. Chen, J. R. Sun, T. Y. Zhao, et al. Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films [J]. Applied Physical Letters,2009,95(13):132506.
    [73]E. O. Wollan and W. C. Koehler. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x) La, xCa] MnO3 [J]. Physical Review,1955,100(2):545-563.
    [74]J. Kanamori and Y. Kakehashi. Conditions for the existence of ordered structure in binary alloy systems [J]. Le Journal de Physique Colloques,1977,38(C7): 274-279.
    [75]C. D. Cao, G. P. Gorler, D. M. Herlach, et al. Liquid-liquid phase separation in undercooled Co-Cu alloys [J]. Materials Science and Engineering:A,2002,325(1): 503-510.
    [76]A. Moreo, S. Yunoki, E. Dagotto, et al. Phase Separation Scenario for Manganese Oxides and Related Materials [J]. Science,1999,283(5410):2034-2040.
    [77]K. H. Ahn, T. Lookman and A. R. Bishop. Strain-induced metal-insulator phase coexistence in perovskite manganites [J]. Nature,2004,428:401-404.
    [78]G. Macia, A. H. Minguez, G. Abril, et al. Observation of phonon-induced magnetic deflagration in manganites [J]. Physical Review B,2007,76(17):174424.
    [79]L. Zhang, C. Israel, A. Biswas, et al. Direct Observation of Percolation in a Manganite Thin Film [J]. Science,1999,298(5594):805-807.
    [80]J. Kim, N. Haberkon, L. Civale, et al. Direct observation of magnetic phase coexistence and magnetization reversal in a Gd0.67Ca0.33MnO3 thin film [J]. Applied Physical Letters,2012,100(2):022407.
    [81]V. Hardy, A. Wahl and C. Martin. Percolation transitions tuned by temperature, magnetic field, and time in a phase-separated manganite [J]. Physical Review B,2001, 4(16):064402.
    [82]D. Khomskli. Phase separation, percolation and giant isotope effect in manganites [J]. Physica B:Condensed Matter,2000,280(1):325-330.
    [83]M. Mayr, A. Moreo, J. A. Verges, et al. Resistivity of Mixed-Phase Manganites [J]. Physical Review Letters,2001,86(1):135-138.
    [84]P. G. Radealli, D. E. Cox, L. Capogna, et al. Wigner-crystal and bi-stripe models for the magnetic and crystallographic superstructures of La0.333Ca0.667MnO3[J]. Physical Review B,1999,59(22):14440-14450.
    [85]C. Renner, G. Aeppli, B. G. Kim, et al. Atomic-scale images of charge ordering in a mixed-valence manganite [J]. Nature,2002,416:518-521.
    [86]C. H. Chen and S. W. Cheong. Commensurate to Incommensurate Charge Ordering and Its Real-Space Images in La0.5Ca0.5MnO3 [J]. Physical Review Letters, 1996,76(21):4042-4045.
    [87]Z. Q. Yang, R. W. A. Hendrikx, P. J. M. V. Bentum, et al. Disorder-induced melting of the charge order in thin films of Pr0.5Ca0.5MnO3 [J]. Europhysics Letters, 2002,58(6):864.
    [88]Y. Tokura and N. Nagaosa. Orbital Physics in Transition-Metal Oxides [J]. Science,2000,288(5465):462-468.
    [89]. Kiryukhin, D. Casa, J. P. Hill, et al. An X-ray-induced insulator-metal transition in a magnetoresistivity manganite [J]. Nature,1997,386(813):813-815.
    [90]C. N. R. Rao, A. R. Raju, V. Ponnambalam, et al. Electric-field-induced melting of the randomly pinned charge-ordered states of rare-earth manganates and associated effects[J]. Physical Review B,2000,61(1):594-598.
    [91]C. Cui and T. Tyson. Pressure effects on charge, spin, and metal-insulator transitions in the narrow bandwidth manganite Pr1-xCaxMnO3 [J]. Physical Review B, 2004,70(9):094409.
    [92]Y. Q. Zhang, Z. D. Zhang and J. Arts, Charge-order melting and magnetic phase separation in thin films of Pr0.7Ca0.3MnO3 [J]. Physical Review B,2009,79(22): 224422.
    [93]D. Okuyama, M. Nakamura, Y. Wakabayashi, et al. Epitaxial-strain effect on charge/orbital order in Pr0.5Ca0.5MnO3 films [J]. Applied Physical Letters,2009, 95(15):152502.
    [94]J. H. Haeni, P. Irvin, W. Chang, et al. Room-temperature ferroelectricity in strained SrTiO3 [J]. Nature,2004,430:758-761.
    [95]Y. Konishi, Z. Fang, M. Izumi, et al. Orbital-state-mediated phase-control of manganites [J]. Journal of the Physical Society of Japan,1999,68(12):3790-3793.
    [96]Y. Suzuki, H. Y. Hwang, S. W. Cheong, et al. The role of strain in magnetic anisotropy of manganite thin films [J]. Applied Physical Letters,1997,71(10): 140-142.
    [97]A. J. Millis, T. Darling, A. Migliori, et al. Quantifying strain dependence in "colossal" magnetoresistance manganites [J]. Journal of Applied Physics,1998,83(3): 1588-1591.
    [98]T. Kanki, H. Tanaka and T. Kawai. Anomalous strain effect in La0.8Ba0.2MnO3 epitaxial thin film:Role of the orbital degree of freedom in stabilizing ferromagnetism [J]. Physical Review B,2001,64(22):224418.
    [99]C. Adamo, X. Ke, H. Q. Wang, et al. Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films [J]. Applied Physical Letters, 2009,95(11):112504.
    [100]Y. Y Zhao, F. X. Hu, J. Wang, et al. Strain effect caused by substrates on phase separation and transport properties in Pr0.7 (Ca0.8Sr0.2)o.3MnO3 thin films [J]. Journal of Applied Physics,2012,111(7):07D721.
    [101]J. Liu, M. Kareev, B. Gray, et al. Strain-mediated metal-insulator transition in epitaxial ultrathin films of NdNiO3 [J]. Applied Physical Letters,2012,96(23): 233210.
    [102]J. Kanamori. Superexchange interaction and symmetry properties of electron orbitals [J]. Journal of Physics and Chemistry of Solids,1959,10(2):87-98.
    [103]K. Ueda, H. Tabata and T. Kawai. Ferromagnetism in LaFeO3-LaCrO3 Superlattices [J]. Science,1998,280(5366):1064-1066.
    [104]K. Ueda, H. Tabata and T. Kawai. Atomic arrangement and magnetic properties of LaFeO3-LaMnO3 artificial superlattices [J]. Physical Review B,1999,60(18): R12561-R12564.
    [105]M. Nakamura, D. Okuyama, J. S. Lee, et al. Magnetically tunable Metal-Insulator superlattices [J]. Advanced Materials,2010,22(4):500-504.
    [106]A. Bhattacharya, X. Zhai, M. Warusawithana, et al. Signatures of enhanced ordering temperatures in digital superlattices of (LaMnO3) m/(SrMnO3)2m [J]. Applied Physical Letters,2007,90(22):222503.
    [107]H. U. Habermeier and G. Cristiani. YBa2Cu3O7/La2/3Ca1/3MnO3 superlattices showing simultaneously ferromagnetic and superconducting order [J]. Physica Status Solidi (a),2004,201(7):1436-1440.
    [1]Koster. G, Artificially layered oxides by pulsed laser deposition, PhD thesis, University of Twente, The Netherlands (1999).
    [2]A. Inam, M. S. Hegde, X. D. Wu, et al. As deposited high Tc and Jc superconducting thin films made at low temperatures [J]. Applied Physical Letters, 1988,53(10):908-910.
    [3]肖定全,朱建国,朱基亮,申林,《薄膜物理与器件》,国防工业出版社(2010)。
    [4]G. L. Lay and R. Kern. Physical methods used for the characterization of modes of epitaxial growth from vapor phase [J]. Journal of Crystal Growth,1978,44(2): 197-222.
    [5]许小红,武海顺,《压电薄膜的制备、结构与应用》,科学出版社(2001)。
    [6]H. L. Liang, Z. X. Mei, Q. H. Zhang, et al. Interface engineering of high-Mg-content MgZnO/BeO/Si FOR p-n hetorojunction solar-blind ultraviolet photodetectors [J]. Applied Physical Letters,2011,98(22):221902.
    [7]M. Huijben, "Interface engineering for oxide Electronics", PhD thesis, University of Twente, The Netherlands (2006).
    [8]P. Orgiani, R. Ciancio, A. Galdi, et al. Physical properties of Lao.7Bao.3Mn03-δ complex oxide thin films grown by pulsed laser deposition technique [J]. Applied Physical Letters,2010,96(3):032501.
    [9]M. Nakamura, D. Okuyama, J. S. Lee, et al. Magnetically tunable Metal-Insulator superlattices [J]. Advanced Materials,2010,22(4):500-504.
    [10]麦振洪, 《薄膜结构X射线表征》,科学出版社(2007)。
    [11]黄昆,韩汝琦,《半导体物理基础》,科学出版社(2010)。
    [1]M. Huijben, A. Brinkman, G. Koster, et al. Structure-property relation of SrTiO3/LaAlO3 interfaces [J]. Advanced Materials,2009,21(17):1665-1677.
    [2]S. A. Pauli and P. R. Willmott. Conducting interfaces between polar and non-polar insulating perovskites [J]. Journal of Physics:Condensed Matter,2008,20(26): 264012.
    [3]A. Ohtomo and H. Y. Hwang. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface [J]. Nature,2003,427:423-426.
    [4]N. Reyren, S. Thiel, A. D. Caviglia, et al. Superconducting Interfaces between Insulating Oxides [J]. Science,2007,317(5842):1196-1199.
    [5]C. He, X. Zhai, V. Mehta, F. J. Wong, et al. Interfacial magnetism in CaRuO3/CaMnO3 superlattices grown on (001) SrTiO3 [J]. Journal of Applied Physics, 2011,109(7):07D729.
    [6]A. Gozar, G. Logvenov, L. Fitting Kourkoutis, et al. High-temperature interface superconductivity between metallic and insulating copper oxides [J]. Nature,2008, 455:782-785.
    [7]H. N. Lee, H. M. Christen, M. F. Chisholm, et al. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices [J]. Nature,2005,433: 395-399.
    [8]P. Padhan and W. Prellier. Effect of strain on the electrical transport and magnetization of the epitaxial Pr0.5Ca0.5MnO3/La0.5Ca0.5MnO3/Pr0.5Ca0.5MnO3 trilayer structures [J]. Physical Review B,2005,72(9):094407.
    [9]S. J. May, T. S. Santos and A. Bhattacharya. Tuning between the metallic antiferromagnetic and ferromagnetic phases of La1-xSrxMnO3 near x=0.5 by digital synthesis [J]. Physical Review B,2009,80(15):115127.
    [10]M. Nakamura, D. Okuyama, J. S. Lee, et al. Magnetically tunable Metal-Insulator superlattices [J]. Advanced Materials,2010,22(4):500-504.
    [11]A. Perucchi, L. Baldassarre, A. Nucara, et al. Optical Properties of (SrMnO3)n/ (LaMnO3)2n Superlattices:An Insulator-to-Metal Transition Observed in the Absence of Disorder [J]. Nano Letters,2010,10(12):4819-4823.
    [12]A. Bhattacharya, X. Zhai, M. Warusawithana, et al. Signatures of enhanced ordering temperatures in digital superlattices of (LaMnO3)m/(SrMnO3)2m [J]. Applied Physical Letters,2007,90(22):222503.
    [13]H. Yamada, M. Kawasaki, T. Lottermoser, et al. LaMnO3/SrMnO3 interfaces with coupled charge-spin-orbital modulation [J]. Applied Physical Letters,2006,89(5): 052506.
    [14]T. Koida, M. Lippmaa, T. Fukumura, et al. Effect of A-site cation ordering on the magnetoelectric properties in [(LaMnO3)m/(SrMnO3)m]n artificial superlattices [J]. Physical Review B,2009,66(14):144418.
    [15]A. Bhattacharya, S. J. May, S. G. E. Velthuis, et al. Metal-Insulator Transition and Its Relation to Magnetic Structure in (LaMnO3)2n/(SrMnO3) n Superlattices [J]. Physical Review Letters,2008,100(25):257203.
    [16]H. Nakao, J. Nishimura, Y. Murakami, et al. Crystal structure and valence distribution of [(LaMnO3)m/(SrMnO3)m]n artificial superlattices [J]. Journal of the Physical Society of Japan,2009,78(2):024602.
    [17]C. Adamo, X. Ke, P. Schiffer, et al. Electrical and magnetic properties of (SrMnOXLaMnO) superlattices [J]. Applied Physical Letters,2006,92(11):112508.
    [18]H. Yamada, P. H. Xiang and A. Sawa. Phase evolution and critical behavior in strain-tuned LaMnO3-SrMnO3 superlattices [J]. Physical Review B,2010,81(1): 014410.
    [19]J. F. Ding, O. I. Lebedev, S. Turner, et al. Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders [J]. Physical Review B, 2013,87(5):054428.
    [20]麦振洪, 《薄膜结构X射线表征》,科学出版社(2007)。
    [21]J. W. Seo, B. T. Phan, J. Stahn, et al. Relaxor characteristics at the interfaces of NdMnO3/SrMnO3/LaMnO3 superlattices [J]. Physical Review B,2010,82(14): 140405(R).
    [22]H. Tanaka and T. kawai. Enhancement of magnetoresistance in spin frustrated (La, Sr) MnO3/LaFeO3 artificial lattices [J]. Solid State Communications,1999,112(4): 201-205.
    [23]K. Ueda, H. Tabata and T. Kawai. Atomic arrangement and magnetic properties of LaFeO3-LaMnO3 artificial superlattices [J]. Physical Review B,1999,60(18): R12561-R12564.
    [24]R. Sondena, P. Ravindran and S. Stolen. Electronic structure and magnetic properties of cubic and hexagonal SrMnO3 [J]. Physical Review B,2006,74(14): 144102.
    [25]J. M. Liu, J. Li, Q. Huang, et al. Partially crystallized La0.5Sr0.5MnO3 thin films by laser ablation and their enhanced low-field magnetoresistance [J]. Applied Physical Letters,2000,76 (16):2286-2289.
    [26]P. W. Anderson and H. Hasegawa. Considerations on double exchange [J]. Physical Review,1955,100(2):675-681.
    [27]R. Mahendiran M. R. Ibarra, A. Maignan, et al. Structural Instability of the Charge Ordered Compound Nd0.5Sr0.5MnO3 under a Magnetic field [J]. Physical Review Letters,1999,82(10):2191-2194.
    [28]Z. Q. Yang, Y. Q. Zhang, J. Arts, et al. Enhancing the charge ordering temperature in thin films of Pro.5Cao 5MnO3 by strain[J]. Applied Physical Letters,2006,88(7): 072507.
    [1]A. Baena, L. Brey, M. J. Calderon. Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator [J]. Physical Review B,2011,83(6):064424.
    [2]A. Mukherjee, W. Cole, P. Woodward, et al. Theory of Strain-Controlled Magnetotransport and Stabilization of the Ferromagnetic Insulating Phase in Manganite Thin Films[J]. Physical Review Letters,2013,110(15):157201.
    [3]K. Lai, M. Nakamura, K. Worasom, et al. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film [J]. Science,2010,329(5988):190-193.
    [4]Y. Q. Zhang, H. Meng, X. W. Wang, et al. Correlation between the ferromagnetic metal percolation and the sign evolution of angular dependent magnetoresistance in Pr0.7Ca0.3MnO3 film [J]. Applied Physical Letters,2011,99(25):252502.
    [5]A. G. Lehmann, F. Congiu, N. Lampis, et al. Magnetic properties of pseudomorphic epitaxial films of Pro 7Ca0.3MnO3 under different biaxial tensile stresses [J]. Physical Review B,2010,82(1):014415.
    [6]V. Kiryukhin, D. Casa, J. P. Hill, et al. An X-ray-induced insulator-metal transition in a magnetoresistivity manganite [J]. Nature,1997,386(813):813-815.
    [7]C. N. R. Rao, A. R. Raju, V. Ponnambalam, et al. Electric-field-induced melting of the randomly pinned charge-ordered states of rare-earth manganates and associated effects[J]. Physical Review B,2000,61(1):594-598.
    [8]C. Cui and T. Tyson. Pressure effects on charge, spin, and metal-insulator transitions in the narrow bandwidth manganite Pr1-xCaxMnO3 [J]. Physical Review B, 2004,70(9):094409.
    [9]W. Prellier, E. Rauwel Buzin, B. Mercey, et al. Strain effects in charge-ordered Pro.5Cao.5Mn03 manganite thin films [J]. Journal of Physics and Chemistry of Solids, 2003,64(9-10):1665-1669.
    [10]Y. Tomioka, A. Asamitsu, H. Kuwahara, et al. Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability [J]. Physical Review B,1996,53(4):R1689-R1692.
    [11]J. Millis, T. Darling and A. Migliori. Quantifying strain dependence in "colossal" magnetoresistance manganites [J]. Journal of Applied Physics,1998,83(3):1588-591.
    [12]C. L. Lu, Y. Y. Wu, Z. C. Xia, et al. Giant in-plane anisotropy in manganite thin films driven by strain-engineered double exchange interaction and electronic phase separation[J]. Applied Physical Letters,2011,99(12):122510
    [13]S. W. Jin, G Y. GAO, Z. Z. Yin, et al. Strain state evolution and thickness-dependent properties of epitaxial Ndo.7Sro.3MnO3 films [J]. Physical Review B,2007,70(21):212401.
    [14]W. Prellier, C. Simon, A. M. Haghiri-Gosnet, et al. Thickness dependence of the stability of the charge-ordered state in Pr0.5Ca0.5MnO3 thin films[J]. Physical Review B, 2000,62(24):R16337-R16340.
    [15]Z. Q. Yang, R. W. A. Hendrikx, P. J. M. V. Bentum, et al. Disorder-induced melting of the charge order in thin films of Pr0.5Ca0.5MnO3 [J]. Europhysics Letters, 2002,58(6):864.
    [16]D. K. Baisnab, T. G. Kumary, A. T. Satya, et al. Intricacies of strain and magnetic field induced charge order melting in Pr0.5Ca0.5MnO3 thin films[J]. Journal of Magnetism and Magnetic Materials,2011,323(22):2823-2827.
    [17]V. Agarwal, R. Prasad, M. P. Singh, et al. Evidence of substrate induced charge order quenching, insulator metal transition, and colossal magnetoresistance in polycrystalline Pr0.58Ca0.42MnO3 thin films[J]. Applied Physical Letters,2010,96(5): 052512.
    [18]T. Mertelji, R. Yusupov, M. Filippi, et al. Magnetic properties of the insulating ferromagnetic phase in strained Pro.6Cao.4Mn03 thin films[J]. Applied Physical Letters, 2008,93(4):042512.
    [19]D. Zhu, X. Tan, P. Cao, et al. Influence of A-site size and disorder on metamagnetic transformation in A-site substituted Pr0.5Ca0.5MnO3 [J]. Journal of Applied Physics,2009,105(6):063914.
    [20]K. R. Mavani and P. L. Paulose, Effects of cation disorder and size on metamagnetism in A-site substituted Pr0.5Ca0.5MnO3 system [J]. Applied Physical Letters,2005,86(16):162504.
    [21]Y. Q. Zhang, Z. D. Zhang and J. Arts, Charge-order melting and magnetic phase separation in thin films of Pro.7Cao 3Mn03 [J]. Physical Review B,2009,79(22): 224422.
    [22]L. V. Saraf, S. B. Ogale, Z. Chen, et al. Correlation of large dielectric response with the ordering transitions in Pr0.67Ca0.33MnO3 [J]. Physical Review B,2000,62(18): R11961-R11964.
    [23]X. Shen, D. Mo, C. Li, et al. Strain effects on magnetic characteristics of ultrathin La0.7Sr0.3Mn03 in epitaxial La0.7Sr0.3MnO3/BaTiO3 superlattices[J]. Journal of Applied Physics,2012,112(12):123919.
    [24]S. Pereira, M. R. Correia, E. Pereira, et al. Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping [J]. Applied Physical Letters,2002,80(21):3913-3915.
    [25]Y. Y. Zhao, F. X. Hu, J. Wang, et al. Strain effect caused by substrates on phase separation and transport properties in Pro 7 (Ca0.8Sr0.2)0.3MnO3 thin films [J]. Journal of Applied Physics,2012,111(7):07D721.
    [26]Y. Q. Zhang, Y. L. Zhu, Z. D. Zhang, et al. Defect-induced charge-order melting in thin films of Pr0.5Ca0.5MnO3[J]. Journal of Applied Physics,2007,101(6):063919.
    [27]A. Bhattacharya, S. J. May, S. G E. Velthuis, et al. Metal-Insulator Transition and Its Relation to Magnetic Structure in (LaMnO3)2n/(SrMnO3)n Superlattices [J]. Physical Review Letters,2008,100(25):257203.
    [28]D. K. Baisnab, T. G. Kumary, A. T. Satya, et al. Strain enhanced charge order melting in Pr0.5Ca0.5MnO3 thin films [J]. AIP Conference Proceedings,2011, 1347:199-201.
    [29]M. Staruch, L. Stan, J. H. Lee, et al. Magnetotransport properties of Pr0.5Cao 5MnO3 thin films grown by a solution route[J]. Journal of Applied Physics, 2011,110(1):013921.
    [30]S. Nair and A. Banerjee. The effect of Al substitution on charge ordered Pr0.5Ca0.5MnO3:structure, magnetism and transport [J]. Journal of Physics:Condensed Matter,2004,16(46):8355.
    [31]Z. Q. Yang, Y. Q. Zhang, J. Arts, et al. Enhancing the charge ordering temperature in thin films of Pr0.5Ca0.5MnO3 by strain[J]. Applied Physical Letters,2006,88(7): 072507.
    [32]C. Adamo, X. Ke, H. Q. Wang, et al. Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films [J]. Applied Physical Letters, 2006,95(11):112504.
    [33]R. Prasad, M. P. Singh, P. K. Siwach, et al. Effect of thickness on magnetic phase coexistence and electrical transport in Nd0.51Sr0.49MnO3 films [J]. Applied Physics A, 2010,99(4):823-829.
    [1]K. Lai, M. Nakamura, K. Worasom, et al. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film [J]. Science,2010,329(5988):190-193.
    [2]A. M. Haghiri-Gosnet and J. P. Renard. CMR manganite:physics, thin films and devices [J]. Journal of Physics D:Applied Physics,2003,36(8):R127.
    [3]M. Uehara, S. Mori, C. H. Chen, et al. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganite [J]. Nature,1999,399: 560-563.
    [4]S. Huhn, M. Jungbauer, M. Michelmann, et al. Modeling of colossal magnetoresistance in Lao.67Cao.33Mn03/Pro.67Cao.33Mn03 superlattices:Comparison with individual (La1-yPry)o.67Cao.33Mn03 films [J]. Journal of Applied Physics,2013, 113(17):17D701.
    [5]M. Nakamura, D. Okuyama, J. S. Lee, et al. Magnetically tunable Metal-Insulator superlattices [J]. Advanced Materials,2010,22(4):500-504.
    [6]M. Izumi, Y. Murakami, Y. Konishi, et al. Structure characterization and magnetic properties of oxide superlattices La0.6Sr0.4MnO3/La0.6Sr0.4FeO3 [J]. Physical Review B, 1999,60(2):1211-1215.
    [7]G Q, G. A, X. G, et al. Grain-boundary effects on the magnetoresistance properties of perovskite manganite films [J]. Physical Review B,1996,54(22):R15629-R15632.
    [8]M. Zisese, I. Vrejoiu, E. Pippel, et al. Tailoring Magnetic Interlayer Coupling in Lao.7Sro.3Mn03/SrRu03 Superlattices [J]. Physical Review Letters,2010,104(16): 167203.
    [9]A. Venimadhav, M. S. Hegde, V. Prasad, et al. Enhancement of magnetoresistance in manganite multilayers [J]. Journal of Physics D:Applied Physics,2000,33(22): 2921-2926.
    [10]S. Mukhopadhyay and I. Das. Giant enhancement of room-temperature magnetoresistance in La0.67Sr0.33MnO3/Nd0.67Sr0.33MnO3multilayers [J]. Applied Physical Letters,2006,88(3):032506.
    [11]L. F. Wang, Z. Huang, X. L. Tan, et al. Pseudomorphic strain induced strong anisotropic magnetoresistance over a wide temperature range in epitaxial La0.67Ca0.33MnO3/NdGaO3 (001) films [J]. Applied Physical Letters,2010,97(24): 242507.
    [12]Y. Z. Chen, J. R. Sun, T. Y. Zhao, et al. Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films [J]. Applied Physical Letters,2009,95(13):132506.
    [13]Y. Q. Zhang, H. Meng, X. W, et al. Angular dependent magnetoresistance with twofold and fourfold symmetries in A-type antiferromagnetic Nd0.45Sr0.55MnO3 thin film [J]. Applied Physical Letters,2010,97(17):172502.
    [14]P.K. Siwach, H. K. Singh, O. N. Srivastava, et al. Colossal magnetoresistance study in nanophasic La0.7Ca0.3MnO3 manganite [J]. Journal of Physics D:Applied Physics,2006,39(1):9783-9794.
    [15]K. C, K. K. C, R. M. C, et al. Desirable magnetotransport properties in doped Mn-oxide-based superlattices [J]. Journal of Applied Physics,1997,81(8): 4950-4952.
    [16]K. S. Takahashi, M. Kawasaki and Y. Tokura. Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3 [J]. Applied Physical Letters,2005,79(9): 1324-1326.
    [17]D. Zhu, X. Tan, P. Cao, et al. Influence of A-site size and disorder on metamagnetic transformation in A-site substituted Pr0.5Ca0.5MnO3[J]. Journal of Applied Physics,2009,105(6):063914.
    [18]P. Padhan, P. Murugavel and W. Prellier. Ferromagnetism and metal-like transport in antiferromagnetic insulator heterostructures [J]. Applied Physical Letters, 2005,87(2):022506.
    [19]P. Padhan and W. Prellier. Effect of strain on the electrical transport and magnetization of the epitaxial Pr0.5Ca0.5MnOyLa0.5Ca0.5MnOyPr0.5Ca0.5MnO3 trilayer structures [J]. Physical Review B,2005,72(9):094407.
    [20]M. Egilmez, K. Chow, J. Jung, et al. Anisotropic magnetoresistance in perovskite manganites [J]. Modern Physics Letters B,2011,25(10):697-722.
    [21]M. Egilmez, R. Patterson, K. H. Chow, et al. Magnetoresistive anisotropy and magnetoresistivity in strained La0.65Ca0.35MnO3 films near the metal-insulator transition [J]. Applied Physical Letters,2007,90(23):232506.
    [22]Y. Z. Chen, J. R. Sim, T. Y. Zhao, et al. Crossover of angular dependent magnetoresisitance with the metal-insulator transiton in colossal magnetoresistive manganite [J]. Applied Physical Letters,2007,95(13):132506.
    [23]Q. Li, H. S. Wang, Y. F. Hu, et al. Anomalous anisotropic magnetoresistance in Pro.67Sro.33Mn03 thin films [J]. Journal of Applied Physics,2000,87(9):5573-5575.
    [24]R. Li, H. Wang, X. Wang, et al. Anomalously large anisotropic magnetoresistance in a perovskite manganite [J]. Proceedings of the National Academy of Sciences of the United States of America,2008,106(34):14224-14229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700