用户名: 密码: 验证码:
天津市滨海新区主要自然灾害风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然灾害风险是当代国际社会、学术界普遍关注的热点问题。沿海城市是世界上人口、经济和社会发展的重要区域和集聚中心,也是自然灾害易发和频发区域。天津市滨海新区是继深圳经济特区、浦东新区之后,又一带动区域发展的新的经济增长极。然而,特殊的自然地理条件和沿海人为活动的影响,使滨海新区成为我国沿海受自然灾害影响较大的地区之一。开展天津市滨海新区主要自然灾害风险评估研究将为该区制定综合自然灾害风险管理范式、应急控制预案和可持续发展模式提供理论基础和科学依据。
     在国家自然科学基金项目(40730526、40571006和70703010)的资助下,本文在运用经验模态分解(EMD)和Mann-Kendall等方法分析天津市滨海新区主要自然灾害变化特征及其形成机理的基础上,基于概率分析和情景模拟,运用编译的基于GIS的计算机程序和水文数学模型对天津市滨海新区地面沉降、暴雨内涝、风暴潮等自然灾害进行了风险评估,依此提出了天津市滨海新区自然灾害风险管理的对策和建议。
     本文取得的主要结论如下:
     (1)天津市滨海新区主要自然灾害各自特征如下:累计地面沉降较大、地面沉降趋势减缓;海平面持续上升、月平均海平面汛期较高;降水总体趋于减少、年内分配不均、暴雨频次增多且强度增大;年最高潮位持续较高、各月出现频率不均、风暴潮出现频次不断增加、风暴潮灾害严重。
     (2)基于自然灾害系统理论构建了既反映累计地面沉降情况又考虑地面沉降主要致灾因子及其变化发展趋势的地面沉降相对风险评价指标体系,天津市滨海新区地面沉降相对风险评估结果表明:该区地面沉降高风险区和较高风险区主要位于汉沽区城区,塘沽区胡家园街、杭州道街、向阳街和新港街,津南区葛沽镇,以及大港区的中塘镇和小王庄镇。
     (3)鉴于地面沉降演化的地质系统渐变性特征,从主要致灾因子考虑建立地面沉降数值模型。设计三种地下水开采方案,编译计算机程序预测地下水位动态变化过程中的地面沉降值,并计算不同方案下的地面沉降损失。至2020年,三种方案下天津市滨海新区最大累计沉降量分别达650mm、520mm和150mm;全区平均累计沉降量分别达268mm、177mm和95mm;地面沉降损失分别达122.21×10~8元、80.71×10~8元和43.32×10~8元。
     (4)自行开发了基于GIS的洪水淹没区计算模块,利用模块中无源淹没程序计算和模拟了不同重现期暴雨内涝的淹没范围和淹没深度,根据不同淹没水深损失率计算出淹没损失。现状条件下,发生千年一遇、二百年一遇和五十年一遇暴雨时,天津市滨海地区分别有22.85%、20.06%和16.42%的土地不同程度受淹,淹没损失分别达28.16×10~8元、23.89×10~8元和18.46×10~8元。
     (5)根据地面沉降和海平面上升预测结果设计了最不利、适中和最理想化三种情景,分别评估了2020年三种情景下不同重现期暴雨内涝风险。至2020年,发生千年一遇、二百年一遇和五十年一遇暴雨时,在最不利的情景一下:天津市滨海新区分别将有32.73%、29.34%和26.01%的土地不同程度受淹,受淹人口分别为225~338万、203~305万和176~264万,淹没损失分别达220.89×10~8元、181.39×10~8元和139.12×10~8元;在最理想的情景三下:该区分别将有29.06%、25.83%和22.58%的土地不同程度受淹,受淹人口分别为200~300万、179~268万、150~224万,淹没损失分别达174.48×10~8元、135.29×10~8元和111.53×10~8元。
     (6)根据历史上典型风暴潮淹没情景,在现有防潮堤的情况下,运用圣维南和薄壁堰自由出流等公式推求不同频率风暴潮进潮量,利用开发的有源淹没程序计算不同频率风暴潮淹没范围。天津市滨海新区出现频率为5%、1%和0.5%的年最高潮位分别达4.54m、4.92m和5.08m(大沽零点基面);现状条件下,三种频率风暴潮可能淹没的土地面积分别达5.25km~2、58.38 km~2和118.50km~2;淹没损失分别达1.79×10~8元、3.93×10~8元和5.06×10~8元。
     (7)根据天津市滨海新区主要自然灾害风险评估结果,确定天津市滨海新区自然灾害风险管理的对策:加强地面沉降防治管理、加强防洪减灾体系建设、加强泻湖——防潮堤等海挡工程体系建设以及加强“三廊三带三区”生态用地的布局和建设等。
Natural disaster is the hotspot question in international society and academe. Coastal cities are important areas and strategic focus of people convergency,national economy and society development.However,natural disasters happen easily and frequently in these areas.Tianjin Binhai New Area(TBNA) lies in the center of the Bohai Rim Region.Following the Shenzhen Special Economic Zone and Pudong New Area,TBNA becomes a new polarization of economic development which drives regional growth.Affected by physical-geographical conditions and human activities, TBNA is one of the areas where the loss from natural disasters is very fierce and fatal in the coastal areas in China.This dissertation will provide bases of theory and scientific tools for natural disaster risk management model,emergency plan and sustainable development model. This dissertation was financially supported by the National Natural Science Foundation of China(No.40730526,No.40571006 and No.70703010).Based on the analysis of change characteristics of major natural disaster by Empirical Mode Decomposition(EMD) and Mann-Kendall test and its formation mechanism,this dissertation assessed the risk of land subsidence,torrential rain and storm surges in TBNA respectively by probability analysis,scenarios simulation,GIS and hydrological mathematical model.Based on the assessment result,specific strategies were put forward for natural disaster risk management.
     Several main conclusions are shown as follows:
     (1)The main characteristics of major natural disaster in TBNA are as follows:the accumulative subsidence is large but the trend of land subsidence is slow;sea level rises persistently,and is higher in flood season;the precipitation tends to decrease in general,annual distribution of precipitation is uneven,and frequency and intensity of the torrential rain have an obvious increasing tendency;the annual high tidal level continues high,the monthly distribution of the annual high tidal level is uneven,the frequency of storm surge increases continually,and the disaster is very fierce.
     (2)Based on the system approach and the natural disaster risk index theory,an indicator framework for assessing the land subsidence risk was designed,in which there were 3 first level indicators(the hazard,the vulnerability,and the capability of disaster prevention and reduction) and 9 second level indicators.The very high risk and high risk areas were mainly in the part of the Hangu downtown,Hu Jiayuan Sub-district,Hang Zhoudao Sub-district,Xiangyang Sub-district,Xingang Sub-district,Gegu Town,Zhongtang Town,and Xiao Wangzhuang Town.
     (3)Different from sudden disasters,land subsidence is a slow-onset geohazard and accumulated over years.In terms of the main causing factor,the numerical model of land subsidence was established.With three groundwater extraction scenarios,the computer program was compiled to predict the land subsidence in the process of dynamic changes of groundwater level.Maintaining the same condition of groundwater exploitation in 2007(Scenario 1),from 2007 to 2020,the maximum accumulative subsidence in TBNA will be 650ram and the average accumulative subsidence will be 268mm.With 2%decreases in groundwater exploitation year by year(Scenario 2),the maximum accumulative subsidence will be 520mm and the average accumulative subsidence will be 177mm.With the water from South-to-North Water Transfer Project replacing groundwater exploitation completely (Scenario 3),the maximum accumulative subsidence will be 150mm and the average accumulative subsidence will be 95mm.To 2020,the loss induced by land subsidence under Scenario 1,Scenario 2 and Scenario 3 will be 122.21×10~8yuan,80.71×10~8yuan, and 43.32×10~8yuan respectively.
     (4)Based on GIS,the calculation model of flood submerged area was established. The submerged area and depth were calculated by the module of“non-source flood”. On the basis of the loss rate of different submerged depth,the submerged loss was gained.In accordance with the GDP of Tianjin Binhai area in 2007 and present situation for land use,the submerged area is 22.85%,20.06%and 16.42%;and the loss of submerged is 28.16×10~8yuan,23.89×10~8yuan and 18.46×10~8yuan respectively induced by torrential rain with return period of 1000,200,and 50 years.
     (5)To 2020,three scenarios were design.Scenario 1:268mm average subsidence and 55mm sea-level rise;Scenario 2:177mm average subsidence and 40mm sea-level rise;Scenario 3:95mm average subsidence and 24mm sea-level rise.In accordance with population scale,GDP,and land allocation in 2020 by master plan,under Scenario 1,the submerged area is 32.73%,29.34%and 26.01%;inundated population accounts for 225~338×10~4,203~305×10~4 and 176~264×10~4;and the loss of submerged is 220.89×10~8yuan,181.39×10~8yuan and 139.12×10~8yuan respectively induced by torrential rain with return period of 1000,200,and 50 years.Under Scenario 2,the submerged area is 30.70%,27.47%and 24.23%;inundated population accounts for 212~318×10~4,193~289×10~4 and 165~248×10~4;and the loss of submerged is 199.68×10~8yuan,150.31×10~8yuan and 126.03×10~8yuan respectively induced by torrential rain with return period of 1000,200,and 50 years.Under Scenario 3,the submerged area is 29.06%,25.83%and 22.58%;inundated population accounts for 200~300×10~4,179~268×10~4 and 150~224×10~4;and the loss of submerged is 174.48×10~8yuan,135.29×10~8yuan and 111.53×10~8yuan respectively induced by torrential rain with return period of 1000,200,and 50 years.
     (6)According to representative storm surge in history and the existing tidal barrier, tidal influx volume of storm surge in different frequency was calculated by hydrological mathematical model,and the submerged area of storm surge in different frequency was calculated by the module of“source flood”.The Gumbel method was used to calculate the annual high tidal level in different frequency.The annual high tidal level is 4.54m,4.92m and 5.08m in the frequency of 5%,1%and 0.5%.The submerged area account for 5.25km~2,58.38km~2 and 118.50km~2;and the loss of the submerged is 1.79×10~8yuan,3.93×10~8yuan and 5.06×10~8yuan respectively induced by storm surge in the frequency of 5%,1%and 0.5%.
     (7)In accordance with result in risk assessment of major natural disaster,this dissertation proposed the implementation strategies for the natural disaster risk management and suggestions on implementation of the natural disaster risk management in TBNA.
引文
8 http://www.hwcc.com.cn/newsdisplay/newsdisplay.asp?Id=199146
    9 http://www.tjwcb.gov.cn
    10 天津市水利局.天津市围海造陆防潮工程建设与管理规定,2007年.
    11 http://www.yj.tj.gov.cn/101708/8797.html
    12 http://www.yj.tj.gov.cn/101689/
    13 天津市控制地面沉降工作办公室,1986-2006天津市地面沉降年报,1987-2007年.
    14 天津市控制地面沉降工作办公室.滨海新区地面沉降趋势预测及优化控制研究,2008年
    19 天津市水利局.《天津市水文手册第一册——暴雨图集》.2002年12月.
    [1]Adger W N,Hughes T P.Folke C.et al.2005.Social-Ecological Resilience to Coastal Disasters[J].Science.309(12 August):1036-1039.
    [2]Aniello Amendola.Joanne Linnerooth-Bayer.Norio Okada.et al.2007.Towards integrated disaster risk management:case studies and trends from Asia[J].Natural Hazards.0921-030X(Print):1573-0840(Online).
    [3]Apel Heiko.Thieken Annegret H.,Merz.Bl(O|¨)schl G(u|¨)nter.2006.A Probabilistic Modelling System for Assessing Flood Risks[J].Natural Hazards 38:79-100
    [4]Bosher,L.,Dainty.A.,Carrillo.P..et al.2007.Integrating disaster risk management into construction:a UK perspective[J].Building Research & Information.35(2):163-77.
    [5]Chen Xiang.2007.Risk assessment and zonation of typhoon disasters in Fujian Province[J].Shengtaixue Zazhi.26(6):961-966.
    [6]C.J.van Westen,T.W.J,van Asch,R.Soeters.2006.Landslide hazard and risk zonation-why is it still so difficult?[J].Bull Eng Geol Env.65:167-184.
    [7]Daly C.2006.Guidelines for assessing the suitability of spatial climate data sets[J].International Journal of Climatology.26:707-721.
    [8]Dawson R J.Hall J W,Bates P D.et al.2005.Quantified analysis of the probability of flooding in the Thames Estuary under imaginable worst case sea-level rise scenarios[J].International Journal of Water Resources Development,in review.
    [9]Dennis S M.1999.Disaster by Design:A Reassessment of Natural Hazards in the United States(Natural Hazards and Disasters)[M].Washington.D.C:Joseph Henry Press.
    [10]DeVautier.1993.Feldman.Review of GIS applications in hydrologic modeling[J].Journal of Water Resources Planning Management.119(2):45-62.
    [11]DFID.2006.Reducing the Risk of Disasters-Helping to Achieve Sustainable Poverty Reduction in a Vulnerable World:A DFID policy paper.
    [12]Donald H Burn.Mohamed A Hag Elnur.2002.Detection of hydrologic trends and variability[J].Journal of Hydrology.55:107-122.
    [13]Dowdeswell J A.2006.The Greenland ice sheet and global sea-level rise[J].Science.Vol.311.p.963-964.
    [14]EERI.2006.Guidelines for Developing an Earthquake Scenario[R],Report of Endowment Fund of the Earthquake Engineering Research Institute and FEMA.
    [15]Emmanuel.2003.Towards total disaster risk management approach[R].Summary Report of Asian Conference on Disaster Reduction 2003—Living with Risk:Towards Disaster Resilient Societies[C|.January 15-17,2003,Kobe,Japan.
    [16]Emanuel Kerry.2005.Increasing destructiveness of tropical cyclones over the past 30 years[J].Nature.436(4):686-688.
    [17]Gambolati G,Teatini P.2002.GIS Simulations of the inundation risk in the coastal lowlands of the Northern Adriatic Sea[J].Mathematical and Computer Modelling.35:963-972.
    [18]G.GRU NTHAL1.A.H.THIEKEN1.J.SCHWARZ ET AL.2006.Comparative Risk Assessments for the City of Cologne-Storms.Floods.Earthquakes[J|.Natural Hazards.38:21-44.
    [19]Goldstein.B.D.2003.SRA President's Message.SRA Risk Newsletter.23(2).
    [20]Goovaerts P.2000.Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall[J].Journal of Hydrology.228:113-129.
    [21]Herman Kahn.Anthony Wiener.Hudson Institute.1967.The year 2000:a framework for speculation on the next thirty-three years[M].New York:Macmillan.
    [22]Hirsch R M.Slack J R.Smith R A.1982.Techniques of trend analysis for monthly water quality data[J].Water Resources Research.18:107-121.
    [23]Holdaway MR.1996.Spatial modeling and interpolation of monthly temperature using Kriging[J].Climate Research,24:1835-1845.
    [24]Hoyos C D,Agudelo P A,Webster P J,et al.2006.Deconvolution of the Factors Contributing to the Increase in Global Hurricane Intensity [J].Science,312(5770):94-97.
    [25]Huang N E.1999.A new view of nonlinear water waves-the Hilbert spectrum [J].Ann.Rev.Fluid.Mech.,(1):417-457.
    [26]Huang N E,Shen Z,Long S R,et al.1998.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].Proc R Soc Lond A,454:903-905.
    [27]Hubbert G D,Mclnnes K L.1999.A storm surge inundation model for coastal planning and impact studies [J].J.Coastal Research,15,168-185.
    [28]Hubbert G D,Mclnnes K L.1999.Modeling storm surges and coastal ocean flooding,In:B.J.Noye (ed.),Modelling coastal sea processes,World Scientific Publishing Co.,159-187.
    [29]ICTP.2007.Workshop on the Physics of Tsunami,Hazard Assessment Methods and Disaster Risk Management [J].Miramare-Trieste,Italy,May,14-18.
    [30]Ikeda S,Sato T,Fukuzono T.2008.Towards an integrated management framework for emerging disaster risks in Japan [J].Nat Hazards,44:267-280.
    [31]IPCC Working Group II.2007.Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report [M].Climate Change 2007:Impacts,Adaptation andVulnerability [EB/OL].[2007-04-23].http://www.ipcc.ch/SPM13apr07.pd.f
    [32]ISDR.2006.International Strategy for Disaster Reduction: Mission and objectives,http://www.unisdr.org/eng/aboutJsdr/isdr-mission-objectives-eng.htm.
    [33]Jaiswal R K,Mukherjee S,Raju K D,et al.2002.Forest fire risk zone mapping from satellite imagery and GIS [J].International Journal of Applied Earth Observation and Geoinformation,4:1-10.
    [34]Jelesnianski C P,Chen J,Shaffer W A.1992.SLOSH:Sea,Lake,and Overland Surges from Hurricanes.NOAA Technical Report NWS 48,United States Department of Commerce,NOAA,NWS,Silver Springs,MD.,71.
    [35]Jose Fernando Aceves-Quesada,Jesus Diaz-Salgado,Jorge Lopez-Bianco.2007.Vulnerability assessment in a volcanic risk evaluation in Central Mexico through a multi-criteria-GIS approach [J].Nat Hazards,40:339-356.
    [36]J.-U.Kliige I,L.Mualchin,GF.Panza.2006.A scenario-based procedure for seismic risk analysis [J].Engineering Geology,88 1-22.
    [37]Kapur A.2005.The Future of the Red Metal Scenario Analysis [J].Futures,37(10).
    [38]Karen O,Jon B,Indra D S,et al.2005.Hurricane Katrina Reveals Challenges to Human Security-Hurricane Katrina reinforced many key lessons about the nature of environmental change.AVISO,(14).
    [39]Kasperson R E,Bohn M T.Goble R.2005.Assessing the risks of a future rapid large sea level rise:A review.from the World Wide Web:http://www.uni-hamburg.de/Wiss/FB/15/Sustainabilitv/annex4.pdf.
    [40]Ken Granger.2003.Quantifying Storm Tide Risk in Cairns [J].Natural Hazards,30:165-185.
    [41]Kendall M G 1975.Rank Correlation Measures [M].London:Charles Griffin.
    [42]Kim K-D,Lee S,Oh HJ.et al.2006.Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS [J].Environ Geol 50:1183-1191.
    [43]Kleiber C.2003.Risk Governance:A New Approach.Risk and Governance,Program of World Congress on Risk,Brussels,Belgium.June:22-25.
    [44]Kron,et al.2002.Flood risk zoning and loss accumulation analysis for Germany.In:Proc.Of the International Conference on Flood Estimation.Mar.6-8,2002,Berne.Switzerland,549-558.
    [45]Lopez-Baldovin M J,Gutierrez-Martin C,Berbel J.2006.Muiticriteria and Multiperiod Programming for Scenario Analysis in Guadalquivir River Irrigated Farming [J].Journal of the Operational Research Society,57(5).
    [46]Mann H B.1945.Non-parametric tests against trend [M],Econometrica.13:245-259.
    [47]Manny.2002.Total disaster risk management approach:Towards effective police action in disaster reduction and response [A].Regional Workshop on Total Disaster Risk Management [C].August 7-9.2002.Kobe. Japan.
    [48]Marshall N.Grady B.2005.Travel Demand Modeling for Regional Visioning and Scenario Analysis.Transportation Research Record (1921).
    [49]MARTHA-LIL1ANA CARREN O,OMAR D.CARDONA.ALEX H.BARBAT.2007.Urban Seismic Risk Evaluation:A Holistic Approach [J].Natural Hazards.40:137-172.
    [50]Masato Nakajima.In-Kil Choi.Yasuki Ohtori et al.2007.Evaluation of seismic hazard curves and scenario earthquakes for Korean sites based on probabilistic seismic hazard analysis [J].Nuclear Engineering and Design,237:277-288.
    [51]McBurney P.Parsons S.2003.Chance Discovery and Scenario Analysis [J].New Generation Computing,(1).
    [52]Mcinnes K L.Walsh K J E.Hubbert G D.et al.2003.Impact of Sea-level Rise and Storm Surges on a Coastal Community [J].Natural Hazards,30:187-207.
    [53]Mejia-Navarro M,Wohl E E,Oaks S D.1994.Geological hazards,vulnerability,and risk assessment using GIS:model forGlenwood Springs,Colorado [J],Geomorphology.10(1 -4):331 -354.
    [54]Michaels P J,Knappenberger P C.Davis R E.2003.Sea-surface temperatures and tropical cyclones:Breaking the paradigm.
    [55]Mileti D S.1999.Natural hazards and disasters-disasters by design a reassessment of natural hazards in the United States.Washington D C:Joseph Henry Press.
    [56]Mokrech M.Nicholls RJ,Richards JA.et al.2008.Regional impact assessment of flooding under future climate and socio-economic scenarios for East Anglia and NorthWest England [J].Climatic Change,90:31-55.
    [57]Navas A,Machin J.1997.Assessing erosion risks in the gypsiferous steppe of Litigio (NE Spain):An approach using GIS [J].Journal of Arid Environments,37:433-441.
    [58]Nicholls R J.2004.Coastal flooding and wetland loss in the 21~(st) century:Changes under the SRES climate and socio-economic scenarios [J].Global Environmental Change.14:69-86.
    [59]Nishikavva S.2003.Total disaster risk management for sustainable development [A].Proceedings of the International Conference on TDRM [C].December 2-4.2003.Kobe.Japan.
    [60]Okada N,Amendola A.2001.Research challenges for integrated disaster risk management [R].Presentation to the First Annual IIASA-DPR IM meeting on Integrated Disaster Risk Management: Reducing Socio2Economic Vulnerability,at IIASA.Laxenburg.Austria (Aug 1-4.2001).2001.
    [61]Okada N.2003.Urban diagnosis and integrated disaster risk management [A].Proceedings of the China-Japan EQTAP Symposium on Police and Methodology for Urban Earthquake Disaster Management[C].November 9-10.Xianmen.China.
    [62| Olivier Salvi.Myriam Merad.Nelson Rodrigues.2007.Toward an integrative approach of the industrial risk management process in France [J].Journal of Loss Prevention in the Process Industries.18:414-422.
    [63]Omar D.Cardona.2006.Indication of disaster of disaster risk and risk management——program for Latin America and the Caribbean summary report [z].Inter-American Development Bank.Sustainable Development Department.
    [64]Omar 1 Abdul Aziz.Donald H Burn.2006.Trends and variability in the hydrological regime of the Mackenzie River Basin [J].Journal of Hydrology.3 19:282-294.
    [65]Otto-Bliesner B L.Marshall S J.Overpeck J T.et al.2006.Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation [J].Science.311(5768):1751-1753.
    [66]Overpeck J T.Otto-Bliesner B L.Miller G H.et al.2006.Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise |.l].Science.311 (5768):1747-1750.
    [67]Pandey A.Dabral PP.Chowdary VM.et al.2008.Landslide Hazard Zonation using Remote Sensing and GIS:a case study of Dikrong river basin.Arunachal Pradesh.India [J].Environ Geol54:1517-1529.
    [68]Patrick.M Bartier.1996.Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW) [J],Computer & Geoscicnces.22(7)795-799.
    [69]Paul Kamrath.Markus Disse.Matthias Hammer.J(u|¨)rgen K(o|¨)ngeter.2006.Assessment of Discharge through a Dike Breach and Simulation of Flood Wave Propagation [J].Natural Hazards 38:63-78.
    [70]Petevilie Khatsu.2005.Urban multi-hazard risk analysis using GIS and Remote Sensing:A case study of landslide,earthquake and fire hazard in a part of Kohima Town,India [D].International Institute for Geo-information Science and Earth Observation.
    [71]Phillips D L,Dolph J,Marks D.1992.A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain [J].Agricultural and Forest Meteorology,58:119-141.
    [72]Price D T,Mckenny D W,Nalder I A,et al.2000.A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data [J].Agricultural and Forest Meteorology,101:81-94.
    [73]Pusch C.2004.Preventable Losses:Saving Lives and Property Through Hazard Risk Management [R].Working Paper Series of The World Bank.
    [74]Remy U G 2003.Transboundary Risks:How Governmental and Non-Governmental Agencies Work Together.Risk and Governance,Program of World Congress on Risk,Brussels,Belgium,June:22-25.
    [75]Rignot E,Kanagaratnam P.2006.Changes in the Velocity Structure of the Greenland Ice Sheet [J].Science,Vol.311,986-990.
    [76]Robert J.Nicholls.2004.Coastal flooding and wetland loss in the 21st century:changes under the SRES climate and socio-economic scenarios [J].Global Environmental Change 14:69-86.
    [77]Roberto W.Romeo,Mario Floris,Francesco Veneri.2006.Area-scale landslide hazard and risk assessment [J].Environ Geol,51:1-13.
    [78]Robeson S M,Janis M J.1998.Comparison of temporal and unresolved spatial variability in multiyear time-averages of air temperature [J].Climate Research,10(l):15-26.
    [79]Sahin S,Kurum E.2002.Erosion risk analysis by GIS in environmental impact assessments:a case study-Seyhan K(o|¨)pr(u|¨) Dam [J].Journal of Environmental Management,66:239-247.
    [80]Sharma RH,Shakya NM.2008.Rain induced shallow landslide hazard assessment for ungauged catchments [J].Hydrogeology Journal,16:871-877.
    [81]Shi PJ,Du J ,Ji MX,et al.2006.Urban Risk Assessment Research of Major Natural Disasters in China [J].Advances in Earth Science,21(2):170-177.
    [82]Sipke E.van Manen,Martine Brinkhuis.2005.Quantitative flood risk assessment for Polders [J].Reliability Engineering and System Safety,90:229-237.
    [83]Sinclair,J.and Hutchinson,D.1998.Multi-stakeholder decision-making:the shoal lake watershed case.Canadian Water Resources Journal,23(2):167-179.
    [84]Sinnakaudan S,Ghani A.2003.Flood risk mapping for Pari River incorporating sediment transport [J].Environmental Modelling & Software,18:119-130.
    [85]Small C,Cohen J E.1999.Continental physiography,climate and the global distribution of human population.Proceedings of the International Symposium on Digital Earth,Science Press,Beijing,965-971.
    [86]Small C,Nicholls R J.2003.A global analysis of human settlement in coastal zones [J].Journal of Coastal Resources,19(3):584-599.
    [87]Stefan Greiving.2006.Integrated risk assessment of multi-hazards:a new methodologyNetherlands:Geological Survey of Finland,Special Paper 42:75-82.
    [88]Tavvatchai Tingsanchalil,Mohammed Fazlul Karim.2005.Flood hazard and risk analysis in the southwest region of Bangladesh [J].Hydrol.Process.19:2055-2069.
    [89]Tol R S J.Bohn M.Downing T E,et al.2004.Adaptation to five meters of sea level rise.Special issue from the Society of Risk Analysis-Europe Annual Conference,Paris.2004.Journal of Risk Research.
    [90]T R Shearer.1998.A numerical model to calculate land subsidence,applied at Hangu in China [J].Egineering Geology.49(2):85-93.
    [91]Umana A.2003.Governance and Capability Development for Risk Management in Developing Countries.Risk and Governance,Program of World Congress on Risk,Brussels,Belgium,June:22-25.
    [92]United Nation.2005.Draft programme outcome document Building the resilience of nations and communities to disasters:Hyogo framework for action 2005-2015.World Conference on Disaster Reduction.Kobo Hyogo.Japan.
    [93]UN/ISDR.2004.Living with Risk:A global review of disaster reduction initiatives 2004 version.United Nations publication.
    [94]Vaughan D C,Spouge J R.2002.Risk estimation of collapse of the West Antarctic Sheet[J].Climate Change,52:52-91.
    [95]Webster P J,Curry J A,Liu J,et al.2006.Response to comment on Changes in tropical cyclone number,duration,and intensity in a warming environment”[J].Science,311(5768):1713c.
    [96]Webster P J,Holland G J,Curry J A,et al.2005.Changes in tropical cyclone number,duration,and intensity in a warming environment[J].Science,309(5742):1844-1846.
    [97]Weibull W.1951.A statistical distribution of wide applicability[J].Journal of Applied Mechanics,18:293-297.
    [98]Wei Y M,Liang Q M,Fan Y.2006.A Scenario Analysis of Energy Requirements and Energy Intensity for China's Rapidly Developing Society in the year 2020[J].Technological Forecasting and Social Change,73(4).
    [99]Wiedeman P.2003.Risk as a Model for Sustainability.Risk and Governance,Program of World Congress on Risk,Brussels,Belgium,June:22-25.
    [100]Wood,E.F.and Rodriguez-lturbe,1.1975.A Baysian approach to analyzing uncertainty among flood frequency models[J].Water Resour.Res.11(6),839-843.
    [101]Yue S,Pilon P,Caradias G.2002.Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series[J].Journal of Hydrology,259:254-271.
    [102]Zerger A.2002.Examining GIS decision utility for natural hazard risk modeling[J].Environmental Modeling & Software.17:287-294.
    [103]Zhang BL,Song S J,Feng WL,et al.2006.Assessment and risk zonation of landslides in Panxi Area based on 3S technology[J].Wuhan University Journal of Natural Sciences,11(4):793-800.
    [104]布里林格,片山恒雄.黄玮琼,等译.1988.地震危险性评定与地震区划[M].北京:地震出版社.
    [105]陈婧,刘婧,王志强,等.2006.中国城市综合灾害风险管理现状与对策[J].自然灾害学报,15(6):17-22.
    [106]陈靖,李天文,冯丽丽.等.2008.GIS技术在洪水灾害评估中的应用研究——以渭河中下游地区为例[J].西北大学学报(自然科学版),38(4):663-667.
    [107]陈上及,马继瑞.1991,海洋数据处理分析方法及其应用[J].北京:海洋出版社,349-480.
    [108]陈文海.柳艳香.2002.中国1951~1997年气候变化趋势的季节特征[J].高原气象,21(3):251-257.
    [109]陈禺,刘杰,陈棋福,等.1999.地震危险性分析和震害预测[M].北京:地震出版社.
    [110]程卫帅,陈进.2004.山洪灾害风险度评价技术综述[J].人民长江.35(12):5-14.
    [111]储少林,周兆叶,袁雷,等.2008.降水空间插值方法应用研究——以甘肃省为例[J].草业科学,25(6):19-23.
    [112]崔小东.1998.MODFLOW和IDP在天津地面沉降数值计算中的应用与开发[J].中国地质灾害与防治学报.9(2):122-128.
    [113]代斌.2005.城市化对海河天津段防洪排涝影响的研究[D].南京:河海大学:42.
    [114]丁燕,史培军.2002.台风灾害的模糊风险评估模型[J].自然灾害学报,11(1):34-43.
    [115]丁志雄,李纪人,李琳.2004.基于GIS格网模型的洪水淹没分析方法[J].水利学报,6:56-60.
    [116]董国凤.2006.地面沉降预测模型及应用研究[D].天津:天津大学:74-86.
    [117]董克刚,周俊,于强等.2007.天津市地面沉降的特征及其危害[J].地质灾害与环境保护,18(1):67-70.
    [118]董胜.刘德辅,孔令双.2000.极值分布参数的非线性估计及其工程应用.海洋工程,18(1):50-55.
    [119]段正梁.张维然.2002.地面沉降灾害经济损失评估理论体系研究——以上海市地面沉降灾害经济损失评估为例[J].自然灾害学报.11(3):95-102.
    [120]房浩,李善峰,叶晓滨.2007.天津市风暴潮经济损失评估[J].海洋环境科学.26(3):271-274.
    [121]方书敏.钱正堂,李远平.2005.甘肃省降水的空间内插方法比较[J].干旱区资源与环境.19(3):47-50.
    [122]封志明.杨艳昭,丁晓强.等2004.气象要素空间插值方法优化[J].地理研究.23(3):357-364.
    [123]冯锦明.赵天保.张英娟.2004.基于台站降雨资料对不同空间内插方法的比较[J].气候与环境研究.2(9):261-277.
    [124]冯平,崔广涛.钟昀.2001.城市洪涝灾害直接经济损失的评估与预测[J].水利学报.8:64-68.
    [125]郭家伟.邵传青.王洁.等.2008.时间序列模型和马尔可夫模型在地面沉降预测中的集成应用[J].城市环 境与城市生态,21(1):44-46.
    [126]郭利华,龙毅.2002.基于DEM的洪水淹没分析[J].测绘通报,11:25-30.
    [127]国家海洋局.2004.2003年中国海洋灾害公报.国家海洋局外网/海洋公报/中国海洋灾害公报/http://www.soa.gov.cn/hyjww/ml/gb/n/webinfo/2004/01/1190166472122456.htm
    [128]国家海洋局.2006.2005年中国海洋灾害公报.国家海洋局外网/海洋公报/中国海洋灾害公报/http://www.soa.gov.cn/hyjww/ml/gb/n/webinfo/2006/01/1190166471164819.htm
    [129]国家海洋局.2007.2006年中国海平面公报.国家海洋局外网/海洋公报/中国海平面公报httn://www.soa.gov.cn/hyjww/hygb/zghpmgb/2007/07/1183340415550901.htm
    [130]国家海洋局.2008.2007年中国海平面公报.国家海洋局外网/海洋公报/中国海平面公报http://www.soa.gov.cn/hyjww/hygb/zghpmgb/2008/01/1200912279807713.htm
    [131]国家海洋局.2009.2008年中国海平面公报.国家海洋局外网/海洋公报/中国海平面公报http://www.soa.gov.cn/hyjww/ml/pm/lb/webinfo/2009/03/1225332553009824.htm
    [132]国家质量技术监督局.2001.中国地震动参数区划图[M].北京:中国标准出版社.
    [133]何红艳,郭志华,肖文发.2005.降水空间插值技术的研究进展[J].生态学杂志,24(10):1187-1191.
    [134]贺松林.2003.海岸工程与环境概论[M].北京:海洋出版社.
    [135]胡蓓蓓,姜衍祥,周俊,等.2008a.天津市区及近郊区地面沉降灾害风险评估与区划[J].中国人口·资源与环境,18(4):28-34.
    [136]胡蓓蓓,姜衍祥,周俊,等.2008b.天津市滨海地区地面沉降灾害风险评估与区划[J].地理科学,28(5):693-697.
    [137]黄崇福,史培军.1995.城市地震灾害风险评价的数学模型[J].自然灾害学报,4(2):30-37.
    [138]黄崇福.2005.自然灾害风险评价理论与实践[M].北京:科学出版社.
    [139]黄崇福,张俊香,陈志芬,等.2004.自然灾害风险区划图的一个潜在发展方向[J].自然灾害学报,13(2):9-15.
    [140]黄崇福.2008.自然灾害风险区划图的更新原理[A].见:黄崇福,刘希林.风险分析与危机反应的理论和实践——中国灾害防御协会风险分析专业委员会第三届年会论文集[C].巴黎:Atlantis出版社,1-8.
    [141]黄崇福.2005.综合风险管理的梯形架构[J].自然灾害学报,14(6):8-14.
    [142]黄金池.2002.中国风暴潮灾害研究综述[J].水利发展研究,2(12):63-65.
    [143]贾文雄,何元庆,李宗省,等.2008.祁连山区气候变化的区域差异特征及突变分析[J].地理学报,63(3):257-269.
    [144]蒋庆丰,游珍.2006.基于GIS的南通市自然灾害风险区划[J].灾害学,20(2):110-114.
    [145]金爱善.2000.采用神经网络模型对天津滨海新区地面沉降预测的研究[J].现代地质,14(4):475-478.
    [146]孔云峰,仝文伟.2008.降雨量地面观测数据空间探索与插值方法探讨[J].地理研究,27(5):1097-1108.
    [147]梁海燕,邹欣庆.2005.海口湾沿岸风暴潮风险评估[J].海洋学报,27(5):22-29.
    [148]李蝶娟,刘俊.1998.城市化对雨洪情势变化影响的初步分析[C].全国水文计算进展和展望学术研讨会论文选集,南京:河海大学出版社,1998:392-398.
    [149]李发东,宋献方,张秋英,等.2006.40年来栾城降水变化特征分析[J].水文,26(1):79-81.
    [150]李锋.2005.海洋工程双变量环境条件设计参数估计[D].中国海洋大学,6-19.
    [151]李勤奋,方正.2002.上海市地下水可开采量模型计算及预测[J].上海地质,(2):36-43.
    [152]林黎,赵苏民,李丹等.2006.深层地热水开采与地面沉降的关系研究[J].水文地质工程地质,3:34-37.
    [153]李新,程国栋,卢玲.2000.空间内插方法比较[J].地球科学进展,15(3):260-265,
    [154]林忠辉,莫兴国,李宏轩,等.2002.中国陆地区域气象要素的空间插值[J].地理学报,57(1):47-56.
    [155]刘登伟,封志明,杨艳昭.2006.海河流域降水空间插值方法的选取[J].地球信息科学,8(4):75-83.
    [156]刘桂海,刘松.1989.我国近海波浪要素的长期分布.港口工程.(6):11-15.
    [157]刘棠洪,董克刚,周俊,等.2007.残差灰色预测模型在地面沉降监测中的应用[J].城市环境与城市生态,20(5):32-38.
    [158]刘会平,王艳丽.2006.广州市地面沉降危险性评价[J1.海洋地质动态,22(1):1-4.
    [159]刘婧,方伟华,葛怡,等.2006.区域水灾恢复力及水灾风险管理研究——以湖南省洞庭湖区为例[J].自然灾害学报,15(6),56-61.
    [160]刘敏,杨宏青,向玉春.2002.湖北省雨涝灾害的风险评估与区划[J].长江流域资源与环境,11(5):476-481.
    [161]刘仁义,刘南.2001.基于GIS的复杂地形洪水淹没区计算方法[J].地理学报,56(1):1-6.
    [162]刘仁义,刘南.2002.基于GIS技术的淹没区确定方法及虚拟现实表达[J].浙江大学学报(理学版),29(5):573-578.
    [163]刘燕华,葛全胜,吴文祥.2005.风险管理——新世纪的挑战[M].北京:气象出版社.
    [164]陆(?)宇.2002.华北汛期降水量变化中年代际和年际尺度的分离[J].大气科学,26(5):611-624.
    [165]鲁振宇,杨太保,郭万钦.2006.降水空间插值方法应用研究——以黄河源区为例[J].兰州大学学报(自然科学版),42(4):11-14.
    [166]罗培.2005.区域气象灾害风险评估[D].重庆:西南师范大学.
    [167]马定国,刘影,陈洁,等.2007.鄱阳湖区洪灾风险与农户脆弱性分析[J].地理学报,162(3):321-332.
    [168]马振兴.2006.天津市海洋灾害及其影响分析[J].海洋通报,25(2):41-45.
    [169]马宗晋等著.1994.中国重大自然灾害及减灾对策[M].北京:地震出版社.
    [170]毛小苓,倪晋仁,张菲菲,等.2005.面向社区的全过程风险管理模型的理论和应用[J].自然灾害学报,15(1):23-28.
    [171]牛修俊,崔小东,曲焕林,等.1995.天津市地面沉降机理研究及预测预报、综合治理[Z].天津:天津市环境地质研究所,地矿部水文地质工程地质研究所,6:15-16.
    [172]任美锷.1993.黄河长江珠江三角洲近30年海平面上升趋势及2030年上升量预测[J].地理学报,48(5):385-393.
    [173]任美锷.1994.海平面上升对我国沿海地区经济发展的影响与对策[A].中国科学院地学部,海平面上升对中国三角洲地区的影响及对策[M].北京:科学出版社,1-11.
    [174]荣艳淑,余锦华,段丽瑶.2007.20世纪80和90年代华北干旱特征及成因分析[J].高原气象,26(2):319-325.
    [175]史培军.2002.三论灾害研究的理论与实践[J].自然灾害学报,11(3):1-9.
    [176]史培军,邹铭,李保俊,等.2005.从区域安全建设到风险管理体系的形成——从笫一届世界风险大会看灾害与风险研究的现状与发展趋向[J].地球科学进展,20(2):173-179.
    [177]史培军,郭卫平.李保俊,等.2005.减灾与可持续发展模式——从第二次世界减灾大会看中国减灾战略的调整[J].自然灾害学报,14(3):1-7.
    [178]史培军,王静爱,陈婧,等.2006.当代地理学之人地相互作用研究的趋向——全球变化人类行为计划(IHDP)第六届开放会议透视[J].地理学报,61(2):115-126.
    [179]孙芙蓉,2007.综合灾害风险管理刻不容缓——访北京师范大学史培军教授[J].中国金融,3:24-25.
    [180]汤爱平.董莹,文爱花,等.1999.国外地震风险评估和风险管理基础研究[J].世界地震工程,15(3):26-32.
    [181]汤国安,杨昕.2006.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社.
    [182]唐川,朱静.2005.基于GIS的山洪灾害风险区划[J].地理学报.60(1):87-94.
    [183]唐川,师玉娥.2006.城市山洪灾害多目标评估方法探讨[J].地理科学进展,25(4):13-21.
    [184]陶夏新.1986.京津唐地区地震区划图编制方法的研究[D].哈尔滨:国家地震局工程力学研究所.
    [185]滕五晓,加藤孝明,小出治.2003.日本灾害对策体制[M].北京:中国建筑工业出版社.
    [186]天津市汉沽区地方志编修委员会.1995.汉沽区志[M].天津:天津社会科学院出版社,73-97.
    [187]天津市大港区地方志编修委员会.1994.大港区志[M].天津:天津社会科学院出版社,73-84.
    [188]天津市水利局.2001.中国水旱灾害系列专著——天津市水旱灾害[M].天津:天津人民出版社.
    [189]天津市塘沽区地方志编修委员会.1996.塘沽区志[M].天津:天津社会科学院出版社.67-81.
    [190]天津市统计局.2008.天津市统计年鉴[M].北京:中国统计出版社.480-509.
    [191]田国珍.刘新立.王平.等.2006.中国洪水灾害风险区划及其成因分析[J].灾害学.21(2):1-6.
    [192]王成刚,王得军.2004.天津市沿海风暴潮成因及防御对策分析[J].海河水利.4:27-29.
    [193]王大鹏.2007.我国海平面30年升9厘米 天津上升最快上海次之[N].北京晨报.12月02日.
    [194]王国良.2006.地面沉降危险性分级标准初探[J].上海地质,4:39-43.
    [195]王海刚.2006.天津市地面沉降现状及预测[D].北京:中国地质大学.18-24,25-36.
    [196]王林.秦其明.李吉芝.等.2004.基于GIS的城市内涝灾害分析模型研究[J].测绘科学.29(3):48-51.
    [197]王若柏.周伟.李风林.等.2003.天津地区构造沉降及控沉远景问题[J].水文地质工程地质.5:12-17
    [198]王绍玉.2008.中国构建和谐社会条件的综合灾害风险管理研究[J].中国人口·资源与环境.18(4):1-9.
    [199]王绍玉.冯百侠.2005.城市灾害应急与管理[M].重庆:重庆出版社.
    [200]王书凤,张欣,郑庆月.2004.天津市中心城区及新四区排涝规划.天津市水利勘察设计院,9.
    [201]王喜年.2001.风暴潮预报知识讲座——风暴潮灾害及其地理分布[J].海洋预报,18(2):70-77.
    [202]王喜年.2002.风暴潮预报知识讲座——风暴潮风险分析与计算[J].海洋预报,19(4):73-76.
    [203]王素艳,霍治国,李世奎,等.2005.北方冬小麦干旱灾损风险区划[J].作物学报,31(3):267-274.
    [204]魏风华.2006.河北省唐山市地质灾害风险区划研究[D].北京:中国地质大学.
    [205]魏凤英.1999.现代气候统计诊断预测技术.北京:气象出版社,62-76.
    [206]吴少华,王喜年,宋珊,等.2002.天津沿海风暴潮灾害概述及统计分析[J].海洋预报,19(1):29-35.
    [207]武强,郑铣鑫,应玉飞,等.2002.21世纪中国沿海地区相对海平面上升及其防治策略[J].中国科学(D 辑).32(9):760-766.
    [208]袭祝香,马树庆,王琪.2003.东北区低温冷害风险评估及区划[J].自然灾害学报,12(2):98-102.
    [209]夏军.2002.华北地区水循环与水资源安全:问题与挑战[J].地理科学进展,21(6):517-526.
    [210]谢国权,丁志宏.2008.渭河年径流量多时间尺度分析的EMD方法[J].人民黄河,30(8):36-40.
    [211]解以扬,韩素芹,由立宏,等.2004.天津市暴雨内涝灾害风险分析[J].气象科学,24(3):342-349.
    [212]辛格(V.P.Singh)著,赵卫民,戴东,牛玉国译.2000.水文系统流域模拟[M].郑州:黄河水利出版社.
    [213]严恺,梁其荀.2002.海岸工程[M].北京:海洋出版社.
    [214]杨士弘.1997.城市生态环境学[M].北京:科学出版社.
    [215]徐建华.2002.现代地理学中的数学方法(第二版)[M].北京:高等教育出版社.
    [216]许世远,王军,石纯,等.2006.沿海地区自然灾害风险研究[J].地理学报,61(2):127-138.
    [217]薛晔,黄崇福,周健,等.2005.城市灾害综合风险管理的三维模式——阶段矩阵模式[J].自然灾害学报,14(6):27-31.
    [218]姚清林,黄崇福.2002.地震灾害风险因素和风险评估指标的模糊算法.自然灾害学报,11(2):51-58.
    [219]张会,张继权,韩俊山.2005.基于技术的洪涝灾害风险评估与区划研究——以辽河中下游地区为例[J].自然灾害学报,14(6):141-146.
    [220]张继权,冈田宪夫,多多纳裕一.2006.综合自然灾害风险管理——全面整合的模式与中国的战略选择[J].自然灾害学报,15(1):29-37.
    [221]张建军.2006.地面沉降预测及经济影响评价研究[D].天津:天津大学.37-48.
    [222]张锦文.1997.中国沿海海平面的上升预测模型[J].海洋通报,16(4):3-11.
    [223]张俊香,黄崇福.2005.自然灾害软风险区划图模式研究[J].自然灾害学报,14(6):20-25.
    [224]张俊香,黄崇福,乔森.2006.昆明—楚雄—大理—丽江地区地震软风险区划实例[J].自然灾害学报,15(1):59-65.
    [225]张立华,朱庆,暴景阳,等.2007.一种基于数字伴潮海岸线的潮滩淹没区仿真算法[J].武汉大学学报(信息科学版),32(7):637-640.
    [226]张维然,段正梁,曾正强,等.2003.1921~2000年上海市地面沉降灾害经济损失评估[J].同济大学学报,31(6):743-748.
    [227]张维然,王仁涛.2005.2001-2020年上海市地面沉降灾害经济损失评估[J].水科学进展,16(6):870-874.
    [228]张行南,罗健,陈雷,等.2000.中国洪水灾害危险程度区划水利学报,(3):1-7.
    [229]张行南,张文婷,刘永志,等.2006.风暴潮洪水淹没计算模型研究[J].系统仿真学报,18(增刊2):20-23.
    [230]张雪莹,邵荣敏,高孟川.2005.天津沿海风暴潮的成因与防灾减灾措研究[J].天津理工大学学报,21(2):60-63.
    [231]张衍广,林振山,李茂玲,等.2007.基于EMD的山东省GDP增长与耕地变化的关系[J].地理研究,26(6):1147-1155.
    [232]张衍广.林振山,梁仁君.2008.基于EMD分析的山东省土地承载力的动力学预测[J].地理科学,28(2):219-223.
    [233]张云霞.2004.天津市滨海新区地面沉降防治对策研究[D].天津:天津大学.4-17,36-55.
    [234]赵全.2005.地面沉降数学模拟及其应用的研究[D].天津:天津大学.51-62,
    [235]赵玉洁,宋国辉,徐明娥,等.2004.天津滨海区50年局地气候变化特征[J].气象科技,32(2):86-89,96.
    [236]《中国21世纪议程》编制组.1994.中国21世纪议程——中国21世纪人口、环境与发展白皮书[M].北京:中国环境科学出版社.
    [237]中国环境报.1996.我国近海海平面上升速度较快,8月10日,第1版.
    [238]中华人民共和国交通部.2000.海港水文规范(JTJ21 3-98)[S].北京:人民交通出版社.
    [239]周成虎,万庆,黄诗峰,等.2000.基于GIS的洪水灾害风险区划研究[J].地理学报,55(1):15-24.
    [240]周健,黄崇福,薛晔.2006.对中国综合风险管理机构体系建设的建议[J].自然灾害学报,15(1):38-44.
    [241]周晓英,胡学军,胡得宝,等.2005.“0414号—云娜”台风路径分析[J].海洋预报,22(3):25-30.
    [242]朱会义,刘述林,贾绍凤.2004.自然地理要素空间插值的几个问题[J].地理研究,23(4):425-432.
    [243]朱琳,叶殿秀,陈建文.2002.陕西省冬小麦干早风险分析及区划[J].应用气象学报,13(2):201-206.
    [244]邹霞.2006.天津滨海新区海岸带土地利用/覆被变化及其驱动力研究[Z].北京:中国地质大学.16-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700