用户名: 密码: 验证码:
塔河深层寒武系优质储层特征及形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国油气勘探工作重点方向正由东部向西部、由陆相向海相、由碎屑岩向碳酸盐岩、从中、新生代向古生代、从中浅层向深层转移,在海相碳酸盐岩油气勘探工作中取得重大进展。塔河寒武系白云岩厚度高达2000m,在埋藏超过8000m的深处,温度大于170℃,压力大于80MPa的环境下,溶蚀孔、洞、缝等储集空间发育,揭示了良好的白云岩储集层,同时发现孔隙随深度增加仍有增大的反序现象,充分说明了深层白云岩中具有发育优质储层的条件,表明塔河深层有过油气成藏和调整过程,展示了塔河深层油气勘探的广阔前景,因此,认识白云岩的储层发育特征,探索建立白云岩储层发育模式;深入认识塔河地区海相碳酸盐岩储层的形成和发育机理,正确评价和预测此类储层的质量和空间分布规律。
     论文在对碳酸盐岩储层国内外研究现状调研及存在问题详细分析的基础上,在广泛收集资料和消化吸收资料的基础上,以碳酸盐岩沉积学入手,结合油层物理学、地质地球化学、储层地质学、成岩作用、测井地质学等相关理论为指导,结合塔河地区已有的认识成果,从现有的岩心、钻(测)井、地震及各种分析测试等实际资料出发,采用面上展开,重点解剖,通过宏观与微观相结合、地质与测井相结合的方法,借助阴极发光显微镜、扫描电镜、同位素分析、X-衍射分析、包裹体、荧光分析、电子探针、微量元素分析等先进分析测试技术手段,采用常规手段与新技术、新方法的结合,理论分析与实验手段的结合,地质与地球化学的结合,形成多学科与专业特长联合的研究方法与思路,紧紧抓住影响储层发育和形成的两个因素,即沉积作用与成岩作用,并重视它们的关联度和依存度,用动态演化的思路对白云岩岩相学、白云岩形成机理及构造热液白云岩化进行研究。利用自然伽玛、井径、双侧向、三孔隙度、能谱测井等常规测井和成像测井对重点储层层段白云岩储层储集空间类型、物性特征及其发育规律进行研究。通过研究取得以下几点主要成果和新认识:
     ⑴塔河地区寒武系是在早—中寒武世宽缓的斜坡—台缘—台地相沉积古地理环境基础上沉积发展而来的一套以海相碳酸盐岩增生台地为主体的沉积建造。由西向东依次发育碳酸盐岩增生台地相—台地边缘相—宽缓斜坡相等沉积相带,向东过渡进入塔东(满加尔)盆地相区。阿克库勒凸起主体区以增生台地相为主,凸起东部以具有前积结构的台地边缘相为主,发育台地边缘颗粒滩及藻丘沉积。其中以台地边缘相沉积的碳酸盐岩的储集层最为发育,是控制原生孔隙发育及成岩作用改造形成的次生孔隙发育的有利场所,也是目前塔河地区寒武系以溶蚀孔洞型及裂缝+溶蚀孔(洞)复合型储层类型最为发育的场所。
     ⑵塔河寒武系存在微-粉晶级白云石、粉—中晶级它形脏白云石、粉-中晶级半自形—自形雾心亮边(环带)白云石、粗晶白云石、构造裂隙内干净白云石、异形白云石等六种类型的白云石,在构造上:提出斑状、条纹状和层状(块状)三分建议;在显微结构上:认为在泥晶、粉晶、细晶、中晶和粗晶的基础上,增加“雾心亮边”白云岩和(残余)颗粒结构白云岩两种具有成因和储层预测意义的结构类型,深入总结认识了这6种白云石的地球化学特征;进而,指出存在着蒸发泵白云石化、渗透回流白云石化、浅埋藏白云石化、中深埋藏期、热液白云石化等机制,其中前面二类是形成白云岩的主要机制,中深埋藏期热液白云石化机制可对局部地区白云岩的改造有重要影响。
     ⑶塔河地区白云岩成因具有持续逐渐过渡的成岩演化特征,以埋藏白云化成岩作用为主。塔河寒武系白云岩成岩作用类型多且复杂,具有从准同生白云岩→早成岩浅埋藏白云岩→中深埋藏成岩白云岩→热液成因白云岩的递变规律,反映出白云岩化环境由浅埋藏条件向中深埋藏条件、热液成因白云岩转变过程中,Fe、Mn平均含量具有逐渐变高的趋势,白云石的有序度分布也呈逐渐升高的演化序列。
     ⑷成岩作用对深部储层孔隙发育的控制,储层在埋藏的过程中不断经历着各种成岩作用,对碳酸盐岩地层来说早期的压实、压溶和方解石胶结作用对原生孔隙产生了毁灭性的影响,次生孔隙是碳酸盐岩储层的主要贡献力量,次生孔隙的发育主要受控于后期埋藏过程中的白云岩化、埋藏溶蚀、热液溶蚀作用。
     ⑸通过对塔河基质方解石、洞、缝内充填的氧碳同位素值基质方解石养碳同位素值变化比较小,基质方解石氧碳同位素偏负,说明基质方解石与白云石同时埋藏成因而孔洞内充填方解石氧碳同位素值变化较大。塔河白云石氧同位素与深度的关系图氧同位素随深度的增加而偏负,白云石碳同位素与深度的关系图可知碳同位素在同一深度范围漂移较大,也说明流体性质改变了,流体特征改变了原来的流体介质的性质,有外来物质参与。
     ⑹充填缝洞、脉内方解石、白云石具有87Sr/86Sr比值远高于基质白云岩,锶同位素值均远远大于上寒武系波峰同位素值,说明寒武系地层锶的来源丰富;锶同位素随深度的增加锶同位素变重,这说明锶同位是流体从底部向上运移的。
     ⑺塔河白云岩储层储渗空间形成机制为埋藏白云石化条件下的与深部断裂热液流体有关的溶蚀作用是塔河地区寒武系白云岩储层储渗空间形成的主要机制;而热液溶蚀之后稳定的埋藏过程,较小的构造变动影响是储集空间得以保存的主要因素;构造运动产生的裂缝系统的热液流体和埋藏白云石化是塔河寒武系白云岩储层储渗空间形成的主要机制。
     其研究结果探索下古生界寒武系大型建隆圈闭的含油气性,合理勘探部署,加快勘探步伐,实现新领域的导向性突破,具有重要的理论和现实意义,这不仅对塔里木盆地北部深层油气勘探具有重大的实际意义,而且在理论上对石油地质学和沉积学都有极高的研究价值。
In recent years, the focus of China's oil and gas exploration direction is from eastto west, by land opposite marine, from clastic rocks to carbonate rocks, from the newgeneration to the Paleozoic, from shallow to deep, marine carbonate oil and gasexploration have made significant progress. The thickness of Tahe Cambrian dolomiteis up to2000m, the temperature is greater than170℃, the pressure is greater than80MPa in the depths over8000m buried environment, the dissolution pores, holes,fissure and other reservoir space development reveals it is good dolomite reservoir,anti-order phenomenon that the porosity is still increasing with the increasing of depthwas also found. It fully illustrate that deep dolomite can be quality reservoir. Oil andgas accumulation and adjustment process have occurred in the deep strata of Tahe area.It shows good exploration prospects in this area. Therefore, it is help to evaluatereservoir properly and predict reservoir quality and the law of reservoir spatialdistribution that recognizing the development characteristics of dolomite reservoir,exploring to establish the development mode of dolomite reservoir, understanding theformation and development mechanism of marine carbonate reservoir deeply in Taheregion.
     Based on the analysis of the research situation of carbonate reservoir, a detailedanalysis of the problems and extensive data collection and digestion, papers utilizes thetheories of carbonate sedimentology, reservoir physics, geology and geochemistry,reservoir geology, diagenesis, logging geology etc as a guide, combines the existingachievement, takes advantage of the existing core data, drilling data and seismic dataetc, by the method of combine the macroscopic means and microcosmic means,combination of geology and logging, with the advanced analytical techniques meanssuch as cathodoluminescence microscope, scanning electron microscopy, isotope analysis, x-ray diffraction analysis, inclusions, fluorescence analysis, electronmicroprobe, trace element analysis etc, conventional means combine with the newtechnologies, new methods, theoretical analysis combines with the experimental means,geology combines with geochemistry, form the research methods and ideas thatmultidisciplinary combines with professional knowledge, seize the two mainfactors(sedimentation and diagenesis) that affect the formation and development ofreservoir, and emphasis on their correlation and dependence. We do a series of studieson the petrography of dolomite and the formation mechanism of dolomite andstructure-hydrothermal dolomitization.
     Studying on reservoir space types, physical characteristics and development lawof key dolomite layer with the method of Image logging and conventional loggingincluding natural gamma logging, caliper logging, dual laterolog, tri-porosity logging,spectrum Logging etc. Several main results and new knowledge as follow wereobtained by the research.
     ⑴Cambrian of the Tahe area is a set of sedimentary formation that mainly madeup of proliferative marine carbonate platform, it was developed from wide and gentleslope-the platform margin-the platform facies sedimentary paleoenvironment ofEarly-Middle Cambrian. It distributes proliferative carbonate platform→the platformmargin→wide and gentle slope from west to east, finally transition to the basin areawhich located in the eastern Tarim Basin (Manjiaer). The main areas of Akekule bumpis mainly made up of proliferative carbonate platform, most area of the east Akekulebump is the platform margin which has foreset struct, Platform margin grain beachand algal mound deposition develops in this area. The reservoirs mainly located in thecarbonate rocks which deposited in platform margin area, it is the beneficial area thatprimary porosity and secondary porosity which was controlled by diagenesis, and thisis the main area that dissolution pores reservoir and crack-dissolution pores reservoirexist.
     ⑵Tahe’s Cambrian mainly includes six types of dolomite, they are micro-powder crystal dolomite, powder-medium crystal anhedral dirty dolomite, powder-medium crystal subhedral-idiotopic fog heart light side(zone) dolomite, coarse-grained dolomite, clean dolomite that fill the structural cracks, alien dolomite etc. Wepropose that porphyritic texture, striatus and Layered structure are the three types ofrock structure in this area. Papers adds two types of rock structure-fog heart light sidedolomite and (residual) grain pattern dolomite on the basis of micro crystal dolomite,powder crystal dolomite, cryptomere dolomite, medium crystal dolomite, coarse- grained dolomite, and summarizes the geochemistry of this six types in depth; and then,points out that the main mechanisms of dolomitization are evaporative pumpingdolomitization, seepage reflux dolomitization, shallow burial dolomitization,mid-depth burial hydrothermal dolomitization etc. Evaporative pumping dolomitize-tion, seepage reflux dolomitization are the main mechanism that generate dolomite,mid-depth burial hydrothermal dolomitization has an important influence on thetransformation of dolomite in some areas.
     ⑶The diagenetic evolution of Tahe area’s dolomite is continued gradualtransition, and burial dolomitization is the most important diagenesis. The diagenesistypes of Tahe’s Cambrian dolomite are complex, there is grading law that frompenecontemporaneous dolomite→shallow burial dolomite→mid-depth burial dolomite→hydrothermal dolomite. It reflects the dolomitization environment was changed fromshallow burial environment to mid-depth burial environment, and finally intohydrothermal environment, the average levels of Fe and Mn increases gradually, thedegree of order in dolomite increases too.
     ⑷Diageneses affect deepreservoir.Duringburial,reservoir experiences all kindsof diageneses. Early compaction, pressure solution and calcite cementation havedevastating impact on primary porosity of carbonate. Secondary porosity which ismainly controlled by dolomitizaton, burial corrosion and hydrothermal dissolutionplays an important role in carbonate reservoir.
     ⑸Through the research about oxygen and carbon isotope value of matrix calcite,holes and seam filling in Tahe, the change of the matrix calcite’s oxygen and carbonisotope value is small, the oxygen and carbon isotope value of matrix calcite is biasnegative, but the carbon isotope value of holes filling vary greatly, it explains thatmatrix calcite and dolomite are product of burial effect. The diagram of oxygen isotopevalue and depth points out that oxygen isotope value is bias negative with the depthincreases; the diagram of carbon isotope value and depth explains that carbon isotopevalue vary greatly in the same depth, and also shows that there was external fluid whichchanged the properties of the original fluid.
     ⑹The87Sr/86Sr ratio of dolomite and calcite that fill the holes and crack is muchhigher than that of matrix dolomite, the strontium isotope value of filling is muchhigher than the max value of Upper Cambrian’s strontium isotope value, it shows thatCambrian stratum had a rich source of strontium. The strontium isotope became heavierwith the depth increase. It indicates that the fluid which was rich in strontium was fromthe bottom.
     ⑺The formation mechanism of Tahe area’s dolomite reservoir space has, themain formation mechanism of Tahe area’s dolomite is dissolution; after thehydrothermal dissolution occured, the main factors that preserve the reservoir space arestable burial process and lesser tectonic event.
     The research results can help to explore hydrocarbon of Lower PaleozoicCambrian large buildups traps, deploy exploration, accelerate the pace of explorationand achieve a breakthrough in new areas, it has important theoretical and practicalsignificance, it is not only has important significance on the exploration of oil and gasin northern Tarim Basin’s deep strata, but also has important research value inpetroleum geology and sedimentology field.
引文
[1] AdamsJF,RhodesML.Dolomitization by seepagere fluxion[J].AAPG Bulletin,1960,44:1912~1920.
    [2] Albert,S.Wylie Jr and Jacqueline E. Huntoon. Visualization of log data and depositional trends inthe middle Devonian traverse group,Michigan basin,United States[J]. AAPG Bulletin,2003,87(4):581~608.
    [3] Alex MacNeil,Brian Jones,Dolomitization of the Pedro Castle Formation (Pliocene),CaymanBrac,British West Indies[J].Sedimentary Geology,2003,162:219~238.
    [4] Allan J R,Wiggins W D. Dolomite Reservoirs:Geochemical techniques for evaluating origin anddistribution[M].Oklahoma,USA:The American Association of Petroleum Geologists MemoirsTulsa:AAPG,1993,1~109.
    [5] Allen J R,Matthess R K.Isotope signatures associated with early meteoric diagenesis[J].Sedimentology,1982,29:797~817.
    [6] Amthor JE,Mountjoy EW,Machel HG. Subsurface dolomites in Upper Devonian LeducFormation buildups,central part of Rim bey~Meadow brook reef trend,Alberta,Canada[J].Bulletinof Canadian Petroleum Geology,1993,41(2):164~185.
    [7] Amthor,J.E.,Mountjoy,E.W.,Machel,H.G..Regional~scale porosity and permeability variations inUpper Devonian Leduc buildups; implications for reservoir development and prediction incarbonates. Am. Assoc[J]. Petrol. Geol. Bull,1994,78(10):1541~1559.
    [8] Arthur H.Saller and Nuel Henderson. Distribution of Porosity and Permeability in PlatformDolomites:Insight from the Permian of West Texas[J].AAPG Bullein,1998,82:1528~1550.
    [9] Axel Gillhaus,Detlev K. Richter,Jan Meijer,Rolf D.Neuser,Andreas Stephan,Quantitative highresolution cathodoluminescence spectroscopy of diagenetic and hydrothermaldolomites[J].Sedimentary Geology,2001,140:191~199.
    [10] AyalonA,Longstaffe FJ. Stable isotope evidence for theory gin of diagenetic carbonate mineralsfrom the Lower Jurassic In mar Formation,southern Israel[J]. Sedimentology,1995,42(1):147~160.
    [11] BadiozamaniK. The dorag dolomitization model application to the Middle Ordovician ofWisconsin[J].Journal of Sedimentary Petrology,1973,43(4):965~984.
    [12] Barker C,Takach N E. Prediction of natural gas compo sition in ultra deep sandstonereservoir[J].AAPG Bulletin,1992,76(12):1859~1873.
    [13] Bebout,D.G.,F.J.Lucia,C.R.Hocott,G.E.Fogg,and G.W.Vander Stoep, Characterization of theGrayburg reservoir,University Lands Dune field,Crane County,Texas[J]. University of Texas atAustin,Bureau of Economic Geology Report of Investigations,1987,168:104.
    [14] BurnsSJ,BakerPA. Ageo chemical study of dolomite in the MontereyFormation,California[J].Journal of Sedimentary Petrology,1987,57:128~139.
    [15] C.Reinhold,Multiple episodes of dolomitization and dolomite recrystallization during shallowburial in Upper Jurassic shelf carbonates:eastern Swabian Alb,southern Germany[J].SedimentaryGeology,1998,121:71~95.
    [16] CarblloJD,LandLS,MeiserDE. Holocene dolomitization of supratidalsediments by active TidalPumping Sugar loafKeg,Florida[J].Journal of Sedimentary Petrology,1987,57:153~165.
    [17] Cowan,P.E.,and P.M.Harris. Porosity in San Andres Formation (Permian),Cochran and Hockleycounties,Texas[J].AAPG Bulletin,1986,70:888~897.
    [18] Daniel,W.M.,Judith,A.M. Abu Dhabi Sabkha,Persian Gulf,revisited:Application of strontiumisotope to test an early dolomitization model[J].Geology,1990,18:618~621.
    [19] DARRYL G,GREEN W.Fault and conduit controlled burial dolomitization of the Devonian West[J].Central Alberta Deep Basin Bulletin of Canadian Petroleum Geology,2005,53(2):101~129.
    [20] David T. Wright,The role of sulphate~reducing bacteria and cyanobacteria in dolomite formationin distal ephemeral lakes of the Coorong region,South Australia[J].SedimentaryGeology,1999,126:147~157.
    [21] David W. Morrow. Distribution of porosity and permeability in platform dolomites: Insight fromthe Permian of west Texas:Discussion[J].AAPG Bulletin,2001,85(3):525~529.
    [22] Davies G R,Smith J L B. Structurally controlled hydrothermal dolomite reservoir facies: Anoverview:Reply[J].AAPG Bulletin,2007.91:1342~1344.
    [23] DeffeyesKS,LuccaFJ,WeylPK.Dolomitization of recentand Plio~Pleist ocence sediments bymarine vaporate watersin Bonane,Netherlands Antillies//PrayLC,MurryRC. Dolomitization andlimestone diagenesis[J].Society of Economic Paleontologists and Mineralogists,SpecialPublication,1965,13:71~88.
    [24] Durocher S,AlAasm I S. Dolomitization and neomorphism of Mississippian (Visean) UpperDebolt formation,Blueberry Field,northeastern British Columbia:Geologic,petrologic,andchemical evidence [J].AAPG Bulletin,1997,81(6):954~977.
    [25] Ehrenberg,S.N,G.P.Eberli,M.Keramati and S.A.Moallemi,porosity~permeability relationships ininterlayered limestone~dolostone reservoirs[J].AAPG Bulletin,2006,90(1):91~114.
    [26] Ezat Heydari,The Role of Burial Diagenesis in Hydrocarbon Destruction and H2SAccumulation,Upper Jurassic Smackover Formation,Black Creek Field,Mississippi[J].AAPGBulletin,1997,81(1):26~45.
    [27] Friedman GM. Structurally controlled hydrothermal dolomite reservoir facies: Anoverview:Discussion[J]. AAPG Bulletin,2007,91:1339~1341.
    [28] Gao G,LandL S,Folk RL. Meteoric modification of early dolomite and late dolomitization bybasinal fluids,Upper Arbuckle Group,Slick Hills,Southwestern Oklahoma[J].AAPG Bulletin,1992,76:1649~1664
    [29] Gill,I.P.,Moore Jr.,C.H.,Aharon P. Evaporitic mixed~water dolomitization on St.Croix,U.S.V.I.Jour. Sedim. Petrol.1995.,65:591~604.
    [30] Graham,R.Davies and Langhorne B.Smith Jr,Structurally controlled hydrothermal dolomitereservoir facies:an overview[J].AAPG Bulletin,2006,90(11):1641~1690.
    [31] GreenDG,MountjoyEW.Fault and conduit controlled burial dolomitization of the DevonianWest~Central Alberta Deep Basin[J].Bulletin of Canadian PetroleumGeologists,2005,53(2):101~129.
    [32] H.A.Wanas,Petrography,geochemistry and primary origin of spheroidal dolomite from the UpperCretaceous/Lower Tertiary Maghra El~Bahari Formation at Gabal Ataqa,Northwest Gulf ofSuez,Egypt[J].Sedimentary Geology,2002,151:211~224.
    [33] Halley,R.B.,Schmoker,J.W.,1983.High porosity Cenozoic rocks of South Florida:progressive lossof porosity with depth.Am.Assoc.[J].Petrol.Geol.Bull,1983,67:191~200.
    [34] Hardie LA. On the significance of evaporates[J].Annual Review of Earth and PlanetaryScience,1991,19:131~168.
    [35] Harris,P.M.,and E.L.Stoudt. Stratigraphy and lithofacies of the San Andres Formation,C.S.DeanA,XIT and SW Level land units of Level land~Slaughter field,Permian basin,in A.J.Lomando andP.M.Harris,eds.[J]. Giant oil and gas fields:a core workshop:SEPM Core Workshop1988,12:649~693.
    [36] Hird K. The composition of carbonate and oxygen isotope in t he ancient dolomite[J].AAPGBulletin,1987,34(4):156~232.
    [37] HsüKJ,SchneiderJ. Progress report on dolomitization hydrology of AbuDhabi Sabkhas,ArabianGulf//PurserBH.ThePersianGulf. Berlin[J].Springer,1973:409~422.
    [38] HsüKJ,Siegenthaler C. Preliminary experiment son hydrodynamic movement induced byevaporation and bearing on the dolomite problem[J].Sedimentology,1969,12:448~453.
    [39] I.S.Al~Aasm,J.J.Packard,Stabilization of early~formed dolomite:a tale of divergence from twoMississippian dolomites[J].Sedimentary Geology,2000,131:97~108.
    [40] John A L,Willilanm B H,Williams N S. Fractured hydrothermal dolomite reservoirs in t heDevonian Dundee Formation of the central Michigan basin [J].AAPG Bulletin,2006,90(11):1787~1801.
    [41] John A L. Evidence against the Dorag (mixing~zone) model for dolomitization along theWisconsin arch:A case for hydrothermal diagenesis [J].AAPG Bulletin,2006,90(11):1719~1738.
    [42] Kerans,C.,F.J.Lucia,and R.K.Senger. Integrated characterization of carbonate ramp reservoirsusing Permian San Andres Formation outcrop analogs[J].AAPG Bulletin,1994,78:181~216.
    [43] Land LS. Failure to precipitate dolomite at25degrees C from dilute solution despite1000foldover saturation after32years[J].Aquatic Geochemistry,1998,4(3/4):361~368.
    [44] Land,L.S..The isotopic and trace element geochemistry of dolomite:the state of the art.In:Zenger,D.H.,Dunham,J.B.,Ethington,R.L.Eds.,Concepts and Models of Dolomitization[J].Spec.Publ.~SEPM,1980,28:87~110.
    [45] LandL S. Dolomitization of the Hope Gate Formation(North Jamaica)by seawater:reassessment ofmixing zone dolomite[J].Geochemical Society Special Publication,1991,3:121~133.
    [46] LandLS. The origin of massive dolomite[J].Journal of Geological Education,1985,33:112~125.
    [47] LavoieD and ChiGX. Hydrothermal dolomitization in the Lower Silurian LaVieille Formation innorthern New Brunswick: Geological context and significance for hydrocarbonexploration[J].Bulletin of Canadian Petroleum Geology,2006.54:380~395.
    [48] LavoieD and MorinC.Hydrothermal dolomitization in the Lower Silurian Sayabec Formation innorthern Gaspé~Matap~édia(Québec):Constraint on timing of porosity and regional significancefor hydrocarbon reservoirs[J].Bulletin of Canadian Petroleum Geology,2004.52:256~269.
    [49] Leach,D.L.,Plumlee,G.S.,Hofstra,A.H.,et al. Origin of late dolomite cement by CO2-saturateddeep basin brines:Evidence from the Ozark region,central United States[J].Geolgoy,1991,19:348~351.
    [50] Lippmann F. Sedimentary Carbonate Minerals[M].New York:Springer Verlag,1973:1~228.
    [51] Lonnee J, Hans G M. Pervasive dolomitization wit h subsequent hydrothermal alteration in theClarke Lake gas field,Middle Devonian Slave Point Formation,British Columbia,Canada[J].AAPGBulletin,2006,90(11):1739~1761.
    [52] L n y Arve,Making sense of carbonate pore systems[J].AAPG Bulletin,2006,90(9):1381~1405
    [53] Lucia,F.J.,and R.P.Major.Porosity evolution through hypersaline reflux dolomitization,inB.Purser,M.Tucker,and D.Zenger,eds.,DolomitesInternational Association of Sedimento-logistsSpecial Publication,1994,21:325~341.
    [54] Luczaj J A,Harrison W B III,Williams N S. Fractured hydrothermal dolomite reservoirs in theDevonian Dundee Formation of the centralMichigan Basin[J].AAPG,2006,90(11):1787~1801.
    [55] Luo Ping,Hans G.Machel. Pore size and pore throat types in a heterogenous dolostonereservoir,Devonian Grosmont formation,western Canada sedimentary basin[J]. AAPGBulletin,1995,79(11):1698~1720.
    [56] M.A.Bustillo,M.E.Arribas,M.Bustillo,Dolomitization and silicification in low~energy lacustrinecarbonates (Paleogene,Madrid Basin,Spain)[J].Sedimentary Geology,2002,151:107~126.
    [57] M.Boni,G.Parente,T.Bechstadt,B.De Vivo,A.Iannace Hydrothermal dolomites in SW Sardinia(Italy):evidence for a widespread late~Variscan fluid flow event[J].Sedimentary Geology,2000,131:181~200.
    [58] Machel HG. Concept sand models of dolomitization:acritical reappraisal//BraithwaiteCJR,RizziG, DarkeG. The geometry and petro genesis of dolomite hydrocarbon reservoirs,London[J].Geological Society,Special Publication,2004,235:7~63.
    [59] Mackenzie,J.,Hsu,K.J.,Schneider,J.F.Movement of subsurface waters under the sabkha,AbuDhabi,UAE and its relation to evaporative dolomite genesis[J].Spec.Publ.~SEPM,1980,28:11~30.
    [60] Major,R.P.,D.G.Bebout,and F.J.Lucia. Depositional facies and porosity distribution,Permian(Guadalupian) San Andres and Grayburg formations,P.J.W.D.M.field complex,Central Basinplatform,west Texas,in A.J.Lomando and P.M.Harris,eds.[J].Giant oil and gas fields:a coreworkshop:SEPM Core Workshop1988,12:615~648.
    [61] Marco Antonellini and Pauline N.Mollema,A Natural Analog for a Fractured and FaultedReservoir inDolomite:Triassic Sella Group,Northern Italy[J].AAPG Bulletin,2000,84(3):314~344
    [62] MattesBW,Mountjoy EW. Burial dolomitization of the Upper Devonian Miette Buildup,JasperNational ParkAlberta//Zenger DH,Dunham JB,Ethington RL. Concept sand models ofdolomitization[J].Society of Economic Paleontologist sand Miner alogists,Special Publication,1980,28:259~297.
    [63] McArthur J M,Burnet t J,Hancock. Strontium isotopes at K/Tboundary;discussion[J].Nature(London),1992,355(6355):28.
    [64] McKenzie JA,Vasconcelos C. Dolomite Mountains and the origin of the dolomite rock of whichthey mainly consist:Historical developments and new perspectives[J]. Sedimentology,2009,56(1):205~219.
    [65] Mei Mingxiang,Ma Yongsheng,ZhouPikang,etal. Sedimentology of CarbonateRocks[M]. Beijing:EarthquakePress,1997:1~306.
    [66] Mitchell J.T.,Land L.S.,Miser D.E.Modern marine dolomite cement in a Jamaican fringingreef[J].Geology,1987,15:557~560.
    [67] Mohamed El Tabakh,Cherdsak Utha-Aroon,John K.Warren,B.Charlotte Schreiber,Origin ofdolomites in the Cretaceous Maha Sarakham evaporitesof the Khorat Plateau,northeastThailand[J].Sedimentary Geology,2003,157:235~252.
    [68] Moore C H. Carbonate reservoirs:porosity evolution and diagenesisin a sequence stratigraphicframework[J].Developments in Sedimentology,2001,55:1~423.
    [69] Mountjoy EW,Green D,Machel HG,etal. Devonian matrix dolomite sand deep burial carbonatecements:a comparison between the Rim bey Meadow brook reef trend and the deep basin ofwest~central Alberta[J].Bulletin of Canadian Petroleum Geologists,1999,47:487~509.
    [70] Murray,R.C..Origin of porosity in carbonate rocks[J].J.Sediment.Petrol.,1960,30:59~84.
    [71] P.G.Flood,J.A.Fagerstrom,F. Rougerie,Interpretation of the origin of massive replasive dolomitewithin atolls and submerged carbonate platforms:strontium istopic signature ODP Hole866A,Rssolution Guyot,Mid~Pacific Mountains[J].Sedimentary Geology,1996,101:9~13
    [72] Purser,B.H. Dolomite porosity and reservoir properties of Middle Jurassic carbonates in the ParisBasin,France.In:P.O.Roehl and P.W.Choquette (Eds.),Carbonate Petroleum ReservoirsSpringer~Verlag/New York,1985:341~355.
    [73] Purser,B.H.,A.Brown,and D.M.Aissaoui. Nature,origins and porosity in dolomites,inB.Purser,M.Tucker,and D.Zenger,eds.,Dolomites[J].International Association of Sedimento-logists Special Publication,1994,21:283~308.
    [74] Qilong Fu,Hairuo Qing,Katherine M.Bergman,Dolomitized calcrete in the Middle DevonianWinnipegosis carbonate mounds,subsurface of south~central Saskatchewan,Canada,SedimentaryGeology,2004,168:49~69.
    [75] Regular Articles, Graham R,Davies,etal. Smith,Jr.Structurally cont rolled hydrothermal dolomitereservoir facies:An overview [J]. AAPG Bulletin,2006,90:1641~1690.
    [76] Russel S.D.,Mahmoud Akbar,Badarinadh Vissapragada and Cordon M.Walkden,Rock types andpermeability prediction from dipmeter and image logs:Shuaiba,reservoir (Aptian), AbuDhabis[J].AAPG Bulletin,2002,86(10):1709~1732.
    [77] Ruzyla K., G.M. Friedman. Factors controlling porosity in dolomite reservoirs in the OrdovicianRed River Formation,Cabin Creek field,Montana,in P.O.Roehl and P.W.Choquette,eds.,Carbonatepetroleum reservoirs[J].New York,Springer~Verlag,1985:39~69.
    [78] S.J.Mazzullo, P.M.Harris. Mesogenetic Dissolution:Its Role in Porosity Development inCarbonate Reservoirs [J].AAPG Bulletin,1992,76(5):607~620.
    [79] Schmoker J.W. Empiricai relation between carbonate porosity and thermal maturity:an approachto regional porosity prediction[J].Amer. Assoc. Petrol. Geol. Bull.1984,68:1697~1703.
    [80] Schmoker J.W., R.B.Halley.Carbonate porosity versus depth:a predictable relation for southFloridan[J].AAPG Bulletin,1982,66:2561~2570.
    [81] Shinn EA,Cinsburg RN,Lloyd RM. Recent supratidal dolomite from AndrosIsland,Bahamas//Pray LC,Murry RC. Dolomitization and limestone diagenesis[J]. Society ofEconomic Paleontologist sand Mineralogists,Special Publication,1965,13:112~123.
    [82] Smith L B. Origin and reservoir characteristics of upper Ordovician Trenton~black riverhydrothermal dolomite reservoirs in New York[J].AAPG Bulletin,2006,90(11):1691~1718.
    [83] Steven D. Hood,Campbell S.Nelson,Peter J.J.Kamp,Burial dolomitisation in a non~tropicalcarbonate petroleum reservoir:the Oligocene Tikorangi Formation,Taranaki Basin,NewZealand[J].Sedimentary Geology,2004,172:117~138.
    [84] Sun S.Q. Dolomite reservoirs:porosity evolution and reservoir characteristics,AAPGBulletin,1995,79(2):186~204
    [85] Tucker,M.,Wright,V.P.Carbonate Sedimentology[M].Blackwell Scientific Publications, Oxford,1990:482.
    [86] W.Blendinger,Sea level changes versus hydrothermal diagenesis:origin of Triassic carbonateplatform cycles in the Dolomites,Italy[J].Sedimentary Geology,169,(2004):21~28
    [87] Warren J. Dolomite occurrence,evolution and economically important associations[J]. Earth~Science Review,2000,52:1~81.
    [88] Weyl,P.K..Porosity through dolomitization:conservation of mass requirements[J]. J.Sediment.Petrol.1960,30:85~90.
    [89] WIERZBICKI R,DRAVIS J J A,etal. Burial dolomitization and dissolution of Upper JurassicAbenakiplatform carbonates,Deep Panuke reservoir,Nova Scotia,Canada[J].AAPG Bulletin,2006,90(11):1843~1861.
    [90] Wilson M E J,Evans M J,Oxtoby N H, etal. Reservoirquality,textural evolution,and origin offault~associated dolomites[J].AAPG Bulletin,2007,91(9):1247~1272.
    [91] Zenger D H,Dunham J B,Et hington R I.Concepts and models of dolomitization [M].Tulsa:Spec.Publ. SEPM,1980,28:320.
    [92] ZhaoWenzhi,Zhang Shuichang, Li Maowen,etal. Advances in natural gas geochemistry ofChinese sedimentary basins[J].Organic Geochemistry,2005,36(12):15812~1582.
    [93]艾华国,兰林英等.塔里木盆地不整合面下的碳酸盐岩成岩作用及孔隙特征[J].新疆石油地质,1998,19(2):112~120.
    [94]曾国寿.石油地球化学[M].北京:石油工业出版社,1990.1.
    [95]陈代钊.构造~热液白云岩化作用与白云岩储层[J].石油与天然气地质,2009,29(5):614~622
    [96]陈好寿.同位素地球化学研究[M].杭州:浙江大学出版社,1994.8.
    [97]丁道桂,汤良杰等.塔里木盆地形成与演化[M].南京:河海大学出版社,1996.
    [98]樊太亮,塔里木盆地北部震旦系~古生界层序地层特征[J].石油与天然气地质,1997,8(2):120~127.
    [99]范嘉松.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J].地学前缘,2005,12(3):23~30.
    [100]冯增昭,鲍志东等.塔里木地区寒武纪岩相古地理[J].古地理学报,2006,8(4):427~439.
    [101]冯增昭.沉积岩石学[M].北京:石油工业出版社,1994.308
    [102]高志前,樊太亮等.塔里木盆地寒武—奥陶系碳酸盐岩台地样式及其沉积响应特征[J].沉积学报,2006,24(1):19~27.
    [103]顾家裕,朱筱敏,贾进华,等.塔里木盆地沉积与储层[M].北京:石油工业出版,2003.185~204
    [104]顾家裕等.塔里木盆地沉积与储层[M].北京:石油工业出版社,2003.
    [105]何登发,李德生.塔里木盆地构造演化与油气聚集[M].北京:地质出版社,1996.
    [106]何莹,鲍志东等.塔里木盆地牙哈~英买力地区寒武系~下奥陶统白云岩形成机理[J].地质学报,2006.12,24(6):806~814.
    [107]赫云兰,刘波,秦善.白云石化机理与白云岩成因问题研究[J].北京大学学报(自然科学版)网络版,2010,2:53~63
    [108]胡忠贵,郑荣才,文华国,等.川东邻水~渝北地区石炭系黄龙组白云岩成因[J].岩石学报,2008,24(6):1369~1378
    [109]胡忠贵.川东_渝北地区石炭系白云岩成因与成岩系统研究[D].成都:成都理工大学沉积地质研究院,2009.
    [110]黄思静,石和,毛晓冬,等.重庆秀山寒武系锶同位素演化曲线及全球对比[J].地质论评,2002,48(5):509~516.
    [111]黄思静,石和等.早古生代海相碳酸盐的成岩蚀变性及其对海水信息的保存性[J].成都理工大学学报(自然科学版),2003.2,30(1):9~17.
    [112]黄思静.碳酸盐岩的成岩作用[M].北京:地质出版社,2010.
    [113]黄文辉,杨敏等.塔中地区寒武系~奥陶系碳酸盐岩Sr元素和Sr同位素特征[J].地球科学~中国地质大学学报,2006.11,31(6):839~844.
    [114]贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    [115]贾振远,郝石生.碳酸盐岩油气形成和分布[M]..北京:石油工业出版社,1989
    [116]焦存礼,何治亮,邢秀娟等.塔里木盆地构造热液白云岩及其储层意义[J].岩石学报,2011,27(1):277~284
    [117]焦存礼,邢秀娟,何碧竹等.塔里木盆地下古生界白云岩储层特征与成因类型[J].中国地质,2011,38(4):1008~10015
    [118]金之钧,朱东亚,胡文瑄,张学丰,王毅,闫相宾.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245~253
    [119]金之钧等.塔里木盆地构造~沉积波动过程[J].中国科学D辑地球科学,2005,35(6):530~539.
    [120]康玉柱等.中国新疆地区油气地质特征及资源评价[M].乌鲁木齐:新疆科技卫生出版社,2001.
    [121]李心清,万国江.碳酸盐岩氧、碳稳定同位素地球化学研究目前面临的几个问题[J].地球科学进展,1999,15(3):262~267.
    [122]李振宏,杨永恒.白云岩成因研究现状及进展[J].油气地质与采收率,2005,12(2):5~8
    [123]林会喜.济阳坳陷桩海地区下古生界白云岩储集空间形成机理[J].油气地质与采收率,2006,15(3):5~7,11.
    [124]林耀庭等,四川宣达盐盆富钾富矿卤水地球化学特征及资源意义研究[J],盐湖研究,2004.3,12(1):8~17.
    [125]刘斌等.流体包裹体热力学[M].北京:地质出版社,1999.
    [126]刘国全,祝文亮等.碳酸盐岩储层特征测井评价[J].特种油气藏,2001,8(4),26~29
    [127]刘昊年,黄思静等.锶同位素在沉积学中的研究与进展[J].岩性油气藏,2007.9,19(3):59~63.
    [128]刘训,吴绍祖,傅德荣等.塔里木板块周缘的沉积~构造演化[M].乌鲁木齐:新疆科技卫生出版社,1997.
    [129]刘永福,桑洪,孙雄伟,等.塔里木盆地东部震旦~寒武白云岩类型及成因[J].西南石油大学学报:自然科学版,2008,30(5):27~31
    [130]楼雄英,许效松.塔里木盆地早古生代晚期构造一沉积响应[J].沉积与特提斯地质,2004,24(3):72~79.
    [131]卢焕章等.包裹体地球化学[M].北京:地质出版社,1990.
    [132]卢武长.稳定同位素地球化学[M].成都:成都地质学院,1986.5.
    [133]罗利,任兴国.测井识别碳酸盐岩储集类型[J].测井技术,1999,23(5):355~360.
    [134]马锋,许怀先,顾家裕,等.塔东寒武系白云岩成因及储集层演化特征[J].石油勘探与开发,2009,36(2):144~155
    [135]马永生.碳酸盐岩储层沉积学[M].北京:地质出版社,1999.
    [136]马永生.中国海相碳酸盐岩油气资源、勘探重大科技问题及对策[J].海相油气地质,2000,
    [137]梅博文译.储层地球化学(译文集)[M].西安:西北大学出版社,1992.
    [138]孟祥豪,张哨楠,蔺军.塔里木盆地塔深1井寒武系储层特征[J].四川地质学报,2010,30(1):31~34.
    [139]强子同.碳酸盐岩储层地质学[M].东营:石油大学出版社,1995.7.
    [140]桑树勋,郑永飞,张华,等.徐州地区下古生界碳酸盐岩的碳、氧同位素研究[J].岩石学报,2004,20(3):707~717.
    [141]邵龙义,何红,彭苏萍,等.塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理[J].古地理学报,2002,4(2):19—30.
    [142]邵龙义.碳酸盐岩氧、碳同位素与古温度等的关系[J].中国矿业大学学报,1994,23(1):39~45.
    [143]沈昭国,陈永武,郭建华.塔里木盆地下古生界白云石成因机理及模式探讨[J].新疆石油地质,1995,16(4):319~323
    [144]石昕,戴金星,赵文智.深层油气藏勘探前景分析[J].中国石油勘探,2005,10(1):1~10.
    [145]孙健,董兆雄,郑琴等,白云岩成因的研究现状及相关发展趋势,海相油气地质,2005.7,10(3).
    [146]孙龙德.塔里木含油气盆地沉积学研究进展[J].沉积学报,2004,22(3):408~416.
    [147]孙省利,曾允孚.西成矿化集中区热水沉积岩物质来源的同位素示踪及其意义[J].沉积学报,2002,20(1):41~46.
    [148]汤朝阳等.白云石化作用及白云岩问题研究述评[J].东华理工学院学报,2006.9,205~211
    [149]王大锐.油气稳定同位素地球化学[M].北京:石油工业出版社,2005.5.
    [150]王勤聪,李宗杰等.塔河油田碳酸盐岩储集层地球物理识别模式[J].新疆石油地质,2002,23(15):400~401.
    [151]王兴志,张帆,蒋志斌,等.四川盆地东北部飞仙关组储层研究[J].地学前缘,2008,15(1):117~122.
    [152]王勇.“白云岩问题”与“前寒武纪之谜”研究进展[J].地球科学进展,2006,8(21):858~862.
    [153]魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1988.3.
    [154]魏历灵,农社卿,胡国山.测井资料在碳酸盐岩储层评价中的应用[J].新疆地质,2005,23(1):73~78.
    [155]吴仕强,朱井泉,王国学,等.塔里木盆地寒武~奥陶系白云岩结构构造类型及其形成机理[J].岩石学报,2008,24(6):1390~1400.
    [156]邢凤存,张文淮,李思田.热流体对深埋白云岩储集性影响及其油气勘探意义塔里木盆地柯坪露头区研究[J].岩石学报,2011,27(1):266~276
    [157]徐国强,刘树根等.塔中、塔北古隆起形成演化及油气地质条件对比[J].石油与天然气地质,2005,26(1):115~119.
    [158]许效松,汪正江等.塔里木盆地早古生代构造古地理演化与烃源岩[J].地学前缘,2005,12(3):50~57.
    [159]薛叔浩,刘雯林,薛良清,等.湖盆沉积地质与油气勘探[M].北京:石油工业出版社,2002:1~20.
    [160]杨宁,吕修祥,郑多明.塔里木盆地火成岩对碳酸盐岩储层的改造作用.西安石油大学学报(自然科学版),2005,20(4):1~4.
    [161]叶德胜,王根长,林忠民等.塔里木盆地北部寒武—奥陶系碳酸盐岩储层特征及油气前景[M].成都:四川大学出版社,2000.
    [162]叶德胜,王恕一,张希明等.新疆塔里木地北部储层沉积、成岩特征及储层评价[M].成都:成都科技大学出版社,1995.
    [163]叶德胜.塔里木盆地北部寒武~奥陶系碳酸盐岩的深部溶蚀作用[J].沉积学报,1994,12(1):66~71.
    [164]叶德胜.塔里木盆地北部丘里塔格群(寒武系至奥陶系)白云岩的成因[J].沉积学报,1992,10(4):77~86.
    [165]叶德胜.塔里木盆地北部震旦系至奥陶系白云岩的岩石学及地球化学特征[J].地球化学,1993,3:1~9.
    [166]于炳松,陈建强等.塔里木盆地奥陶系层序地层格架及其对碳酸盐岩储集体发育的控制[J].石油与天然气地质,2005,26(3):305~309.
    [167]于炳松,塔里木盆地北部寒武—奥陶纪层序地层格架[J].矿物学报,1996,16(3):298~303.
    [168]翟晓先,顾忆,钱一雄,等.塔里木盆地塔深1井寒武系油气地球化学特征[J].石油实验地质,2007,7(7):329~333.
    [169]翟晓先,漆立新.塔河油田勘探实践与面临的挑战[G]//翟晓先.塔河油气田勘探与评价文集.北京:石油工业出版社,2006:1~9.
    [170]张景廉,金之钧,杨雷等.塔里木盆地深部地质流体与油气藏的关系[J].新疆石油地质,2001,22(5):371~375.
    [171]张景廉等.热液烃的生成与深部油气藏[J].地球科学进展,2000.10,15(5):545~550.
    [172]张静,见义,罗平等.深埋优质白云岩储集层发育的主控因素与勘探意义[J].石油勘探与开发,2010,37(2):203~210.
    [173]张婷婷,刘波,秦善.川东北二叠系~三叠系白云岩成因研究[J].北京大学学报:自然科学版,2008,44(5):799~809.
    [174]张新华,黄文辉,王安甲,等.塔里木盆地下古生界白云岩储层发育控制因素分析[J],西北大学学报(自然科学版),2009,39(2):287~292.
    [175]张学丰,刘波,蔡忠贤等.白云岩化作用与碳酸盐岩储层物性[J].岩石学报,2010,29(3):80~85.
    [176]张学丰等.白云岩成因相关问题及主要形成模式[J].地质科技情报2006.9,25(5):32~38.
    [177]赵澄林,朱筱敏.沉积岩石学[M].3版.北京:石油工业出版社,200l.
    [178]赵文智,张光亚,何海清等.中国海相石油地质与叠合盆地[M].北京:地址出版社,2002.
    [179]赵雪凤,朱光有,刘钦甫,等.深部海相碳酸盐岩储层孔隙发育的主控因素研究[J].天然气地球科学,2007,18(4):514~521.
    [180]郑和荣,吴茂炳,邬兴威,等.塔里木盆地下古生界白云岩储层油气勘探前景[J].石油学报,2007,28(2):1~8.
    [181]郑荣才,胡忠贵,冯青平,等.川东北地区长兴组白云岩储层的成因研究[J].矿物岩石,2007,27(4):78~84.
    [182]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    [183]周世新,王先彬,妥进才,等.深层油气勘探现状和研究进展[J].天然气地球科学,1999,10(6):1~8.
    [184]朱井泉,吴仕强,王国学,等.塔里木盆地寒武一奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67~79.
    [185]朱莲芳.中国天然气碳酸盐岩储层形成的成岩模式[J].沉积学报,1995,13(2):140~149.
    [186]朱如凯,郭宏莉,高志勇,等.中国海相储层分布特征与形成主控因素[J].科学通报,2007,52:40~45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700