用户名: 密码: 验证码:
达纳康对慢性脑缺血大鼠的脑保护作用观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性脑缺血是指各种原因导致的长期的脑灌流不足,促使脑发生组织病理及生化改变,是血管性痴呆、Binswanger病、Alzheimer病等多种疾病发展过程中的一个共同病理过程。随着我国老龄人口比例增大,预防和治疗主要由慢性脑缺血带来的老年性疾病就具有了重大社会意义。脑组织慢性缺血时,神经突触发生了病理性改变,特别是胆碱类突触改变明显;自由基增多,其清除剂超氧化物岐化酶(SOD)下降,脂质过氧化物增多,其毒性代谢产物丙二醛(MDA)也相应升高,而MDA是一种毒性物质,可致细胞膜过氧化损伤,脑组织神经胶质细胞增多,其表达的胶质原纤维酸性蛋白(GFAP)即其标志性蛋白明显增多。达纳康是一种标准化银杏叶萃取物,其主要成分是黄酮糖苷、银杏苦内酯和白果内酯。药理学研究表明,达纳康能改善脑循环,增加脑的血流量、改善缺血脑的能量代谢、清除自由基、保护细胞膜的结构和功能的完整性,对缺血状态下的神经细胞有一定的保护作用。本实验以突触的超微结构、SOD、MDA、GFAP为指标观察达纳康对慢性脑缺血大鼠的脑保护作用,旨在为达纳康用于防治老年相关性疾病提供理论依据。
     材料与方法:(1)选健康Wistar大鼠80只,雌雄不拘,随机分为4组,每组20只。A组:对照组(假手术+溶剂);B组:单纯用药组(假手术+达纳康+溶剂);C组:单纯缺血组(缺血+溶剂);D组:缺血用药组(缺血+达纳康+溶剂)。非用药的对照组和单纯缺血组予0.5%羧甲基纤维素钠溶液3毫升,用药组予等量0.5%羧甲基
    
     郑州大学2004届硕士研究生毕业论文达纳康对慢性脑缺血大鼠的脑保护作用观察
    纤维素钠溶解均匀的达纳康(Zoom眺g)溶液。(2)模型的制作:缺血组双重丝线结
    扎双侧颈总动脉,对照组和单纯用药组仅分离双侧颈总动脉而不结扎。常规条件下饲
    养7周予以处死取标本。(3)电镜组鼠脱臼法处死后断头取脑,取海马部位标本IXI
     xZmm3大小放入4%戊二醛溶液固定,再经一系列后期处理,超薄切片(片厚约
    50nm),H一7500型电镜80KV下观察;生化指标组:脱臼法处死鼠,断头取脑研磨,
    制成10%脑组织匀浆,测SOD、MDA吸光光度值;免疫组化组:快速经主动脉生理
    盐水冲洗后4%多聚甲醛内固定,断头取脑放入4%多聚甲醛固定,常规石蜡包埋、
    切片,切片厚度约3腼,采用HE染色及免疫组化SABC法,检测海马CAI区GFAP阳性
    细胞数。(4)应用sPSS 10.0统计软件进行数据处理。统计方法用单因素方差分析并
    用LSD法进行两两比较,取a=0 .05作为检验水准。
     结果:(1)一般情况:术后大鼠均出现精神萎靡,反应迟钝,进食减少,术后
    l天假手术组鼠精神恢复,反应灵敏,进食增多。灌胃期间缺血组改善一直不明显。
     (2)电镜下见对照组和单纯用药组突触正常,无肿胀、间隙模糊。单纯缺血组
    见前、后膜肿胀,突触间隙模糊,突触后膜致密物增厚。缺血用药组突触前、后膜肿
    胀不明显。
     (3)SOD:A组:151.58士6.79:B组:156.90士6.02:C组:123.71士7.11:D
    组:134.49士8.15:MDA:A组:5.34士0.67:B组:5.14士0.58:C组:12.92士0.87:
    D组:8.14士0.73。两指标A、B组间均无显著性差异(P>0 .05),其余任两组间均有
    显著性差异(P<0 .01),表明达纳康对正常大鼠脑组织SOD活性和过氧化产物MDA的
    生成无明显影响;大鼠慢性脑缺血后SOD活性明显下降,MDA生成明显增多;达纳康
    治疗后SOD活性明显上升,MDA生成明显减少。
     (4)海马CAI区GFAP阳性细胞数:A组:30.90士3.67:B组:30.50士4.19:C
    组:51.30士7.94;D组:38.10士4.89。A、B组间无显著性差异(P>0 .05),其余任
    两组间均有显著性差异(P<0.01),表明达纳康对正常大鼠海马星形胶质细胞无明显
    影响,慢性脑缺血后星形胶质细胞大量增生、肥大,达纳康治疗后星形胶质细胞增生、
    肥大明显减轻。
     (5)各组病理切片HE染色观察:A、B组见少量神经元变性、死亡,细胞膜核
    膜溶解,大部分神经元细胞膜、核膜完整,形态正常。C组见大量变性、死亡细胞,
    细胞膜、核膜溶解、染色质消失。D组见变性死亡细胞较C组明显减少。说明达纳康
    
    郑州大学2004届硕士研究生毕业论文达纳康对慢性脑缺血大鼠的脑保护作用观察
    对正常大鼠神经元无明显作用,慢性脑缺血后大量神经元变性死亡,达纳康治疗减少
    了神经元变性死亡。
     结论:(l)本实验动物模型采用较为常用的双侧颈总动脉永久性结扎,保证鼠
    脑不完全性缺血,与人类慢性脑缺血相似。该模型简便有效,适合用来研究慢性脑缺血
    的病理形态学特点及进行疗效观察。
     (2)大鼠慢性脑缺血时,海马CAI区突触病态性改变,SOD活性明显下降,MDA
    大量产生,GFAP阳性星形胶质细胞大量增生、肥大,脑组织损害严重。
     (3)达纳康能减轻大鼠慢性脑缺血时海马CAI区突触损害,增强SOD活性,抑
    制MDA产生,减少星形胶质增生肥大数目。对正常大鼠无明显影响。
     (4)达纳康对大鼠慢性脑缺血有明显保护作用,能明显减轻慢性脑缺血带来的
    损害,为达纳康在临床应用、防治老年相关性疾病提供了理论依据。
Chronic cerebral hypoperfusion is chronic cerebrovascular insufficiency for a long time because of all kinds of reasons. It brings out histopathological and biochemical changes in brain ,which is a common pathological way in the period of many disease such as vascular dementia . Binswanger disease . Alzheimer disease .With the ratio of senile increasing in our country, prevention and treatment to diseases mainly from chronic cerebrovascular insufficiency is increasingly important. In the situation of cerebral hypoperfusion, pathological changes take place in nerve synapse, especially in cholinergic synapses. At the same time, free oxidate increases, SOD, its clearer, discreases, LPO increases with its toxic output -MDA increasing relatively. MDA is a kind of toxic matter, which can overoxidate cell membrane. Astrocytes increased, GFAP, their symbol protein, increased too. Tanakan is standard extract of ginkgo biloba. The main ingredient is ginkgolide and bilobalide. The research indicates that tanakan can im
    prove cerebrovascular cycle, improve energy metabolism, clear free oxidate, protect the intact of structure and ability of the cell membrane. Therefore ,it protects the neurons in hypoperfusion .The experiment research the protective effect of tanakan to cerebral hypoperfusion by observing microstructure of synapse . SOD. MDA. GFAP to support prevention and therapy senile diseases with tanakan.
    Materials and methods: (1) Selected 80 Wistar rats and distributed to 4 groups
    4
    
    
    randomly, regardless of male or female, 20 rats each group. Group A: controlled (sham operation plus solvent); group B: only treated (sham operation plus tanakan plus solvent); group C: only hypoperfusion (hypoperfusion plus solvent); group D: hypoperfusion and treatment (hypoperfusion plus tanakan plus solvent). Rats underwent permanent bilateral occlusion of the common carotid arteries (2VO) in groups C and D. Bilateral common carotid arteries were only isolated but not ligated in groups A and B. groups A and C swallowed 0.5% carboxymethyl cellulose sodium solution 3ml, groups B and D swallowed the same amount of tanakan (200mg/mg) disolved by 0.5% carboxymethyl cellulose sodium solution. All the rats after were raised in a usual way for 7 weeks, were decapitated. Hippocampus (1 1 2mm)of the rats used to be observed were taken out, then put into solution of 4% glutaral, after a series of treatments, insected to 50nm thick, observed them under 80 KV H-7500 electrolen. The rats used to detect S MDA were decapitated and taken out brains ,then grilled brains and made 10% solution, at last detect SO MDA . The rats used to immunohistochemical observed were shot saline in brain arties then shot with 4% polyformaldehyde solution to be fixed, sacrificed by decapitation, the brain tissue was removed, embed in paraffin and made immunohitochemical sections(3um thick).Using HE staining and immuniohistochemical SABC method, the number of GFAP -positive cells were detected. The data was handled with SPSSIO.O statistic software. The difference of every two groups was compared with one-way analysis of variance and LSD method, significant level is a =0.05.
    Results: (1). All the rats were in low spirits, reacted slowly, ate little after operation. The next day, sham groups recovered in spirits, reacted quickly and ate more, but hypoperfusion groups improved insignificantly in the period of treatment.
    (2). Synapes of groups A, B are good observed by electrolen, no swell at membranes of synapses and no blur in gaps between synapses .But in group C, the membranes of synapses are swollen, the gaps between synapes are blurry and matter increased at the promembrane. The membranes of synapses of group D are insignificantly swollen.
    (3). SOD: group A: 151.58+6.79 ; group B: 156.90+6.02; group C: 123.71 ?.11; group D: 134.49 + 8.15. MDA: group A: 5.35?.67; group B: 5.14?.58; group C: 12.92
    
    
    ?.87; group D: 8. 14 ?.73. The difference is significant (P<0.01) between every two groups except groups A and B in SOD and MDA, which indicated that tanakan has n
引文
1.谢元云,姚志彬.慢性脑缺血对青年和老年大鼠学习记忆的影响.中国行为医学科学,1998,7(4):253~255.
    2. Pest megyei onkormanyzat Flor Ferec Korhaza, Kistarcsa, Neuologiai Osztaly. Thepathological and clinical consequences of chronic cerebral hypoperfusion. Orv Hetil, 2001, 142(7): 323~329.
    3. Wang LM, Han YF, Tang XC. Huperzine A improves cognitive deficits caused by chronic cerebral hypoperfusion in rats. Eur J Pharmacol 2000,398(1):65~72.
    4. Hiroyuki K, Kyuya K, Liu XH, et al. Prograssive expression of immunomolecules on actived microglia and leukocytes following focal cerebral ischemia in the rats[J]. Brain Res, 1996, 734:203~212.
    5. Mirsky R, Fessen KR. Glial cells of the brain and peripheral nervous system: Some new perspectives. In: Cavanagh JB ed. Recent Advances in Neuropathology. New York: Churchill Livingstone, 1986,(3): 1~24.
    6. Travis J. Glia, the brain's other cells. Science 1994,266(1):970~972.
    7. Kimelberg HK, Norenberg MD. Astrocytes. Sientific American, 1989; 260: 44.
    8. Hil Felberg S, Melatch TK, Olive DL, et al. Cocurrcal loss and proliferation of astrocytes followowing laural fluid perfusion brain injury in the adult rat. J. Neurosci Res, 1999, 57: 271~279.
    9. Johnastac M, Caring A, Miller KM. A casual role for astrocytes in the inflammary response to beta amyloid; chemakiacs, cytokiacs and reactive paygta specific are produced. J. Neuroimmunal, 1999, 93: 182~193.
    10. Tretiakava A, Kryaska B, Cordon S, et al. Human acurotropic JC virus carly protein deregulatics glial cell cycle pathway and impairs cell differeation J. Neurosci Res, 1999, ss: s88~s99.
    11.袁华,龙华,李玲.康复训练对脑梗死大鼠皮质S-100,GFAP和Nestin表达的影响.物理医学与康复杂志,2003,25(9):520~523.
    
    
    12.刘瑞志,袁沛云,孙栋.达纳康治疗痴呆疗效观察.山东医药,1998,38(12):60.
    13. Nauyen E. IN Vitro hemorheological effect of standardized Ginkgo biloba extract(Egb 761). Inadvances in Ginkgo biloba Extract Reseach, Paris: Elseviet Press, 1994, 39.
    14. karchet L. Zagermann P. Krieglstein J. Effect of an extract of Ginkgo biloba on rat brain energy metabolis in hypoxia. Naunyn Schmiedeberg's Arch Pharmacol, 1993, 327: 31.
    15. Artmann M, Schikatski C. Ginkgo biloba Extract(EGb761)protects red blood cells from oxidative damage. In advances in Ginkgo biloba Extract Reseach, Paris: Elseviet press, 1993, 129.
    16. Spinnewyn B. Ginkgo biloba Extract(Egb761)protects against delayed neuronal death in gerbil. In Effects of Ginkgo biloba Extract(Egb761)on the central nervous system. Paris: Elsevier press, 1992,113.
    17. Yamada S, Ucbida S, Naito T, et al. Increase in receptorbinding affinity for nimodipine in the rat brain with permanent occlusion of bilateral carotid arteries [J]. Life Sci, 2000, 66(14): 1351~1357.
    18.张艳玲,李露斯,肖桃元等.血管性痴呆大鼠的突触超微结构改变及结构参数分析.第三军医大学学报.2002,24(3):264~266.
    19.李露斯,刘之荣,肖桃元.大鼠慢性脑灌流不足脑的病理组织学和超微结构变化[J].第三军医大学学报.1999,21(11):805~808.
    20. Sekhon LH, Spence I, Morgan MK, et al. Chronic cerebral hypoperfusion in the rat: temproral delineation of effects and in vitro ischemic shrehold [J]. Brain Res, 1995,704(1): 107~111.
    21. Kurumatani T, Kudo T, Ikura Y, et al. White matter changes in the brain under chronic cerebral hypoperfusion. Stroke 1998,29(5): 1058~1062.
    22. Ohat H, Nishikawa H, Kimura H, et al. Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats. Neuroscince, 1997, 79(4): 1039~1050.
    23. Hai J, Ding M, Guo Z, et al. Anew rat model of chronic cerebral hypoperfusion associated with arteriovenous.(J)Neurosurg, 2002, 97(5): 1198~1202.
    24. de la Torre JC, Fortin T, Park GA, et al. Chronic cerebraovascular insufficiency induces
    
    dementia-like deficits in aged rats. Brain Res, 1992, 582(2): 186~195.
    25.文夏玲,黄丽宜,黎延阳等.慢性脑缺血损伤后海马结构细胞形态的变化.广州师院学报.1999,21(5):29~30.
    26. Kondo Y, Ogawa N, Asanuma M, et al. Preventive effects of bifemelane hydrochloride on decreased levels of muscarinic acetylcholine receptor and its mRNA in a rat model of chronic cerebral hypoperfusion. Neuro Sci. 1996,24(4):409~414.
    27. Li YK, Wang YM, Zhong Y, et al. Zhongyao yaoli shiyan fangfaxue(The traditional Chinese medicine pharmacological experiment methodology). M J. Shanghai kexui jishu chubanse(shanghai science and technic publishing company),1991:78~90.
    28.江泉观,常元勋.近年中毒机制研究进展中若干问题.卫生毒理学杂志,1997,11(4):243~247.
    29.陈瑗,周玫,主编.自由基医学.北京.人民军医出版社,1991:147~149.
    30.金伯泉主编.细胞和分子免疫学.1995年4月出版:365.
    31.刘之荣,卞小红,李露斯.环孢霉素A防治慢性脑灌流不足致脑损害的机制研究.现代康复,2001,5(7):46~47.
    32. Tmimoto H, Akiguchi I. The role of immunologic reactionsin the pathogesis in Binswanger's disease; a clue to therapeutic approach. Rinsho Shinkeigaku, 1999, 39(1): 56~58.
    33. Takahiro Kurumatani, MD, PhD; Takashi Kudo, MD, PhD; Yasumitsu Ikura, MD, PhD, et al. White matter changes in the gerbil brain under chronic cerebral hypoperfusion. Stroke, 1998, 29: 1058~1062.
    34.李爱红.达纳康防治偏头痛疗效观察.交通医学,1999,13(2):270.
    35. Trosdemuge L, Le Poncin-Lafitte M, Rapin JR. Protective effects of Ginkgo biloba extract on early rupture of the blood brain barrier in rats. In Fiintgeld EW, ed. Recent Results in Pharmeacology and Clinic. New York, Springerverlag, 1994. 126~132.
    36.黄沛力,曾昭晖.银杏叶,山楂叶对氧自由基的清除作用.中国中药杂志,1996,21(4):245~246.
    37.吴竞,周君富.银杏叶制剂的抗氧自由基作用.急诊医学,1995,4(1):21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700