用户名: 密码: 验证码:
城市社区暴雨内涝灾害风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候变暖和城市化进程的加快,城市暴雨内涝已引起各国政府和学者的高度关注。社区作为组成现代城市的基本单元,在城市减灾降险中具有重要的基础作用。因此,以社区为基础的灾害风险管理成为近年来国际社会普遍认可并被实践证明是行之有效的管理灾害的理念与手段,而风险评估作为社区灾害风险管理的基础和前提则成为各国学者探讨的热点问题之一。本文以国家自然科学基金重点项目“沿海城市自然灾害风险应急预案情景分析(40730526)”和教育部人文社科青年基金项目“基于PGIS的社区灾害风险管理模式研究(11YJCZH241)”为依托,在实地考察和调研典型城市社区(上海普陀区金沙居委地区)暴雨内涝灾害及其风险管理现状,并获得大量文献资料和一手数据的基础上,综合运用PGIS方法、情景分析方法和概率统计方法开展了典型城市社区暴雨内涝灾害风险评估的实证研究。主要研究工作和结论如下:
     1.提出了城市社区暴雨内涝灾害风险评估的理论框架与方法体系。在对城市社区、暴雨内涝和灾害风险等基本概念进行分析与界定,并对灾害风险评估的相关理论进行梳理与分析的基础上,构建了城市社区暴雨内涝灾害风险评估的理论框架,认为城市社区暴雨内涝灾害风险评估就是在风险评估专家和当地不同利益相关者共同参与下,综合运用PGIS(参与式GIS)、情景分析和概率统计等方法,对研究区不同情景下的内涝灾害风险进行模拟、分析、评价与表达的全过程,主要包括风险识别、风险模拟和风险评价与表达等3个主要内容,分8个步骤完成。
     2.构建了城市社区暴雨内涝灾害风险评估模型。在全面分析城市暴雨内涝成因和参考已有内涝模型的基础上,构建了城市社区暴雨内涝灾害风险评估模型,主要包括内涝灾害数据库、城市社区暴雨内涝模型和城市社区风险模型等三个模块,并通过重建研究区2012年8月台风“海葵”的内涝灾情,验证并修正了模型参数,使模拟结果与实际情况较为吻合。
     3.对上海城市暴雨内涝灾害历史灾情进行了分析。基于历史灾情数据,对上海市近60年(1951-2010)来暴雨内涝的历史灾情进行了分析,结果表明:(1)城市自然环境受人为影响较大,主要表现为不透水面增大,地面沉降和水域面积减少,加上经济发达、人口众多和密布的城市基础设施,大大增加了涝灾风险;(2)从时间上看,暴雨内涝灾害发生数量总体呈现增长的趋势,且主要集中在6-8月,从空间上看,暴雨内涝灾害以中心城区最多,沿江沿海次之,内陆区县相对较少;(3)暴雨内涝灾害具有较强的扩散效应,其扩散的通道主要有城市生命线系统、产业链和生态环境系统等,且主要通过直链式扩散、直链发散式扩散、循环式扩散和发散式扩散等四种扩散方式对城市不同类型的承灾体产生影响。
     4.选取上海普陀区金沙居委地区为例,运用PGIS方法对研究区居民的暴雨内涝灾害风险认知进行了全面的分析。运用基于PGIS的半结构式问卷调查、访谈、实地测量等方法,对社区居民的暴雨内涝灾害风险认知进行了分析,主要包括风险知识、风险态度和风险行为等三方面的内容。分析结果表明:(1)社区居民认为暴雨内涝灾害每年平均发生3-4次,且多集中在7-9月份,主要影响集中在研究区中部区域;(2)社区居民认为当积水深度在脚踝及以下时(0-15cm),对家庭有一定的影响,在小腿肚及以下时(15-30cm),对家庭影响较大,超过小腿肚时(>30cm),对家庭影响最大;(3)一半以上居民认为内涝灾害形成是自然原因,所有居民在灾前、灾中和灾后均采取不同的措施,但均没有认识到或不重视排水管道的清理与疏通问题。
     5.运用情景分析方法对研究区暴雨内涝灾害风险进行了分析。基于ArcGIS软件,运用情景分析方法对研究区4种排水情景下(0mm/h,18mm/h,36mm/h和50mm/h)的8种重现期(5a,10a,30a,50a,100a,200a,500a和1000a)暴雨的内涝风险进行了模拟与分析,主要包括危险性分析,暴露分析和脆弱性分析等三部分内容。危险性分析表明:(1)所有内涝情景下,暴雨内涝危险性均集中在研究区中部的金沙新村和解放村,积水面积占研究区总面积的比例在0%-47.8%,最大积水深度在0-0.52m之间,但均随着暴雨重现期的增长而增加,随着排水量的增大而减小;(2)32个内涝灾害情景中,高危险性占21个,中危险性占9个,而低危险性仅占2个;(3)4种排水情景下,200a及以上重现期暴雨的内涝危险性均具有高危险性;(4)随着排水量的增大,暴雨内涝的中危险性年超越概率由100%减小为6.8%,高危险性年超越概率由26%减小为0.8%。暴露性分析表明:(1)各种内涝情景下,暴露的家庭数量最多的是791户,最少的为0户,但均位于研究区中部,建筑结构主要以砖木结构为主;(2)暴露家庭数量随着暴雨重现期的增长而增多,随着排水量的增大而减少,但减少的程度与重现期大小成反比;(3)在4种排水情景下,200a、500a和1000a一遇暴雨分别有30户、137户和216户家庭均暴露在高危险性区域,是防涝减灾中需要重点关注的对象。脆弱性分析表明:(1)研究区暴雨内涝的脆弱性主要体现在居民家庭的墙面、地板和室内财产等三个方面;(2)各种内涝情景下,绝大多数暴露家庭的的墙面损失率在0-0.06之间,地板损失率均为1;(3)只有高危险性内涝情景下部分暴露家庭的室内财产会遭到损失,其损失率分布在0-0.12之间。
     6.对研究区多种情景的内涝灾害风险进行了评估。在风险分析的基础上,对各种情景的内涝灾害风险进行了分析与评价,结果表明:(1)绝大多数家庭的内涝损失均在0-1000元之间,且主要位于研究区中部的金沙新村;(2)各类损失均随着暴雨重现期的增大而增长,随着排水量的增大而减小,其中室内财产损失增长和减小均最快,其次是地板损失,墙面损失增长和减小均最慢;(3)根据四种排水情景下8种重现期建立的超越概率-损失曲线,得出研究区年平均内涝损失分别为:0mm/h排水情景下为25895元,18mm/h排水情景下为10672元,36mm/h排水情景下为6781元,50mm/h排水情景下为1937元。
     城市暴雨内涝灾害风险评估是一个复杂的系统工程,涉及灾害学、风险学、地理学、环境学和社会学等多个学科的理论与方法。本文只是从社区的角度对城市暴雨内涝灾害风险评估做了部分有益的探索,相对于本研究领域科学理论的拓展和现实问题的解决还仅仅是一个开端。今后,还需要在居民参与和当地风险知识采集与应用、城市不同尺度风险评估方法与范式、风险动态评估和实证研究等方面进行深入的研究与探讨。
With global warming and the acceleration of urbanization, urban storm waterlogging has aroused great concerns of governments and experts. As the basic unit tomake up the modern city, the communities play an important role to reduce urbandisaster risk. Therefore, community-based disaster risk management has beenrecognized generally and is proven to be effective disaster management conceptsand means in recent years. Meanwhile, as the basis and premise ofcommunity-based disaster risk management, risk assessment has been one of thehotspots by scholars from various countries. In this paper, based on National NaturalScience Foundation of China “scenario analysis of natural disaster risk contingencyplans in coastal cities (40730526)” and Humanities and Social Sciences Youth FundProject of the Ministry of Education “PGIS-based community disaster riskmanagement model research (11YJCZH241)”, with the case of field study andresearch on typical urban communities (Jinsha Community Putuo District in Shanghai)and access to a large number of documents and first-hand data, an Empirical Study ofthe disaster risk assessment on typical urban community water logging are carriedout with use of PGIS methods, scenario analysis and probabilistic method. The mainresearch work and conclusions are as follows:
     1. Disaster risk assessment theory and methodology of urban communities’water logging are presented. Based on the analysis and definition of fundamentalconcepts of urban communities, water logging and disaster risk, and relative theoriesof disaster risk assessment, the framework of urban Community storm water loggingdisaster risk assessment is constructed which is the whole process of simulation,analysis, evaluation and expression of water logging disaster risk under differentscenarios in the study area with the participation of risk assessment experts and localstakeholders and integrated use of PGIS (participatory GIS), scenario analysis andprobability statistics. It mainly includes three major content points of riskidentification, risk modeling and analysis, and risk assessment and the expression,and is fulfilled by eight steps.
     2. Urban communities’ water logging disaster risk assessment model isconstructed. Based on comprehensive analysis of the causes of urban water loggingand reference of existing water logging model, urban communities water loggingdisaster risk assessment model is built. It mainly includes three modules of waterlogging disaster database, urban communities’ water logging model and the urbancommunity risk models. Meanwhile, model parameters is verified and correctedthrough reconstruction of typhoon "anemone" water logging disaster in the studyarea in August2012which make the simulation results more consistent with theactual situation.
     3. Historical waterlogging disasters were analyzed in Shanghai. Based onhistorical data, historical waterlogging disasters were analyzed in Shanghai for nearly60years (1951-2010), which showed that:(1) urban natural environment was greatlyinfluenced by human activities, mainly representing as the impervious surfaceincreasing, ground subsidence and water area reduction. Meanwhile economicdevelopment, big population and densely urban infrastructure greatly increase therisk of floods;(2) from the perspective of time, the overall number of waterloggingdisasters was a growing trend and concentrated in June to August. From the spatialpoint of view, waterlogging disasters were the most at the central city, followed bythe coast, and inland counties were relatively the fewer;(3) Waterlogging disasterhas a strong diffusion effect. The diffusion channels are mainly composed of urbanlifeline systems, industrial chain and the ecological environment system, and etc. Andthe diffusion has influence on a variety of urban hazard-bearing body throughstraight diffusion, linear divergent diffusion, circulation diffusion and divergentdiffusion and so on.
     4. A comprehensive analysis of the residents’ perception on water loggingdisaster risk of the study area of Jinsha Community Putuo District in Shanghai withthe use of PGIS is conducted. In the detail, based on semi-structured questionnaires,interviews and field measurement methods of PGIS, community residents’ awarenessto water logging disaster risk is analyzed. It mainly includes three aspects of riskknowledge, risk attitudes and risk behavior. The results show that:(1) community residents believe that rainstorm water logging disasters each year occur3-4times onthe average, more concentrate in July to September and the main impact is in thecentral region of the study area;(2) community residents believe that there is someinfluence on families when the water depth is in the ankle and below (0-15cm), thereis greater influence on families when the water depth is in the calf and below(15-30cm) and there is the greatest influence on families when the water depth isover the calf (>30cm);(3) more than half of residents believe that water loggingdisasters is caused by nature. All residents take different measures in thepre-disaster, disaster and post-disaster, but don’t recognize or don’t attachimportance to the drains cleaning and clearing.
     5. Rainstorm water logging disaster risk in the study area is analyzed by use ofscenario analysis method. In the detail, rainstorm water logging risk in the study areain8return periods (5a,10a,30a,50a,100a,200a,500a and1000a) under4drainagescenarios (0mm/h,18mm/h,36mm/H and50mm/h) is simulated and analyzedbased on ArcGIS software and with the use of scenario analysis method. It mainlyincludes three sections of risk analysis, exposure analysis and vulnerability analysis.Risk analysis shows that:(1) under all scenarios, water logging risks are allconcentrated in Jinsha New Village and Jiefang Village which are in the central studyarea. The water area account for0%-47.8%of the total study area. The maximumaccumulation of water depth is between0and0.52meters which increases alongwith rainstorm growth in the return period and decreases along with the increase ofdisplacement.(2) Among32water logging disaster scenarios,21ones are high risk,9are middle risk and only2are low risk.(3) Among4drainage conditions, waterlogging risks at the return periods with200a and over are all high.(4) As thedisplacement increases, annual probability of exceedance of middle risk of waterlogging is reduced from100%to6.8%, annual probability of exceedance of high riskis reduced by26%to0.8%. Exposure analysis shows that:(1)Among a variety ofwaterlogging scenarios, the most households which is exposed to the risk are791and the least are0which are all located in the central study area with brick andwood houses.(2) The number of exposure households increases as the return periods of rainstorm increase and decreases as the displacement increases. But thedegree of reduction is inversely proportional to the size of the return periods.(3) atthe4kinds of drainage conditions,30,137, and216families in200a,500a and1000aare exposed to high-risk areas when there were rainstorms which we should focus onin water logging prevention and mitigation. Vulnerability analysis shows that:(1)waterlogging vulnerability is mainly reflected in three aspects of the households ofwalls, floors and indoor property;(2)under a variety of waterlogging scenarios, wallsurface loss rate of the majority of exposed families is between0-0.06, floor loss rateis1;(3) only under high risk water logging scenarios, indoor property of a fewexposed families would suffer a loss and the loss rate distribution is between0-0.12.
     6. Waterlogging disaster risk under a variety of scenarios in the study area isexpressed and evaluated. In the detail, based on risk analysis, Waterlogging disasterrisk under a variety of scenarios is expressed and evaluated from the perspectives oftime and space. research results show that:(1) waterlogging loss of the vast majorityof families is between$0-1000and these families are mainly located in Jinsha NewVillage in the central study area;(2) All types of loss increase with the increase of thereturn period rainstorm and decrease with increasing displacement, of which indoorproperty loss grows and reduces the fastest, followed by the loss of floor and wallloss grows and reduces the slowest;(3)According to the probability of exceedance-loss curve established on8return periods under4drainage scenarios, it is concludedthat average annual loss of waterlogging:25,895yuan under0mm/h drainagescenarios,10,672yuan under18mm/h drainage scenarios,6781yuan under36mm/h drainage scenarios and1937yuan under50mm/h drainage scenarios.
     Urban water logging disaster risk assessment is a complex systematic projectinvolving theories and methods of disasters, risk, geography, environmental studies,sociology and other disciplines. In this article, urban storm water logging disaster riskassessment is did some useful exploration from the perspective of community whichis only the beginning with respect to the expansion of scientific theory and realisticsolution to the problem. In the future, some works need to be studied and discussedin-depth in these aspects such as residents participation and local risk knowledge acquisition and application, risk assessment methods and paradigms at the citydifferent scale and dynamic risk assessment and empirical research.
引文
[1] Amelia K, Ryan S, Jillian L W et al. Participatory Methods and the DisasterCycle[C].Development Practice in International Settings,2009.Available at http//www.proventionconsortium.org/?pageid-48#action.
    [2] Andre Z, Stephen W.Beyond Modelling: Linking models with GIS for Flood RiskManagement [J].Natural Hazards,2004,33(2):191-208.
    [3] Andrew M. Disaster Mitigation: A Community Based Approach [M].Oxford:Oxfam,1989.
    [4] Anselmo V,Galeati G,Palmieri S et al. Flood Risk Assessment Using an IntegratedHydrological and Hydraulic Modeling Approach [J].Journal of Hydrology,1996,175:533-554.
    [5] Apel H, Aronica G T,Kreibich H et al.Flood Risk Analysis-How Detailed Do WeNeed to Be?[J].Nat Hazards,2009,49:79-98.
    [6] Beavers J E. Multihazard Issues in the Central United States: Understanding theHazards and Reducing the Losses [M].Reston, VA: American Society of CivilEngineers,2009.
    [7] Beming C. Loss Functions for Structural Flood Mitigation Measures [J].Water SA,2001,27(1):35-38.
    [8] Benson C, Clay E J. Understanding the Economic and Financial Impacts ofNatural Disasters [M]. Washington DC: World Bank,2004.
    [9] Berke P R. Reducing Natural Hazard Risks through State Growth Management[J]. American Planning Association Journal of the American Planning Association,1998,64(1):76-87.
    [10] Birkmann J. Measuring Vulnerability to Natural Hazards: Towards DisasterResilient Societies [M].Tokyo, New York: United Nations University,2006.
    [11] Blaikie P T,Cannonl D,Wisner B. At Risk:NaturalHazards,PeoPle’sVulnerability and Disasters[M]. Barbados.1994.
    [12] Buckle P.Community Based Management: A New Approach to ManagingDisasters[C].Proceedings of ESA Conference, Visions and Divisions, Helsinki,August28-September,2001.
    [13] Chongfu Huang, Da Ruan. Fuzzy risks and updating algorithm with newobservations [J].Risk Analysis,2008,28(3):681-693.
    [14] Chung Hung T, Cheng Wu Chen. The Establishment of a Rapid Natural DisasterRisk Assessment Model for the tourism Industry [J].Tourism Management,2011,32:158-171.
    [15] Comprehensive Disaster Management Programme (CDMP).A FacilitatorsGuidebook for Community Risk Assessment and Risk Reduction ActionPlan[M].2007
    [16] Dilley M, Chen R S, Deichmann U et al. Natural Disaster Hotspots: A GlobalRisk Analysis Synthesis Report[R]. Washington D.C: Hazard management UnitWorld Bank,2005,1-29.
    [17] Dombrowsky W R.Again and again: is a disaster what we call:“Disaster”? Someconceptual notes on conceptualizing the object of disaster sociology [J].International Journal of Mass Emergencies and Disasters,2003(13):241-254.
    [18] Elwood S, Leitner H. GIS and community-based planning: Exploring thediversity of neighborhood perspectives and needs [J]. Cartography andGeographic Information Systems,1998,25(2):7788.
    [19] Frank M, Volker M. Flood Damage, Vulnerability and RiskPerception—Challenges for Flood Damage Research[C].Earth and EnvironmentSciences,2006.
    [20] Gerardo B, Michel L,Mariano B et al.Use of Systematic,Palaeofood and HistiricalDate for the Improvement of Flood Risk Estimation.Review of ScientificMethods. Natural Hazards,2004,31:623-643.
    [21] Giacomo R, Peter A, Mike M et al. Participatory spatial information managementand communication in developing countries[J].the Journal of InformationSystems in Development Countries,2006,25(1):1-9.
    [22] GTZ. Guidelines: Risk Analysis: A Basis for Disaster Risk Management [M].Eschborn: Deutsche Gesellechaft fur Technische Zusammenarbeit (GTZ) GmbH,2004:1-73.
    [23] Hall J W, Dawson R J. A Methodology for National-Scale Flood Risk Assessment[J].Water&Maritine Engineering,2003,(156):235-247.
    [24] Hardison C H,Jenning M E.Bias in Computed Flood Risk[J].Journal of theHydraulics Division,1972,98(3):415-427.
    [25] Harris T M, Weiner D, Warner T et al. Pursuing social goals through participatoryGIS: Redressing South Africa's histori-cal political ecology [M]. Ground truth:The social implications of geographic information systems,New York: Guilford,1995:196222
    [26] Heijmans A, Victoria L. Citizenry-Based and Development-Oriented DisasterResponse.ADCP.[Online August21,2004].http//www.adpc.net/pdrsea/cbdo-dr/cover.html,2004.
    [27] Heiko A, Annegret H T, Bruno M et al. A Probabilistic Modeling System forAssessing Flood Risks [J].Natural Hazards,2006,38:79-100.
    [28] Hristo S, Atanas P, Margarita S.3D GIS Model for Flood Risk Assessment ofVarna Bay Due to Extreme Sea Level Rise[J].Journal of CoastalResearch,2009,56:1597-1601.
    [29] Islam M, Sado K. Development of flood hazard maps of Bangladesh usingNOAA-AVHRR images with GIS [J].Hydrological Sciences Journal,2000,45(3):337-355.
    [30] Jessica M,Ilan k,Lorin T et al.Framework for Integrating Indigenous andScientific Knowledge for Disaster RiskReduction[J].Disaster,2009,34(1):214-239.
    [31] Jim W H, Paul B S, Richard J D.National-Scale Assessment of Current andFuture Flood Risk in England and Wales [J].Natural Hazards,2005,36:147-164.
    [32] Joern B. Risk and Vulnerability indicators at Different Scales: Applicability,Usefulness and Policy Implications [J].Environmental Hazards,2007,7:20-31.
    [33] Jonkman S N, Vangelder P H, Vrijling J K. An Overview of Quantitative RiskMeasures for Loss of Life and Economic Damage[J].the Journal of HazardousMaterials,2003,99:1-30.
    [34] Julie D.Local Knowledge for Disaster Preparedness: A LiteratureReview[R].International Centre for Integrated Mountain Development,2007.
    [35] Kaplan S, Garrick B J. On the Quantitative Definition of Risk [J].Risk Analysis,1981,1(1):11-27.
    [36] Katrina M A.Community-Based Disaster Preparedness and Climate Adaptation:Local Capacity Building in the Philippines [J].Disaster,2006,30(1):81-101.
    [37] King D, MacGregor C.Using Social Indicators to Measure CommunityVulnerability to Natural Hazards [J].Australian Journal of EmergencyManagement,2000,15(3):52-57.
    [38] Michael K M, Peter A M. Assessing Participatory GIS for Community-BasedNatural Resource Management: Claiming Community forests in Cameroon[J].The Geographical Journal,2005,171(4):340-356.
    [39] Michael K M, Participatory Mapping and Participatory GIS (PGIS) for CRA,Community DRR and Hazard Assessment [J].2008.http://www.proventionconsortium.org/?pageid=48#action
    [40] Marcus J, Shamim A. Community Based Disaster Risk Reduction Planning Tool
    [M].2010.
    [41] Mercer J, Kelman I, Suchet P S et al. Integrating Indigenous and ScientificKnowledge Bases for Disaster Risk Reduction in Papua New Guinea[J]. Ann SerB-Human Geography,2009,91B (2):157-83.
    [42] Mercer J, Kelman I, Taranis L, et al. Framework for Integration Indigenous andScientific Knowledge for Disaster Risk Reduction[J].Disasters,2010,34(1):214-239.
    [43] Ming D S, Jui-Lin Kang, Ling-Fang Chang et al. A Grid-Based GIS Approach toRegional Flood Damage Assessment [J].Journal of Marine Science andTechnology,2005,13(3):184-192.
    [44] Naoki K.Community Based Disaster Preparedness Red Cross/Red CrescentApproach and Cases [J].The International Conference on Total Disaster RiskManagement,2003.
    [45] Okada N,Tatano H,Hagihara Y et al.Integrated Research on MethodologicalDevelopment of Urban Diagnosis for Disaster Risk and itsApplications[J].Annuals of Disas.Prev.Res.Inst.Kyoto University.2004,47(C).
    [46] Paleo U F. Building Safer Communities, Risk Governance, Spatial Planning, andReponses to Natural Hazards [M]. Washington, DC: IOS Press,2009.
    [47] Patricia G, Howard K. Catastrophe Modeling: A New Approach to Managing Risk
    [M].Spinger Science,2005.
    [48] Pelling M, Maskrey A, Ruiz P etal. United Nations Development Programme aGlobal Report Reducing Disaster Risk a Challenge for Development[R].NewYork UNDP,2004,1-146.
    [49] Pelling M. Natural Disasters and Development in a Globalizing World [M].London; New York: Routledge,2003.
    [50] Pelling M. Visions of Risk: A Review of International Indicators of Disaster Riskand its Management[R].ISDR/UNDP. King’s College University of London,2004,1-56.
    [51] Pelling M.Learning from others: the scope and challenges for participatorydisaster risk assessment [J].Disaster,2007,31(4):373-385.
    [52] Peters G G, Westen C J,Montoya L. Community-Based Flood Risk AssessmentUsing GIS for the Town of San Sebastian,Guatenala[J].2004,29-49
    [53] Peters G G. Integrating Local Knowledge into GIS-Based Flood Risk Assessment
    [D].Wageningen: Wageningen University,2008.
    [54] Petak W J, Atkisson A.Natural Hazard Risk Assessment and Punlic Policy:Anticipating the Unexpected [M].New York: Springer-Verlag,1982.
    [55] Phong T, Rajib S, Guillaume Chantry, etal. GIS and Local Knowledge in DisasterManagement: A Case Study of Flood Risk Mapping in Viet Nam [J].Disaster,2009,33(1):152-169.
    [56] ProVention. Consortium.Working in Partnership to Build Safer Communities andReduce Disaster Risk[DB/OL].http//www.proventionconsortium.org.2009.
    [57] Rajiv D K,Panda P C,Medhabati Kangabam.Disaster Preparedness among theResident Community-A Case Study of Rajiv GandhiUniversity,Itanagar,India[J].International Journal of EnvironmentalSciences,2012,2(3):1632-1642.
    [58] Randall B K.Public Participatory GIS in Community-based Disaster RiskReduction [J].TripleC,2008,6(2):88-104.
    [59] Renn O. Risk Governance: Coping with Uncertainty in a Complex World.Earthscan, London: Stering, VA,2008:1-455.
    [60] Renn O. Risk Governance: Towards an Integrative Approach[R].InternationalRisk Governance Council, White Paper,2005(1):1-156.
    [61] Saburo I, Teruko S, Teruki F.Towards an Integrated management framework forEmerging Disaster Risks in Japan [J].Nat Hazards,2008,44:267-280.
    [62] Sequinot M S, Rivera R A.Risk Assessment and Community Participation Modelfor Environment Asthma Management in an Elementary Public School: A CaseStudy in Puerto Rico [J].International Journal of Environmental Research andPublic Health,2006,3(1):76-85.
    [63] Schwab A K, Eschelbach K, Brower D. Hazard Mitigation and Preparedness:Building Resilient Communities. San Francisco: John Wiley&Sons,2006:1-568.
    [64] Shaw R, Sharma A, Takeuchi Y. Indigenous Knowledge and Disaster RiskReduction: from Practice to Policy [M]. New York: Nova Science Publishers,2009.
    [65] Slovic P. Perception of risk [J]. Science,1987,236:280-285.
    [66] Smith D I. Flood Damage Estimation a Review of Urban Stage-Damage Curvesand Loss Functions [J].Water SA,1994,20(3):231-238.
    [67] Stenehion P. Development and Disaster Management [J]. Australian journal ofEmergency Management,1997,12(3):40-44.
    [68] Tawatchai T, Mohammed F K. Flood Hazard and Risk Analysis in the SouthwestRegion of Bangladesh [J].Hydrological Process,2005,19:2055-2069.
    [69] Tumer B L, Kasperson R E etal. A Framework for Vulnerability Analysis inSustainability Sceince[J].Proceedings of the National Academy of Sciences ofthe United States of America,2003,100(4):8074-8079.
    [70] Kulatunga U A, Zaman R,Biswan A et al.Community risk assessment for disasterrisk reduction: challenges and future[C].COBRA,2010
    [71] UN/ISDR. Living with Risk: A Global Review of Disaster Reduction Initiatives2004Version [M].United Nations Publication,2004.
    [72] UN/ISDR.Terminology of International Disaster Reduction in2009[M].UnitedNations Publication,2009.
    [73] UNISDR. Hyogo Framework for Action2005-2015: Building the Resilience ofNations and Communities to Disasters[C].World Conference on DisasterReduction. Kobe, Hyogo, Japan.18-22January,2005.
    [74] United Nations Department of Humanitarian Affairs (UNDHA).MitigatingNatural Disasters:Phenomena,Effects and Options: A Manual for Policy Makersand Planners[M].New York: United Nations,1991:1-164.
    [75] United Nations-Economic and Social Commission for Asia and the Pacific(ESCAP). Guidelines on Participatory Planning and Management for floodMitigation and Preparedness, Water Resources Series No.82.UN.NewYork,2003.
    [76] Urban Development&Local Government Unit Finance, Economics and UrbanDepartment, the World Bank. Urban Risk Assessments: An Approach forUnderstanding Disaster&Climate Risk in Cities [M].Working Draft,2011.
    [77] Xiaojun Wang, Zhenrong Yu, Cinderby S et al.Enhancing participation:Experiences of participatory geographic information systems in Shanxi Province,China [J]. Applied Geography,2008,28:96-109.
    [78] Weiner D, Harris T. Community-integrated GIS for land re-form in South Africa[J].Journal of Urban and Regional In-formation Systems Association (URISA),2003,15(APA II):6173.
    [79] Weiner D,Harris T.Community-integrated GIS for land reform in SouthAfrica[J].Journal of Urban and Regional Information SystemsAssociation(URISA),2003,15(APAII):61-73.
    [80] Wilson R, Crouch E A.Risk assessment and comparison: an introduction[J].Science,1987,236(4799):267-270.
    [81] IPCC.管理极端事件和灾害风险,推进气候变化适应特别报告-决策者摘要[R].政府间气候变化专门委员会,2012.
    [82]蔡葳.危机管理中的社区功能探析[D].复旦大学,2009.
    [83]曹羽.城市暴雨积水风险分析-以上海普陀区金沙居委会地区为例[D].上海师范大学,2010.
    [84]柴丽君.北方平原城市社区应急避难空间设计策略研究[D].北方工业大学,2009.
    [85]陈报章,仲崇庆.自然灾害风险损失等级评估的初步研究[J].灾害学,2010,25(3):1-5.
    [86]陈长坤,孙云凤,李智.冰雪灾害危机事件演化及衍生链特征分析[D].灾害学,2009,24(1):18-21.
    [87]陈东梅.以社区为本的灾害风险管理研究[D].兰州:兰州大学,2010.
    [88]陈海艺,吴燕化,关贤军,等.论灾害管理社区化机制建设[J].上海管理科学,2007,6:56-58.
    [89]陈婧,刘婧,王志强,等.中国城市综合灾害风险管理现状与对策[J].自然灾害学报,2006,15(60:17-22.
    [90]陈克平.灾难模型化及其国外主要开发商[J].自然灾害学报,2004,13(2):1-8.
    [91]陈欣.区域水资源合理配置仿真模拟系统研究[D].南京,河海大学,2006.
    [92]陈振楼,王军,刘敏,等.上海市主要自然灾害特点与应对策略[J].华东师范大学学报,2008,15:116-125.
    [93]程卫帅,陈进,刘丹.洪灾风险评估方法研究综述[J].长江科学院学报,2010,27(9):17-24.
    [94]丁先军,杨翠红,祝坤福.基于投入-产出模型的灾害经济影响评价方法[J].自然灾害学报,2010,19(2):113-118.
    [95]丁一汇,张建云等.暴雨洪涝[M].北京:气象出版社,2009.
    [96]丁志雄,李纪人,李琳.基于GIS格网模型的洪水淹分析方法[J].水利学报,2004,6:56-60,67.
    [97]范雨生.上海市区暴雨和积水问题[J].城市道桥与防洪,2000,3:35-36.
    [98]付意成,魏传江,臧文斌,等.洪灾风险评价体系研究[J].前沿,2009,13:19-22.
    [99]高建明,王喜奎,曾明荣.个人风险和社会风险可接受标准研究进展及启示[J].中国安全生产科学技术,2007,3(3):29-34.
    [100]高晓路,季旺,金凤君,等.中国农村房屋震灾脆弱性评估及其成因分析[J].地理学报,2012,67(2):211-220.
    [101]葛全胜,邹铭,郑景云.中国自然灾害风险综合评价初步研究[M].北京:科学出版社,2008.
    [102]葛小平,许有鹏.GIS支持下的洪水淹没范围模拟[J].水科学进展,2002,13(2):456-460.
    [103]郭利华,龙毅.基于DEM的洪水淹没分析[J].测绘通报,2002,11:25-30.
    [104]郭瑞香,蒋爱群,何晓军.参与式理论和参与式农村评估方法在澳援项目中的应用[J].河北水利,2004,9:10-11.
    [105]国务院办公厅.国家综合防灾减灾规划(2011-2015)[R].2011.
    [106]郝杰.基于参与式理论和方法的公益性项目社会评价研究[D].重庆大学,2009.
    [107]贺宝根,陈春根,周乃晟.城市化地区径流系数及其应用[J].上海环境科学,2003,22(7):472-475.
    [108]何川,刘功智,任智刚,等.国外灾害风险评估模型对比分析[J].中国安全科学生产技术,2010,6(5):148-153.
    [109]何雨,陈雯.当代城市社区发展中的若干趋势与挑战[J].沈阳工程学院学报,2009,15(1):53-56.
    [110]黄崇福.风险分析的基本方法[J].自然灾害学报,2011,20(5):1-10.
    [111]黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报,1999,8(2):21-29.
    [112]黄崇福.自然灾害风险评价理论与实践[M].北京:科学出版社,2005.
    [113]黄大鹏,刘闯,彭顺风.洪灾风险评价与区划研究[J].地理科学进展,2007,126(4):11-22.
    [114]黄煌,王玉海,潘谊,等.社区综合减灾防灾管理公共合作的经验与启示[J].城市与减灾,2010,3:13-16.
    [115]黄惠.基于情景的台风灾害风险评估研究:以上海市杨浦区富禄里居委会为例
    [D].上海师范大学,2009.
    [116]黄蕙,温家洪,司瑞洁,等.自然灾害风险评估国际计划述评11-评估方法[J].灾害学,2008,23(3):96-101.
    [117]黄蕙,温家洪,司瑞洁,等.自然灾害风险评估国际计划述评1-指标体系[J].灾害学,2008,23(2):112-116.
    [118]黄琦.参与式理论在土地整理项目规划中的运用研究[D]华中农业大学,2008.
    [119]黄荣辉,张庆云,阮水根,等.我国气象灾害的预测预警与科学防灾减灾对策[M].北京:气象出版社,2005.
    [120]黄诗峰.洪水灾害风险分析的理论与方法研究[D].北京:中国科学院地理研究所,1999.
    [121]蒋卫国,李京,陈云浩.区域洪水灾害风险评估体系(1)-原理与方法[J].自然灾害学报,2008,17(6):53-59.
    [122]蒋卫国,李京,武建军.区域洪水灾害风险评估体系(1)-模型与应用[J].自然灾害学报,2008,17(6):105-109.
    [123]李鹤,张平宇.全球变化背景下脆弱性研究进展与应用展望[J].地理科学进展,2011,30(7):920-929.
    [124]李纪人,丁志雄,黄诗峰,等.基于空间展布式社会经济数据库的洪涝灾害损失评估模型研究[J].中国水利水电科学研究院学报,2003,1(2):104-110.
    [125]李继清,张玉山,王丽萍,等.洪灾综合风险结构与综合评价方法(1)-宏观方面[J].武汉大学学报(工学版),2005,38(5):19-23.
    [126]李继清,张玉山,王丽萍,等.洪灾综合风险结构与综合评价方法(11)-微观结构[J].武汉大学学报(工学版),2006,39(2):5-10.
    [127]李景宜.公众风险感知评价—以高校在校生为例[J].自然灾害学报,2005,14(6):153-156.
    [128]李景玉,徐宗学.洪水风险率Poisson模型应用分析[J].数理统计与应用概率,1988,3(4):392-401.
    [129]李娜,袁雯.上海洪涝灾害发生特征、致灾因子及影响机制研究[J].自然灾害学报,2011,20(1):37-45.
    [130]李鸥.参与式发展研究与实践方法[M].北京:社会科学文献出版社,2010.
    [131]李伟峰,陈求稳,毛劲.北京奥运村洪水淹没风险模型研究[J].科学通报,2009,54(3):321-328.
    [132]李小云.参与式发展概论-理论、方法、工具[M]北京:中国农业大学出版社,2001.
    [133]林俊强,张长义,蔡博文,等.运用公众参与地理资讯系统于原住民族传统领域之研究:泰雅族司马库斯个案[J].地理学报(台湾),2005,41:6582.
    [134]刘斌志.国外防灾社区建设的经验与训示[J].城市发展研究,2009,16,(12):118-124.
    [135]刘刚.社区灾害风险的评价模型构建及其应用研究[D].兰州大学,2012.
    [136]刘海珍,丁凤琴.社区参与研究综述[D].咸宁学院学报,2010,30(5):16-17.
    [137]刘金平,周广亚,黄宏强.风险认知的结构、因素及其研究方法[J].心理科学,2006,29(2):370-372.
    [138]刘敏,许世远,侯立军,等.长江三角洲土地利用/土地覆被动态变化及其环境效应[J].资源科学,2010,32(8):1533-1537.
    [139]刘敏,权瑞松,许世远.城市暴雨内涝灾害风险评估:理论、方法与实践[M].北京:科学出版社,2012.
    [140]刘仁义,刘南.基于GIS复杂地形洪水淹没区计算方法[J].地理学报,2001,56(1):1-6.
    [141]刘树坤,宋玉山,程晓陶,等.黄河滩区及分滞洪区风险分析和减灾对策[M].郑州:黄河水利出版社,1999.
    [142]刘耀龙,陈振楼,王军,等.经常性暴雨内涝区域房屋财(资)产脆弱性研究[J].灾害学,2011,26(2):66-71.
    [143]刘毅,吴绍洪,徐中春,等.自然灾害风险评估与分级方法论探研[J].地理研究,2011,30(2):196-207.
    [144]陆亚龙,肖功建.气象灾害及其防御[M].北京:气象出版社,2001.
    [145]路明浩,程先富.洪水灾害风险评估研究综述[J].四川环境,2010,29(60:127-132.
    [146]罗培.基于GIS的地质灾害风险评估信息系统探讨—以重庆市为例[J].灾害学,2005,20(4):57-61.
    [147]马国斌,蒋卫国,李京,等.中国短时洪涝灾害危险性评估与验证[J].地理研究,2012,31(1):34-44.
    [148]马建明,周魁一,陆吉康.水灾史料量化与区域洪水灾害风险分析[J].中国水利水电科学研究院学报,1997,1(2):
    [149]毛德华,何梓霖,贺新光,等.洪灾风险分析的国内外研究现状与展望(1)-洪水为害风险分析研究现状[J].自然灾害学报,2009,18(1):139-149
    [150]毛小苓,倪晋仁,张菲菲,等.面向社区的全过程风险管理模型的理论和应用[J].自然灾害学报,2006,15(1):23-28.
    [151]孟庆洁,温家洪,尹占娥.城市社区应急避难地研究[J].城市问题,2010,5:67-70.
    [152]孟博,刘茂,李清水,等.风险感知理论模型及影响因子分析[J].中国安全科学学报,2010,20(10):59-66.
    [153]莫伟强,黎伟标,许吟隆,等.中国地面气温和降水变化未来情景的数值模拟分析[J].中山大学学报,2007,46(5):105-108.
    [154]潘国庆,车伍,李俊奇,等.中国城市径流污染控制量及其设计降雨量[J].中国给水排水,2008,24(22):25-29.
    [155]潘晓红,贾铁飞,温家洪,等.多灾害损失评估模型与应用述评[J].防灾科技学院学报,2009,11(2):77-82.
    [156]潘耀忠,史培军.区域自然灾害系统基本单元研究-理论部分[J].自然灾害学报,1997,6(4):1-9.
    [157]彭广,刘立成,刘敏,等.洪涝[M].北京:气象出版社,2003.
    [158]彭贵芬.气象灾害静动态风险管理探析[J].灾害学,2010,25(2):134-138.
    [159]秦年秀,姜彤.基于GIS的长江中下游地区洪灾风险分区与评价[J].2005,14(5):1-7.
    [160]权瑞松,刘敏,张丽佳,陆敏,等.基于情景模拟的上海中心城区建筑暴雨内涝暴露性评价[J].地理科学,2011,31(2):148-152.
    [161]尚志海,丘世钧.当代全球变化下城市洪涝灾害的动力机制[J].自然灾害学报,2009,8(1):100-105.
    [162]石勇,许世远,石纯,等.洪水灾害脆弱性研究进展[J].地理科学进展,2009,28(1):41-46.
    [163]石勇.灾害情景下城市脆弱性评估研究[D].上海:华东师范大学,2010.
    [164]石勇,许世远,石纯,等.自然灾害脆弱性研究进展[J].自然灾害学报,2011,20(2):131-137.
    [165]石勇,许世远,石纯.基于情景模拟的上海中心城区居民住宅的暴雨内涝风险评价[J].自然灾害学报,2011,21(3):177-182.
    [166]石勇,许世远,石纯等.沿海区域水灾脆弱性及风险的初步分析[J].地理科学,2009,29(6):853-857.
    [167]石中英.本土知识与教育改革[J].教育研究,2001,8:13-18.
    [168]史培军,郭卫平,李保俊,等.减灾与可持续发展模式[J].自然灾害学报,2005,14(3):1-7.
    [169]史培军,王静爱,周俊华,等.中国水灾风险综合管理[J].自然灾害学报,2004,13(4):1-7.
    [170]史培军,邹铭,李保俊,等.从区域安全建设到风险管理体系的形成[J].地球科学进展,2005,20(2):173-178.
    [171]史培军.三论灾害研究的理论与实践[J].自然灾害学报,2002,11(3):1-9.
    [172]史培军.四论灾害系统研究的理论与实践[J].自然灾害学报,2005,14(6):1-7.
    [173]史培军.五论灾害系统研究的理论与实践[J].自然灾害学报,2009,18(5):1-8.
    [174]史培军.灾害研究的理论与实践[J].南京大学学报,1991,11:37-42.
    [175]史培军.再论灾害研究的理论与实践[J].自然灾害学,1996,5(4):6-17.
    [176]史培军.制定国家综合减灾战略,提高巨灾风险防范能力[J].自然灾害学报,2008,17(1):1-8.
    [177]孙阿丽,石纯,石勇.基于情景模拟的暴雨内涝危险性评价—以黄浦区为例[J].地理科学,2010,30(3):465-468.
    [178]孙蕾,石纯.沿海城市自然灾害脆弱性评估研究进展[J].灾害学,2007,22(1):102-105.
    [179]唐川,朱静.基于GIS的山洪灾害风险区划[J].地理学报,2005,60(1):87-94.
    [180]唐彦东.灾害经济学[M].北京:清华大学出版社,2011.
    [181]唐晓阳.城市社区管理导论[M].广州:广东经济出版社,2000.
    [182]陶鹏,童星.灾害社会科学:基于脆弱性视角的整合范式[J].南京社会科学,2011,11:51-56.
    [183]滕五晓.上海社区风险评估体系研究[R].上海:复旦大学,2011.
    [184]万庆.洪水灾害系统分析与评估[M].科学出版社,1999.
    [185]万蓓蕾.基于AHP的模糊综合评价模型[D].复旦大学,2011.
    [186]王飞,尹占娥,温家洪.基于多智能体的自然灾害动态风险评估模型[J].地理与地理信息科学,2009,25(2):85-88.
    [187]王锋.当代风险感知理论研究:流派、趋势与论争[J].北京航空航天大学学报,2013,26(3):18-24.
    [188]王林,秦其明,李吉芝,等.基于GIS的城市内涝灾害分析模型研究[J].测绘科学,2004,测绘科学,29(3):48-51.
    [189]王绍玉,唐桂娟.综合自然灾害风险管理理论依据探析[J].自然灾害学报,2009,18(2):33-38.
    [190]王晓军.参与式地理信息系统研究综述[J].中国生态农业学报,2010,19(15):1138-1144.
    [191]王晓军.参与式地理信息系统在土地利用规划中的应用[J].林业与社会,2003(2):2124.
    [192]王晓云.社区风险管理:提高防御灾害能力的基石[J].求是,2011,1:197-199.
    [193]王义成,丁志雄,李蓉.基于情景分析技术的太湖流域洪水风险动因与响应分析研究初探[J].中国水利水电科学研究院学报,2009,7(1):7-14.
    [194]魏一鸣,范英,金菊良.洪水灾害风险分析的系统理论[J].管理科学学报,2001,4(2):7-11,44.
    [195]魏一鸣,金菊良,杨存建,等.洪水灾害风险管理理论[M].北京:科学出版社,2002.
    [196]温家洪,Jianping Yan,尹占娥,等.中国地震灾害风险管理[J].地理科学进展,2010,29(7):771-777.
    [197]温家洪,黄惠,陈珂,等.基于社区的台风灾害概率风险评估-以上海市杨浦区富禄里居委地区为例[J].地理科学,2012,32(3):348-355.
    [198]武雪芳.定量风险评价标准探讨[J].上海环境科学,2000,19(4):152-154,158.
    [199]吴国斌.突发公共事件扩散机理研究——以三峡坝区为例[D].武汉:武汉理工大学,2006.
    [200]夏富强,康相武,吴绍洪,等.黄河下游不同洪水情景决溢风险评价[J].地理研究,2008,27(1):229-239.
    [201]夏剑霺.上海社区风险评估体系研究[D].复旦大学,2010.
    [202]向立云,程晓陶,等译.自然灾害风险评价与减灾政策[M].北京:地震出版社,1993.
    [203]项继权.论我国农村社区的范围与边界[J].中共福建省委党校学报,2009,7:4-10.
    [204]谢晓非,徐联仓.风险认知研究概况及理论框架[J].心理学动态,1995,3(2):17-22.
    [205]解以扬,李大鸣,李培彦,等.城市暴雨内涝数学模型的研究与应用[J].水科学进展,2005,16(3):384-390.
    [206]邢开成.气象灾害风险扩散机理及评估应用研究[D].甘肃:兰州大学,2011.
    [207]许世远,孙以义.地貌形态模拟[J].地理学报,2000,55(3):266-273.
    [208]许世远,王军,石纯等.沿海城市自然灾害风险研究[J].地理学报,2006,61(2):127-137.
    [209]许有鹏,李立国,蔡国民.GIS支持下中小流域洪水风险图系统研究[J].地理科学,2004,24(4):452-457.
    [210]徐向耻,刘俊,郝庆庆,等.城市暴雨积水过程的模拟[M].水科学进展,2003,14(2):193-196.
    [211]薛晔,陈报章,黄崇福,等.多灾种综合风险评估软层次模型[J].地理科学进展,2012,31(3):353-360.
    [212]薛晔,黄崇福.自然灾害风险评估模型的研究进展[J].应用基础与工程科学学报,2006,14:1-8.
    [213]颜峻,左哲.自然灾害风险评估指标体系及方法研究[J].中国安全科学学报,2010,20(11):63-67.
    [214]杨小时,沈荣芳.上海社区灾害和灾害管理中存在的问题[J].灾害学,2002,17(4):72-75.
    [215]叶宏.社区灾害管理是防灾减灾的基础[J].中国减灾,2010,4月上:26-27.
    [216]叶金玉,林广发,张明锋.自然灾害风险评估研究进展[J].防灾科技学院学报,2010,12(3):20-25.
    [217]叶欣梁,温家洪,丁培毅.重点旅游地区自然灾害风险管理框架研究[J].地域研究与开发,2010,29(5):68-73,78.
    [218]殷杰,尹占娥,王军,等.基于GIS的城市社区暴雨内涝灾害风险评估[J].地理与地理信息科学,2009,25(6):16-19.
    [219]殷杰,尹占娥,许世远.沿海城市自然灾害损失分类与评估[J].自然灾害学报,2011,20(11):124-128.
    [220]殷杰,尹占娥,许世远等.灾害风险理论与灾害风险管理方法研究[J].灾害学,2009,24(2):7-11.
    [221]尹占娥,许世远,殷杰,王军.基于小尺度的城市暴雨内涝灾害情景模拟与风险评估[J].地理学报.2010,65(5):553-562.
    [222]尹占娥.城市自然灾害风险评估与实证研究[D].上海:华东师范大学,2009.
    [223]余承君,刘希林.自然灾害风险管理中社会因素的探讨[J].灾害学,2010,25(4):120-126.
    [224]于瑛英.城市脆弱性评估体系[J].北京信息科技大学学报,2011,26(1):57-61,72.
    [225]余运江,高向东,郭庆.近10年来上海市人口变化特征与问题分析[J].西北人口,2012,33(1):19-24.
    [226]袁志伦.上海水旱灾害[M].南京:河海大学出版社,1999.
    [227]张斌,越前胜,姜瑜君.区域承灾体脆弱性指标体系与精细量化模型研究[J].灾害学,2010,2592):36-40.
    [228]张超,万庆,张继权,等.基于格网数据的洪水灾害风险评估方法-以日本新川洪灾为例[J].地球信息科学,2003(4):69-73.
    [229]张海仑.中国水旱灾害[M].北京:中国水利水电出版社,1997.
    [230]张继权,冈田宪夫,多多纳裕一.综合自然灾害风险管理[J].自然灾害学报,15(1):29-37.
    [231]张继权,李宁.主要气象灾害风险评价与管理的数量化方法及其应用[M].北京:北京师范大学出版社,2007.
    [232]张杰.基于GIS及SWMM的郑州市暴雨内涝研究[D].郑州大学,2012.
    [233]张子贤.城市排水存在的问题及对策[J].河北工程技术高等专科学校学报,2002,3:19-21.
    [234]赵庆良,许世远,王军,等.上海城市系统洪灾脆弱度评价[J].中国人口资源与环境,2009,19(5):143-147.
    [235]张欣炜,杜凤姣.2000-2010年上海市人口空间分布变动分析[J].上海市经济管理干部学院学报,2012,11(2):51-59.
    [236]赵咸榕.黄河流域洪水风险图的分析与制作[J].人民黄河,1998,20(7):4-6.
    [237]赵思健,陈志远,熊利来.利用空间分析建立简化的城市内涝模型[J].自然灾害学报,2004,13(6):8-14
    [238]赵思健,黄崇福,郭树军.情景驱动的区域自然灾害风险分析[J].自然灾害学报,2012,21(1):9-17.
    [239]赵思健.自然灾害风险分析的时空尺度初探[J].灾害学,2012,27(2):1-18.
    [240]郑伟,刘闯,曹云刚,等.基于Asar与TM图像的洪水淹没范围提取[J].测绘科学,2007,32(5):180-181.
    [241]钟平安.流域实时防洪调度关键技术研究与应用[J].南京:河海大学,2006.
    [242]周爱霞,张行南,夏达忠.洪灾风险度量方法研究[J].水利学报,2007,10:490-494.
    [243]周成虎,万庆,黄诗峰,等.基于GIS的洪水灾害风险区划研究[J].地理学报,2000,55(1):15-24.
    [244]周魁一.防洪减灾观念的理论进展[J].自然灾害学报,2004,13(1):1-8.
    [245]周利敏.从自然脆弱性到社会脆弱性:灾害研究的范式转型[J].思想战线,2012,3892):11-15.
    [246]周旗,郁耀闯.乡村与城市社区居民灾害感知比较研究[J].西北大学学报,2009,39(1):149-154.
    [247]周武光,史培军.洪水风险管理研究进展与中国洪水风险管理模式初步探讨[J].自然灾害学报,1999,8(4):62-72.
    [248]周瑶,王静爱.自然灾害脆弱性曲线研究进展[J].地球科学进展,2012,27(4):435-442.
    [249]周毅.编制城镇洪水风险图减轻洪水灾害损失[J]防汛与抗旱,1996,(2)3-10.
    [250]祝江斌,王超,冯斌.城市重大突发事件的扩散机理争议[J].华中农业大学学报,2006,65(5):65-68.
    [251]朱静.城市山洪灾害风险评价—以云南省文山县城为例[J].地理研究,2010,29(4):655-664.
    [252]宗恬,黄崇福.自然灾害风险评估中诸因素之间关系的初探[J].应用基础与工程学学报,2004,12:22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700