用户名: 密码: 验证码:
鲁西北地区地下热水的水文地球化学特征及形成条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲁西北地区是山东省地热资源最丰富的地区。本区总体上为以热传导为主的大地热流作用机制下形成的低、中温地热资源。
     本文对研究区地下热水水文地球化学特征、水—岩作用程度及地下热水形成的水文地球化学过程进行了分析研究,研究区地下热水的水文地球化学特征具有明显的分带性:①阳谷—齐河凸起岩溶地下热水,水—岩作用尚未达到平衡状态,还处于未饱和水阶段;水—岩作用主要表现为石膏和岩盐的溶解,地下热水矿化度逐步升高、水化学类型由SO_4-Ca水逐步演化为Cl·SO_4-Na·Ca水。②济阳—临清拗陷砂岩类孔隙地下热水大都位于局部平衡区,水—岩作用程度有所提高,但尚未达到平衡状态;水—岩作用主要表现为岩盐溶解和阳离子交换吸附等,矿化度增高,水化学类型演化为Cl -Na水为主。
     研究区地下热水的δD为-49.9‰~-90.67‰,δ~18O为-8.0‰~-10.6‰,均分布在全球雨水线和当地雨水线的附近,说明该区地下热水主要是来自于其东南部海拔在256m~441m以上的泰山山脉及其周边山区的大气降水入渗,经过较远距离径流加热后形成的;脱硫系数以及各水样的Schoeller图等也说明地下热水主要为大气降水成因。根据地下热水的~2H过量参数d值及矿化度、特征参数等,评价了地下热水的可更新能力。
     本文在综合分析研究地下热水的水动力场、水温度场、水化学场的基础上,概括了研究区地下热水的形成条件及水文地质概念模型。根据所处构造位置、水动力场等水文地质条件的不同及地下热水中有无冷、热水混合现象将研究区岩溶地下热水流动系统区分出循环型和封闭型局部地下热水流动系统。在冷、热水的混合条件较好地段,地下热水的可更新能力较强,形成循环条件较好型地下热水,以矿化度较低为主要特征(以济南北地热田西段为代表)。在冷、热水的混合条件较差地段,地下热水的可更新能力较弱,形成循环条件较差型地下热水,以矿化度较高为主要特征(以济南北地热田东段为代表)。聊城东地热田不存在冷、热水的混合现象,形成封闭型地下热水流动系统,水岩作用程度相对较高,~18O漂移较明显,地下热水的可更新能力较济南北地热田弱。
     拗陷区孔隙地下热水所处水动力环境为华北盆地内部的径流滞缓带。由于热水被封存于缺氧的封闭水文地球化学环境中,在漫长的地质历史演化过程中热水的水化学类型趋于一致,以Cl-Na水为主,地下热水的可更新能力差。而在凹陷边缘处于构造密集区的圈闭型地下热水由于含有一部分来自盆地中心的与热储同层位或深部地层的沉积成因水,矿化度、主要组分和微量元素含量显著增高,地下热水的可更新能力很差。
Northwestern Shandong Province is the richest geothermal resources area. The whole area is dominated by the low, medium temperature geothermal resources formed in the mechanism of heat flow by thermal conduction chiefly.
     Hydrogeochemical characteristics of geothermal water, water-rock interaction and the formation process of geothermal water in the study area were analysed and studyed, and hydrogeochemical characteristics was founded obviouly zonated:①For Yanggu - Qihe raised karst geothermal water, water - rock interaction has not yet reached the equilibrium state, but also in the "immature water" stage; with the dissolution of gypsum and rock salt as the main water-rock interaction, salinity of geothermal water gradually increased and water chemistry type is represented by SO_4-Ca water and gradually evolved into Cl ? SO_4-Na ? Ca water.②Jiyang - Linqing depression sandstone pores mostly in the local balance area, the water - rock interaction improved but not yet reached the equilibrium state; the principal water– rock interaction was salt dissolution and cation exchange adsorption, and salinity increased and water chemistry evolution was by Na-Cl primarily.
     Hydrogen and oxygen isotopic compositions of the study area's geothermal water were distributed nearby the global and local water line withδD value from -49.9‰to -90.67‰,andδ~18O from-8.0‰to -10.6‰, indicating that geothermal water was from rainfall infiltration after a long distance heating,which was from the southeastern Taishan Mountains with 256m ~ 441m high and the surrounding mountains. In addition, desulfurization coefficient and the Schoeller diagram of the underground water, also shown the main causes of atmospheric precipitation. According to d value ,the excess parameter of ~2H,degree of mineralization and characteristic parameters ,the renewal ability of the underground water was evaluated .
     Based on comprehensive analysis and study on hydrodynamic field、hydro-temperature field and chemical field of geothermal water, this paper summarized formation conditions and hydro-geological conceptual model of geothermal water in the study area. According to the differences of hydrogeology condition including structural situation and hydrodynamic field and with or without mixing phenomena of cold and hot water , karst geothermal water flow system in the study area can be divided into recycling-based and closed geothermal water flow system.In the hot and cold water mixed better area, geothermal water had stronger renewal ability and better circle condition with low salinity (as the west section of Jinan north geothermal field representative) as main characteristics ,while in the hot and cold water mixed badly area, geothermal water had weaker renewal ability and worse circle condition ,with high salinity (as the east section of Jinan north geothermal field representative) as main characteristics . Without mixing phenomena of cold and hot water in geothermal field in east Liaocheng, geothermal water formed closed geothermal water flow system., where water-rock interaction was relatively high and ~18O drifted significantly, updated capacity of geothermal water was poorer than that in north Jinan.
     Hydrodynamic environment of pore water in concave field was slowness flow zones of internal north china basin. Because geothermal water was preserved in anoxic and closed hydrogeochemical environment and hydrochemistry type of geothermal water tended to be uniform by Na-Cl primarily in long geological evolutionary history, the renewal ability of geothermal water was weak.. For trap geothermal water of fault concentrated belt on the marginal parts of the depression, salinity, main components and trace element increased obviously, because one part of trap geothermal water was sedimentary genesis, which was from the center of the basin and in the same horizon as the geothermal reservoir or deep formation , and the renewal ability of geothermal water was correspondingly weak.
引文
Ahmad M,Akram W, Hussain S D,et al. Origin and subsurface history of geothermal water of Murtazabad area,Pakistan: an isotopic evidence. Applied Radiation and Isotopes,2001,55:731-736
    Aires-Barros L,Marques J M,Graga R C,et al. Hot and clod CO2-rich mineral waters in Chaves Geothermal area(northern Portugal). Geothermics,1998,27(1):89-107
    Aquilina L,Ladouche B,Doerfliger N,et al. Origin,evolution and residence time of saline thermal fluids(Balaruc springs,southern France):implications for fluid transfer across the continental shelf. Chemical Geology,2002,192:1-21
    Baradacs E,Hunyadi I,Dezso Z,et al. 226Ra in geothermal and bottled mineral waters of Hungary. Radiation Measurements,2001,34:385-390
    Bianchini G,Pennisi M,Cioni R,et al. Hydrochemistry of the high-boron groundwaters of the Cornia aquifer(Tuscany,Italy).Geothermics,2005,34:297-319
    Bolognesi L. A tentative correlation between seismic activity and changes in the composition of thermal waters on volcano island,Italy. Geothermics,1997,26(3):379-392
    Bowers T S,Jackson K J,Helgeson H C.1994.Equilibrium activity dlagrams for coexisting minerals and aqueous solutions at pressures and temperatures to 5 kb and 600℃.Springer-Verlag.Berlin Heidelderg,New York Tokyo,1~10.
    Brown K L and Simmons S F. Precious metals in high-temperature geothermal systems in New Zealand. Geothermics,2003,32:619-625
    Capasso G,Alessandro W D,Favara R,et al. Interaction between the deep fluids and the shallow groundwaters on Vulcano island(Italy). Journal of Volcanology and Geothermal Research.2001 ,108:187-198
    Carrillo- Rivera J J,Cardona A and Moss D. Importance of the vertical component of groundwater flow: a hydrogeochemical approach in the valley of San Luis Potosi,Mexico. Journal of Hydrology,1996,185:23-44
    Ceron J C,Martin-Vallejo M and Garcia-Rossell L.CO2-rich thermomineral groundwater in the Betic Cordilleras,southeastern Spain:Genesis and tectonic implications. Hydrogeology Journal,2000,8:209-217
    Cortecci G,Dinelli E,Bolognesi L,et al. Chemical and isotopic compositions of water and dissolved sulfate from shallow wells on Vulcano Island,Aeolian Archipelago,Italy. Geothermics,2001,30:69-91
    Davis D W and Krogh T E. Preferential dissolution of 234U and radiogenic Pb fromα-recoil-damaged lattice sites in zircon: implications for thermal histories and Pb isotopic fraetionation in the near surface environment. Chemical Geology,2000,172:41-58
    Delmelle P,Kusakabe M,Bernard A,et al. Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano,Luzon,the Philippines. Bull Volcanol,1998,59:562-576
    Diamond R E and Harris C. Oxygen and hydrogen isotope geochemistry of thermal springs of the Western Cape,South Afriea:recharge at high altitude? Journal of African Earth Sciences,2000,31(3/4):467-481
    Dilsiz C. ConcePtual hydrodynamic model of the Pamukkale hydrothermal field,southwestern Turkey,based on hydrochemical and isotopic data. Hydrogeology Journal,2005,14(4):562-572
    Ellis A J.Mahon W A J.1977.Geochemistry and geothermal systems:New York.Academic Press,1~52.
    Fara M,Chandrasekharam D and Minissale A. Hydrogeochemistry of Damt thermal springs,Yemen Republic. Geothermics,1999,28:241-252
    Favara R,Grassa F,Inguaggiato S,et al,Hydrogeochemistry and stable isotopes of thermal springs: earthquake-related chemical changes along Belice Fault(Western Sicily) Applied Geochemistry,2001,16:1-17
    Federico C,Aiuppa A,Allard P,et al. Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius,Italy. Geochimica et Cosmochimica Acta,2002,66(6):963-981
    Fournier R O.Geothermal Resources Council TRANSACTIONS,Ve1.14,Part~Ⅱ,1990, PP.1421~1425.
    Gemici U and Filiz S. Hydroehemistry of the Cesme geothermal area in western Turdey. Journal of Volcanology and Geothermal Research,2001,110:171-187
    Gemici U and Tarcan G. Hydrogeochemistry of the Simav geothermal field,western Anatolia,Turkey. Journal of Volcanology and Geothermal Researeh,2002,116:215-233
    Giggenbach W F, Reply to comment by P. Blattner:A Phantom of Isotopic Evolution of Water-Silicate System. Earth Planet. Sci. Lett., 1993,120, 519-522.
    Giggenbach W.F. Geothermal solute equilibrium. Derivation of Na-K-Mg-Ca geoindieatiors. Geochimica Cosmochimica Acta,1988(52),2749-2756
    Hedenquist J W. The thermal and geochemical structure of the Broadlands-Ohaaki geothermal system, Geothermics, 1990,19(2):151-185.
    Imbach T. Deep groundwater circulation in the tectonically active area of Bursa,Northwest Anatolia,Turkey. Geothermics,1997,26(2):251-278
    Kaygusuz K and Kaygusuz A.Geothermal energy in Turkey:the sustainable future. Renewable and Sustainable Energy Reviews,2004,8:545-563
    Kepinska B.Current state and prospects of geothermalenergy implementation in Poland. Applied Energy,2003,74:43-51
    Kononov V1. Geothermal Resources of Russia and Their Utilization. Lithology and Mineral Resources,2002,37(2):97-106
    Larsen D,Swihart G H and Xiao Y. Hydrochemistry and isotope composition of springs in the Tecopa basin,southeastern California,USA. Chemical Geology,2001,179:17-35
    Moller P,Dulski P,Savascin Y,et al. Rare earth elements,yttrium and Pb isotope ratios in thermal spring and well waters of West Anatolia,Turkey:a hydrochemical study of their origin. Chemical Geology,2004,206:97-118
    Mutlu H. Chemical geothermometry and fluid-mineral equilibria for the Omer-Gecek thermal waters,Afyon area,Turkey. Journal of Volcanology and Geothermal Research,1998,80:303-321
    Oue K,Ohsawa S and Yusa Y. Change in color of the hot spring deposits at the Chinoike-Jigoku hot pool,Beppu geothermal field. Geothermics,2002,31:361-380
    Portugal E,Birkle P,Barragan R M,et al. Hydrochemical-isotopic and hydrogeological conceptual model of the Las Tres Virgenes geothermal field,Baja California Sur,M6xico. Journal of Volcanology and Geothermal Research,2000,101:223-244
    Quattrocchi F,Pik R,Pizzino L,et al. Geochemical changes at the Bagni di Triponzo thermal spring during the Umbria-Marche 1997-1998 seismic sequence. Journal of Seismology,2000,4:567-587
    Reyes A G and Giggenbach W F. et al. Petrology and geochemistry of Alto Peak. A Vapor-Cored Hydrothermal system,Leyte Province,Philippines. Geothermics,1993,22(5/6):479-519
    Ruffa G L,Panichi C,Kavouridis T,et al. Isotope and chemical assessment of geothermal potentialof Kos Island,Greece. Geothermics,1999,28:205-217
    Stefansson A and Arnorsson S. Feldspar saturation state in atural waters. Geochimica et Cosmochimica Acta,2000,64(15):2567-2584
    Steinmuller K. Modern hot springs in the southern volcanic Cordillera of Peru and their relationship to Neogene epithermal precious-metal deposits. Journal of south American Earth Sciences,2001,14:377-385
    Stober I. and Bucher K. Deep groundwater in the crystalline basement of the Black Forest region. Applied Geochemistry,1999,14:237-254
    Sturchio N C,Ohsawa S,Sano Y,et al. Geochemical characteristics of the Yufuin outflow plume,Beppu hydrothermal system,Japan. Geothermics,1996,25(2):215-230
    Traganos G,Jux U and Steuber T. Isotopic characteristics of geothermal waters and fossil spring deposits in Mygdonia Basin,northern Greece. Geothermics,1995,24(1):61-80
    Truesdell,A.H.Effects of physical processes on geothermal fluids. Application of geochemistry in geothermal reservoir development. UNITAR/UNDP publication, Rome,1991:71-92.
    Varsanyi I and Matray J M. Hydrogeochemistry in two adjacent areas in the Pannonian Basin (Southeast-Hungary). Chemical Geology,1999,156:25-39
    Vengosh A,Helvaei C and Karamanderesi I H. Geochemical constraints for the origin of thermal waters from western Turkey. l Applied Geochemisty,2002,17:163-183
    Violette S,Ledoux E,Goblet F,et al. Hydrologic and thermal modeling of an active volcano: the Piton de la Fournaise,Reunion. Journal of Hydrology,1997,191:37-63
    Wang W,Zhang J and Hu G. Geochemical characteristics of modern hot springs from northwest Hunan, Science in China(Series B),1995,38(10):1261-1269
    Wang Y X and Shpeyzer G M. Genesis of thermal groundwaters from Siping`an district,China. Applied Geochemistry,1997,12:437-445
    Yesertener C and ElhatiP H. Evaluation of groundwater flow by means of dye-tracing techniques,Pamukkale Thermal Springs,Western Turkey. Hydrogeology Journal,1997,5(4)
    Yokoyama T,Nakai S,and Wakita H. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research,1999,88:99-107
    Zhao L. Experimental evaluation of a non-azeotropic working fluid for geothermal heat pump system. Energy Conversion and Management,2004,45:1369-1378
    Zhou Wenbin,Li Xueli,Shi Weijun.Water-rock intcraction in dischargc arcas of Xiangshan fossil hydrothcrmal system,south-eastern China. In: Kharaka & Chudacv (eds), Water-Rock Interaction. Rotterdam: A. A. Balkema.1995
    B.J.Merkel,B.Planer-Friedrich著.朱义年,王焰新译.地下水地球化学模拟的原理及应用.武汉:中国地质大学出版社,2005
    蔡春芳.沉积盆地流体—岩石相互作用研究的现状.地球科学进展,1996,11(6):575-579
    陈静生.水环境化学.北京:高等教育出版社,1987:83-84
    陈墨香,汪集旸,邓孝.中国地热资源及其开发潜力.新能源,1995,17(2):11-16
    陈墨香,汪集旸,邓孝.中国地热资源―形成特点和潜力评估.北京:科学出版社,1994:90-122
    陈墨香,汪集旸.中国地热研究的回顾和展望.地球物理学报,1994,37(增刊):320-338
    陈墨香.华北地热.北京:科学出版社,1988:94-103
    陈墨香.中国地热资源研究的进展.地球科学进展,1992,7(3):9-14
    陈宗宇.天津市塘沽低温热储回灌的水-岩相互作用地球化学模拟.地球科学-中国地质大学学报,1998,23(5):513-517
    邓晓颖,杨国平,田秋菊,等.河南省鹤壁市新区地热流体特征及成因分析.水文地质工程地质,2005,(2):111-114
    丁悌平.氢氧同位素地球化学.北京:地质出版社,1980,57-70
    董海洲,陈建生,陈亮.水岩相互作用中δD、δ~18O漂移成因分析及应用.中国地球物理.2003—中国地球物理学会第十九届年会论文集.南京:南京师范大学出版社,2003. 662-663
    段秀铭,王庆兵,赵玉喜.济南华山地质公园地质遗迹特征与开发保护研究.山东国土资源,2007,23(11):13-15
    方宝明.山东省地热资源综合信息远景预测:[博士学位论文].吉林:吉林大学,2006
    冯启言,韩宝平.任丘油田水文地球化学演化与水—岩作用研究.徐州:中国矿业大学出版社,2001
    高战武,徐杰,宋长青,等.华北沧东断裂的构造特征.地震地质,2000,22(4):395-403
    耿杰,游本跃.聊古一井地下流体场源兆异常特征及震情预测检验.防灾减灾工程学报,2005,25(3):325-328
    郭晓丽,李庆朝.聊城市地热资源的开发利用与保护.山东师范大学学报(自然科学版),2008,23(3):106-108
    郭晓丽,李庆朝.聊城市地热资源的形成及开发利用.中国煤炭地质,2008,20(7):35-37 国家地震局华北地球化学背景场课题组.华北地震水文地球化学研究.上海:上海科学技术文献出版社,1989:53-64
    黄可可,黄思静,佟宏鹏等.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义.地质通报,2009,28(4):474-482
    孔庆友,张天祯,于学峰,等.山东矿床.济南:山东科学技术出版社,2006:82-86
    赖树钦,王涛,卢晓华,等.福州盆地地热水微量元素特征.地质科技情报,2008,27(2):80-84
    李常锁,杨磊,高卫新,等.济南北部地热田地热地质特征浅析.山东国土资源,2008,24(4):35-39
    李春光.论山东东营、惠民盆地油田水与油气聚集关系.地质论评,1994,40(4):340-346
    李锋,孔庆友,张天祯,等.山东地勘读本.济南:山东科学技术出版社,2002:213-215
    李广贺.含油气沉积盆地深部地下水水化学场分布特征研究.长春地质学院学报,1995,25(1):52-57
    李明诚,李剑,万玉金,等.沉积盆地中的流体.石油学报,2001,22(4):13-17
    李庆朝,李贵民.聊城大学地热井成热条件及其开发利用.聊城大学学报(自然科学版),2005,18(2):46-49
    李庆朝,孙淑杰,郭晓丽.山东省聊城市城区地下热水地质特征.聊城大学学报(自然科学版),2008,21(2):85-88
    刘春华,杨丽芝.山东临清市地热地质条件分析及地热概念模型.分析研究,2008,3(1):27-30
    刘久荣,潘小平,杨亚军,等.北京城区地热田某地热井热水地球化学研究.现代地质,2002,16(3):318-321
    刘善军.山东地下热水资源的形成与开发前景.山东地质.1997,13(2):48-51
    刘善军.山东省温泉分布规律及地下热水资源预测.山东地质.2001,14(2):34
    刘英俊,曹励明,李兆麟,等.元素地球化学.北京:科学出版社,1984
    楼章华,朱蓉,金爱民等.东营凹陷地下水动力场的形成与演化.地质科学,2003,38(1):85-96
    卢政峰,张美芝,马晓东.聊城西部地热田地热流体特征及开发利用.山东国土资源,2008,24(6):49-52
    鲁雪松,鲁红利,蒋有录等.东濮凹陷兰聊断裂带流体活动的证据.断块油气田,2007,14(2):12-13
    马晓东,陆荣莉,周长祥,等.山东聊城西部地热田地热地质特征.山东国土资源,2007,23(6-7):24-28
    马晓东,周长祥,王强,等.聊城东部地热田地质特征研究.山东科技大学学报,2008,27(4):16-20
    马振民,何江涛,魏加华.鄄城地下热水的化学特征及形成机理.勘察科学技术,1999,(4):18-21
    马振民,何江涛,张锡明.菏泽凸起地下热水的水文地球化学特征及成因分析.山东地质,2000,16(2):24-30
    马致远,王心刚,苏艳,等.陕西关中盆地中部地下热水H、O同位素交换及其影响因素.地质通报,2008,27(6):888-894
    马致远.环境同位素地下水文学.西安:陕西科技出版社,2004
    满红梅,叶加仁,李令喜,等.东濮凹陷西部斜坡带油田水特征及其油气地质意义.地质科技情报,2009,28(3):67-72
    任书才,赵虹.宁津县城区地热资源开发前景分析.地热能,2004,(2):20-23
    任书才.济南北部地区地热地质条件分析,地热能,2003(4):12-15
    尚敏,易武,张兰新.济南北部地区地热资源形成条件研究.三峡大学学报(自然科学版),2008,30(4):22-25
    沈照理,王焰新.水-岩相互作用研究的回顾与展望.地球科学-中国地质大学学报,2002,27(2):127-133
    沈照理,钟佐燊,文冬光,汪民.地质流体研究进展-1993年国际地质流体会议剖析.地球科学进展,1994,9(3):43-47
    沈照理.水文地球化学基础.北京:地质出版社,1986,97-135
    沈照理.水文地质学.北京:科学出版社,1985,723-800
    沈照理.应该继续重视与开展水-岩相互作用的研究.水文地质工程地质,1997,(4):16-20
    史忠民,李传磊,程秀明,等.济北地热田地质特征.山东国土资源,2005,21(11):39-41
    宋明春.山东省大地构造格局和地质构造演化:[博士学位论文].北京:中国地质科学院,2008.
    苏艳,马致远,刘方,等.西安、咸阳地下热水氘过量参数研究.煤田地质与勘探.2007,35(3):39-41
    孙爱群,牛树银.地幔热柱演化及其地热效应—华北地热异常的深部构造背景.地球学报,2000,21(2):182-188
    孙向阳.沉积盆地中地层水化学特征及其地质意义.天然气勘探与开发,2001,24(4):47-53
    孙占学,李学礼,史维浚.江西中低温热水的同位素水文地球化学.华东地质学院学报,1992,15(3):243-248
    万军伟,刘存富,晁念英,等.同位素水文学理论与实践.武汉:中国地质大学出版社,2003.
    汪蕴璞,林锦璇,李翠霞,等.黄骅含油气裂谷盆地第三系地下水化学场及其形成演化模式.地球学报,1998,19(3):271-279
    王大纯,张人权,史毅虹,等.水文地质学基础.北京:地质出版社,1995,53-66
    王大锐.油气稳定同位素地球化学.北京:石油工业出版社,2000,104-122
    王怀颖,袁志梅,王瑞久,等.岩溶地下水流系统和同位素地球化学研究.北京:地质出版社,1994:18-37
    王基华,林元武,刘成龙,等.张家口南部地区温泉形成的氢氧稳定同位素及气体组成证据.水文地质工程地质,2000,(4):30-33
    王奎峰,母国研,赵群.临清市区地热资源特征及开发探讨.地质调查与研究,2007,30(3):224-229
    王奎峰,宋国新,郭常来.聊城地区地热资源赋存特征研究.华南地质与矿产,2007,(4):72-77
    王奎峰.聊城西部地热田地热资源赋存特征研究.地质灾害与环境保护,2008,19(1):52-56
    王奎峰.山东省聊城市东部地热田地热资源特征.中国地质,2009,36(1):194-201
    王奎峰.山东莘县凹陷(聊城段)地下热水化学特征及成因.岩土工程技术,2009,23(2):90-94
    王维勇译自.B.B.汉肖,W.巴克.Contemporary Hydrogeology.1979
    王心义,周廷强,林建旺,等.塘沽地热系统水化学赋存环境.水文地质工程地质,2002,(6):4-7
    王学潮,向宏发.聊城—兰考断裂综合研究及黄河下游河道稳定性分析.郑州:黄河水利出版社,2001.
    王学聚,吕子强,刘瑞峰,等.聊古1井氮氦比动态异常与中强地震关系的研究.华北地震科学,2008,26(2):32-34
    王彦俊,刘桂仪,胡松涛.鲁北地区地热资源区划研究.地质调查与研究,2008,31(3):270-277
    王彦俊,王贞国,王岩,等.德州市地热资源开发与保护.山东国土资源,2005,21(5):31-35
    王莹,周训,于湲,等.应用地热温标估算地下热储温度.现代地质,2007,21(4):605-612
    魏菊英,王关玉.同位素地球化学.北京:地质出版社,1988,118-124
    文冬光,沈照理,钟佐燊.地球化学模拟及其在水文地质中的应用.地质科技情报,1995,14(1):99-104
    文冬光.水—岩相互作用的地球化学模拟理论及应用.武汉:中国地质大学出版社,1998.
    吴泉源.聊城地区地热地质条件浅析及钻井设计建议.山东师大学报(自然科学版),1999,14(4):409-413
    邢立亭,徐军祥,张伟.济南泉域岩溶地下水环境演化及保泉对策研究.见:山东省地矿局编.山东省环境地质文集.北京:地质出版社,2007:31-37
    邢作云,邢集善,赵斌.华北地区深部构造特征.地质科技情报,2006,25(6):17-23
    徐军祥,康凤新.山东省地热资源.中国地质.1999,(9):30-31
    许树国,张伟.天津北部地区基岩地下水微量组份分布特征.工程勘察,1998,(4):40-42
    颜世强,刘桂仪,孟庆峰,等.德州市地热资源及开发利用.山东地质,2001,17(2):48-52
    颜世强,潘懋,邹祖光,等.山东德州凹陷地下热水地球化学特征及成因.中国地质,2007,34(1):149-152
    杨德平,刘鹏瑞.临清地热勘查中的大地电场岩性测深与测井曲线对比研究.山东国土资源,2006,22(4):37-40
    杨德平.山东临清地热田地热地质特征.山东国土资源,2005,21(8):27-31
    杨海霞,陈长峰,王鲁萍.物探方法在济南市鸭旺口地热普查中的应用效果.山东地质,2003,19(增刊):25-28
    杨丽芝,张光辉,胡乃松等.利用环境同位素信息识别鲁北平原地下水的补给特征.地质通报,2009,28(4):515-522
    杨庆锦,王招香.YW-Ⅲ型岩性测深仪在聊城地热勘查的效果.地质与勘探,2004,40(增刊):49-52
    杨绪充.济阳拗陷古水文地质条件与油气移聚.石油实验地质,1986,8(3):205-214
    姚足金.华北地热水3万年以来的古气侯记录.地球科学,1995,20(4):383-388
    姚足金,陈宗宇.低温地热系统水岩作用的实验研究.新能源,1995,17(4):9-14
    叶思源,孙继朝,姜春永.水文地球化学研究现状与进展.地球学报,2002,23(5):477-482
    叶思源,汪蕴璞,肖菲,等.黄骅含油气裂谷盆地古潜山地下水化学场及其形成演化模式.水文地质工程地质,2002,(6):12-16
    于翠玲,曾溅辉,林承焰,等.断裂带流体活动证据的确定.石油学报,2005,26(4):36-37
    袁道先.中国岩溶学.北京:地质出版社,1993,35-44
    曾溅辉.地下水地球化学模拟.地质论评,1993,39(6):490-495
    张保建,文冬光,沈照理,等.一种值得重视的地热资源概念模式—构造圈闭型地热资源.中国地质,2009,36(4):943-947
    张保建,徐军祥,马振民,等.运用氢氧同位素资料分析地下热水的补给来源——以阳谷-齐河凸起为例.地质通报,2010,29(4):603-608
    张保建.聊城市城区地热资源及开发利用.山东国土资源,2007,23(10):15~19
    张本仁,傅家谟.地球化学进展.北京:化学工业出版社,2005,288-293
    张宏达,汪珊,郭贵平,等.黄骅裂谷盆地第三系深层水成因.地球科学-中国地质大学学报,2002,27(2):127-133
    张人权.同位素方法在水文地质学中的应用.北京:地质出版社,1978:8-13
    张晓伦,梁杏,孙敬.奇村地热田水化学特征及其混合作用模拟.水文地质工程地质,2007,(6):95-99
    张兴乐.鲁北临盘地热资源特征及开发利用.山东地质,2002,18(6):44-45
    张永波.水工环研究的现状与趋势.北京:地质出版社,2001,115-123
    张增奇,刘明渭主编.山东省岩石地层.武汉:中国地质大学出版社,1996.
    张中祥,张海林.济南北部地热田开发与保护建议.地质调查与研究,2008,31(3):264-269
    赵海玲,王成,刘振文等.火山岩储层斜长石选择性溶蚀的岩石学特征和热力学条件.地质通报,2009,28(4):412-419
    郑西来,刘鸿俊.地热温标中的水-岩平衡状态研究.西安地质学院学报, 1996,18(1):74-79
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000,143-186
    中国科学院地球化学研究所.高等地球化学.北京:科学出版社,2000,243-282
    周海燕,周训,柳春晖,等.广东省从化温泉热矿水水化学与同位素特征.自然资源学报,2008,23(4):705-712
    周海燕,周训,姚锦梅.广东从化温泉的水文地球化学模拟.现代地质,2007,21(4):619-623
    周世海,杨询昌,梁伟,等.德州市城区地热水人工回灌试验研究.山东国土资源,2007,23(9):11-14
    朱炳球,朱立新,史长义,等.地热田地球化学勘查.北京:地质出版社.1992
    朱家玲,王坤,王东升.环境同位素在研究地热资源形成过程中的应用.太阳能学报,2008,29(3):263-266
    朱命和,付中,刘彦兵.应用地球化学方法讨论开封地热田地下热水的补给来源.物探与化探,2005,29(6):493-496
    朱友强,刘玉仙,孙丙伦.浅谈济南市某林场地热深井施工技术.西部探矿工程,2003,(4):123-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700