用户名: 密码: 验证码:
塔里木盆地东南缘阿克塔什塔格地区早前寒武纪年代格架及重大地质事件序列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔里木盆地东南缘阿克塔什塔格地区的早前寒武纪基底岩系,由新太古代米兰岩群、TTG片麻岩,和侵入其中的古元古代花岗片麻岩及敦煌岩群孔兹岩系构成。其中新太古界发育塑性变形和高角闪岩相-麻粒岩相变质,具强烈的混合岩化并遭受角闪岩相变质改造;二者普遍低Si高Al,富Na贫K,富集LIFE和LREE,亏损HSFE和HREE,轻重稀土分馏强烈,Eu异常不明显,指示其为岛弧玄武岩俯冲至下地壳部分熔融的产物。锆石SHRIMP U–Pb年龄分别为2567±32Ma和2592±15Ma,形成于新太古代晚期塔里木克拉通的俯冲汇聚过程,指示了五台期该区发生了大陆地壳的水平增生。
     古元古代变质侵入体以岩体特征明显、与米兰岩群的侵入界线清晰。其中,闪长质片麻岩、片麻状石英闪长岩和敦煌岩群中的安山岩均属次铝富钠的钙碱性岩系,其锆石SHRIMP U-Pb年龄分别为2135±110Ma、2051.9±9.9Ma、2050±16Ma,敦煌岩群的年龄为2140.5±9.5Ma;它们均具有Ba、K、Sr等和LREE明显富集,而高场强元素Nb、Hf、Zr、Ti等元素明显亏损,铕异常不明显,与岛弧型岩浆岩的微量元素特征一致,反映了其形成于俯冲岛弧带的大地构造背景。碳酸岩呈似层状侵入于米兰岩群中,其Fe、Mg、Mn、Ti、P等元素含量低于已知幔源碳酸岩十个数量级之上,与米兰岩群接近,且稀土总量仅为25.74~63.01ppm,Th/U比为0.04~0.36,显示其并非幔源成因,而是米兰岩群中的大理岩在古元古代(1931±18Ma)深熔而成。此外,TTG岩系存在2.27~2.38Ga和1.9~2.05Ga两期变质年龄;表明古元古代晚期(1.93~ 2.05Ma),米兰岩群强烈深熔形成碳酸岩和石英闪长岩,麻粒岩相退变为角闪岩相,是同碰撞造山阶段的响应。未变形的石英正长岩具有高硅、高碱、低铝的特点,K2O+Na2O含量高达10%以上,且K2O>Na2O,在硅碱图中落入碱性系列岩石区域;富集LIFE,亏损Yb,球粒陨石标准化稀土配分曲线呈V形谷,δEu负异常明显,显示A型花岗岩的岩石地球化学特点,其年龄为1873.4±9.6Ma,形成于后造山阶段。中元古代早期的NW向基性岩墙群,及Pt2-3索尔库里群的盖层指示了塔里木克拉通的大陆裂解。
     上述前寒武纪年代格架的建立,表明塔里木克拉通的早前寒武纪地质演化与华北克拉通更有亲缘性,新太古代二者同属Nena陆块,共同参与了Kenorland和古元古代Columbia超大陆的汇聚。
In Agetashtage of southeastern margin of Tarim basin, there are relative better-preservedearly Precambrian basement metamorphic rocks-Agetashtage complex, consisting of Milangroup, Neoarchean TTG gneiss and paleoproterozoic granitic gneiss intruding into them, andKhondalites in Dunhuang Group. With rheomorphic fold, Milan group and TTG sufferedhigh-amphibolite to granulite facies metamorphism, intensive migmatization and lateramphibolite facies metamorphism alteration. Their geochemical characteristics-low Si and Na,high Al and K content, enriched in LILEs and LREE, depleted in HFSE and HREE, heavyfractionation between LREE and HREE, no obvious Eu anomaly-indicate that they are productof arc basalt melting after subducting beneath the lower continental crust. The zircon U-PbSHRIMP ages of them are close-2567±32Ma and 2592±15Ma respectively, suggest that they arefrom the same magma stage, hinting the assembly of Tarim craton in later Neoarchean andhorizontal crust growth similar with Japan arc model in southeastern margin of Tarim craton inWutai stage.
     The Paleoproterozoic granite differed from Neoarchean TTG rocks by their amphibolitefacies metamorphism, non-sodium migmatization and had clear boundary with Milan Group.These large-scaled intrusions contained dioritic gneiss, gneissic quartz diorite, amphibole quartzsyenite and carbonatite, with syenite and monzonite mafic rocks appeared as veins or dykes. Thebanded carbonatitic intrusion intruded into the high grade TTG to granitic complex and MilanGroup. The carbonatite with simple minerals, petrologic characteristics, the geochemicalcomposition, and so on, especially extremely low REE content and Th/U ratios, show itsgenensis of crustal resource.
     We did zircon SHRIMP U-Pb dating on all the following rocks: gneissic diorite, gneissicquartz diorite, gray felsic veins (felsic migmatization) , carbonatite and quartz syenite, andyielded their age of 2135±110Ma, 2051.9±9.9Ma, 2050±16Ma, 1931±18Ma and 1873.4±9.6Marespectively. In addition, we dated the Dunhuang Group volcanic rocks with the same methodand got 2140.5±9.5Ma as a result. We also found that, without exception, all Neoarchean metamorphicrocks had group metamorphic ages of either 2.27~2.38Ga or 1.9~2.05Ga. From these and someexisting geochronological data by other researchers for the same study area, we can establish afine geochronological framework as follow:
     The formation of Khondalites and the emplacement of calc-alkaline island arc quartz dioriteindicated an early subduction environment in the middle of Paleoproterozoic (2.10~2.15Ga) era,The trace elements is rich in Ba,Sr,K,LREE and other large ion lithophile elements( LILE) ofthose rocks,while the high field strength elements ( HFSE) Nb,Hf,Zr,Ti,etc.are relativelydepleted and without Eu anomalies. All of these features are similar to features of the island -arccalc-alkali series in relation to subduction, representing the volcanic-arc products of thesubduction in Palaeoproterozoic.
     Late Paleoproterozoic (1.93~2.05Ga), this area went through a syn-collisional orogenesisstage, during which, igneous carbonatite, quartz diorite and potassium migmatite were formeddue to intense anatexis of crustal derived rocks and pre-existing rock underwent amphibolitefacies metamorphism and intense ductile shear deformation.
     In the post-orogenic stage (1.85~1.87Ga) in last Paleoproterozoic era, when post-orogenic ganite such as quartz monzonite, quartz syenite were formed. It is characterized by SiO2-rich,alkaline-rich(Na2O+K2O>10%), K-high and low-Al2O3.The quartz syenite is enriched in LIFE,such as Rb,Th, K, and depleted in HSFE such as Ba, Nb,Ta, P, Ti, with distinct negative Euanomaly. All the above geochemical evidence indicated that those alkali-granites are formed inthe post-orogenic extensional tectonic setting.
     NW-trending mafic dyke swarms were well developed, indicating continental breakup ofthe Tarim craton in early Mesoproterozoic. The sedimentary strata of Suoerkuli Group werewidely developed giving further evidence for breakup in Mesoproterozoic.
     This geochronology framework provides not only a scientific basis for the discussion ofearly crustal evolution of the Tarim craton but also a comparison framework for the study ofearly Precambrian metamorphic base of North China craton. Moreover it provides data for thefurther study of the Columbia supercontinent assembly.
引文
1. Aspler L. B., Chiarenzelli J. R.. 1998. Two Neoarchean supercontinents? Evidence from thePaleoproterozoic Original Research Article. Sedimentary Geology, 120(1–4):75-104.
    2. Balling N. 1995. Heat flow and thermal structure of the lithosphere across the Baltic andnorthern Tornquist zone . Tectonophys, 4: 13~50.
    3. Bohlen S R. 1987. Pressure-temperature-time paths and a tectonic modal for the evolution ofgranulites. J. Geol., 95: 617~632.
    4. Cocks L. R. M., Trond H. Torsvik. 2011. The Palaeozoic geography of Laurentia and westernLaurussia: A stable craton with mobile margins Review Article. Earth-Science Reviews,106(1–2): 1-51.
    5. Cocks L. R. M., Trond H. Torsvik. 2007. Siberia, the wandering northern terrane, and itschanging geography through the Palaeozoic Original Research Article. Earth-Science Reviews,82(1–2): 29-74.
    6. Cocks L. R. M., Trond H. 2005. Torsvik. Baltica from the late Precambrian to mid-Palaeozoictimes: The gain and loss of a terrane's identity Original Research Article. Earth-Science Reviews,72(1–2): 39-66
    7. Condie K. C. 2004. Supercontinents and superplume events: distinguishing signals in thegeologic record Original Research Article. Physics of the Earth and Planetary Interiors,146(1–2):319-332.
    8. Condie K. C. 2002. The supercontinent cycle: are there two patterns of cyclicity? ReviewArticle Journal of African Earth Sciences, 35(2):179-183.
    9. Condie K. C., Richard C. A.. 2010. Episodic zircon age spectra of orogenic granitoids: Thesupercontinent connection and continental growth Original Research Article. PrecambrianResearch, 180(3–4):227-236.
    10. Foley S. 2008. A trace element perspective on Archean crust formation and on the presenceorabsence of Archean subduction[C]. Condie K C and Pease V (eds).When did plate tectonicsbegin on plane tearth? Geological Society of America Special Paper, 440:31~50.
    11. Fountain D M, Arculns R, Kay R W. 1992. Continental lower crust. Elsevier:Amsterdam.Griffin W L, OtReilly S Y. 1987. Is the continental Moho the Crust-mantleboundary7. Geology, 15:241~244.
    12. Fountain D M, Salisbury M H. 1981. Exposed cross-section through the continental crust,implications for crustal structure, petrology and evolution. Earth Planet. Sci. Lett., 56: 263~277.
    13. Gao S, Ling W L, Qiu Y M, et al.1999. Contrasting geochemical and Sm-Nd isotopiccompositions of Archean metasediments from the Kongling high-grade terrain of the Yangtzecraton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis.Geochim Cosmochim Acta, 63: 2071~2088
    14. Griffin W L, Win Ryan T T, 1995, Mapping the erath mantle in 4D using the protonmicroprobe. Nuclear Instruments and Methods in Physics Research, B, 104: 456~463.
    15. Guo J H, Sun M, Chen F K, et al. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology ofhigh-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoiccontinental collision. J Asian Earth Sci, 24: 629~642
    16. Hamilton P J, Evensen N M, OfNions R K, Tarney J. 1979. Sm-Nd systematics of Lewisiangneisses, implications for the origin of granulites. Nature, 277. 25~28.
    17. Heier K S. 1973. Geochemistry of granulite facies rocks and problems of their origin. Publ.Trans. R. Soc. , A273:429~442.
    18. Hoffman P.F., 1991. Did the breakup of Laurentia turn Gondwana inside out? Science,252:1409~1412.
    19. Hoffman PF. 1988. United plates of America, the birth of a craton : early Proterozoicassembly and growth of Laurentia [J].Ann Rev Earth Planet Sci, 16: 543~603.
    20. Hoffman P. F.. 1999. The break-up of Rodinia, birth of Gondwana, true polar wander and thesnowball Earth Original Research Article. Journal of African Earth Sciences, 28(1):17-33.
    21. Hoffman P. F., Halverson G. P., Domack E. W., et al. 2012. Cryogenian glaciations on thesouthern tropical paleomargin of Laurentia (NE Svalbard and East Greenland), and a primaryorigin for the upper Russ ya (Islay) carbon isotope excursion Original Research Article.Precambrian Research, 206–207:137-158.
    22. Hou GT, Li JH, iu YL, Qian XL. 2006. The late Pale0pr0ter0z0ic extension event:aulacogens and dyke Swarms in the North China craton[J]. Progress in Natural Science,16(2):201~208.
    23. Hou G., Santosh M., Qian Xianglin, Lister G. S., Li J.H. 2008. Configuration of the LatePaleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms OriginalResearch Article. Gondwana Research, 14(3):395-409.
    24. Hu A Q, Rogers G. 1992. Discovery of 3.3Ga Archean rocks in north Tarim Block ofXinjiang, western China[J].Chinese Science Bulletin,37(18):1546~1549.
    25. Hu Aiqin, Jahn B M, Zhang G X, et al. 2000. Crustal evolution and Phanerozoic crustalgrowth in northern Xinjiang: Nd isotopic evidence, Part I, Isotopic characterization of basementrock[J]. Tectonophysics, 328(1-2):15~51.
    26. Hu Aiqin, Rogers G. 1992. Discovery of 3.3Ga Archean rocks in north Tarim Block ofXinjiang, western China[J].Chinese Science Bulletin, 37(18):1546~1549.
    27. Johannes W., Holtz F. 1996. Petrogensis and experimental petrology of granitic rocks[M].Spring-verlag, Berlin, 335
    28. Kr ner A., Wilde S.A., Li J.H, Wang K.Y,2005,Age and evolution of a late Archean toPaleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain ofnorthern China. Journal of Asian Earth Sciences 24:577~595
    29. Kr ner, A, Wilde, A.S., O’Brien, P.J.O., Li, J.H., 2001. The late Archaean toPalaeoproterozoic Hengshan and Wutai complexes of northern China. In: Cassidy, K.F., Dunphy,J.M., Kranendonk, M.J.V. (Eds.), Proceedings of the 4th International Archaean Symposium(Extended Abstract), SGSO-Geoscience Australia, Perth, 327.
    30. Kr ner, A., Zhao, G.C., Wilde, S.A., Zhai, M.G., Passchier, C.W., Sun, M., Guo, J.H.,O’Brien, P.J., Walter, N., 2002. Guidebook for Penrose Conference Field Trip: A Late Archean toPaleoproterozoic Lower to Upper Crustal Section in the Hengshan-Wutaishan Area of NorthChina. Beijing, China, 63.
    31. Kusky T M., Li Jiang-Hai, Tucker R D. 2001. The Archean Dongwanzi Ophiolite Complex,North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle[J]. Science, 292:1142~
    1145.
    32. Kusky, T.M., Li, J.H., 2003. Paleoproterozoic tectonic evolution of the North China craton.Journal Asian Earth Sciences 22, 23~40.
    33. Li Z.X., Li X.H., Kinny P.D. et al, 2003, Geochronology of Neoproterozoic syn-riftmagmatism in the Yangtze Craton, South China and correlations with other continents: evidencefor a mantle superplume that broke up Rodinia. Precambrian Research 122: 85~109
    34. Li,ZX., Zhang, LH., Powell,C.M., 1996, Positions of the East Asian cratons in theNeoproterozoic super-continent Rodinia. Australia J Earth Science, 43(6):593~604.
    35. Li,ZX., Zhang,LH., Powell,C.M., 1995, South China in Rodinia: part of the missing linkbetween Australia-East Antarctic and Laurentia? Geology, 23(5):407~410.
    36. Liu Shuwen, Pan Yuanming , Xie Qianli , Zhang Jian , Li Qiugen, 2004, Archeangeodynamics in the Central Zone, North China Craton: constraints from geochemistry of twocontrasting series of granitoids in the Fuping and Wutai complexes. Precambrian Research,130 :229~249.
    37. Liu X M, Gao S, Diwu C R, et al.2008. Precambrian crustal growth of Yangtze Craton asrevealed by detrital zircon studies. Am J Sci,308: 421~468
    38. Long, X.P., Yuan, C., Sun, M., Zhao, G.C., Xiao, W.J., Wang, Y.J., Yang, Y.H., Hu, A.Q. 2010.Archean crustal evolution of the Northern Tarim craton, NW China: Zircon U–Pb and Hfisotopic constraints[J]. Precambrian Research. 180: 272~284.
    39. Lu S N, Li H K, Zhang C L, Niu G H. 2008. Geological and geochronological evidence forthe Precambrian evolution of the Tarim Craton and surrounding continental fragments [J].Precambrian Research.160,94~107.
    40. Lu S N, Zhao G C, Wang H C, Hao G J. 2008a. Precambrian metamorphic basement andsedimentary cover of the North China Craton: A review[J]. Precambrian Research,160(1-2):77~93.
    41. Ludwig K R. 2000. Isoplot/Ex version 2.4. A geochronological toolkit for Microsoft Excel[J].Berkeley Geochronology Centre, Spec. Pub., 1~56.
    42. Luo Yan, Sun Min , Zhao Guochun,2004,LA-ICP-MS U–Pb zircon ages of the LiaoheGroup in the Eastern Block of the North China Craton: constraints on the evolution of theJiao-Liao-Ji Belt. Precambrian Research, 134:349–371
    43. Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids[J]. Lithos., 46:411~429.
    44. Martin H., Smithies R.H., Rapp R., Moyen J. F., Champion D. 2005. An overview of adakite,tonalite- trondhje- mite-granodiorite (TTG), and sanukitoid: relationships and some implicationsfor crustal evolution[J]. Lithos, 79 (1-2):1~24.
    45. Martin, H., Moyen, J. F. 2002. Secular changes in TTG composition as markers of theprogressive cooling of the Earth[J]. Geology , 30 (4), 319~322.
    46. Maruyama S., Santosh M., Zhao D.. 2007. Superplume, supercontinent, and post-perovskite:Mantle dynamics and anti-plate tectonics on the Core–Mantle Boundary Review Article.Gondwana Research, 11(1–2):7-37.
    47. Maruyama S., Santosh M.. 2008. Models on Snowball Earth and Cambrian explosion: Asynopsis Original Research Article. Gondwana Research, 14(1–2):22-32.
    48. McMenamin,M.A.S., McMenamin,D.L.S., The Emergence of Animals: theCanbrianBreakthrough. New York: Columbia University Press, 1990.
    49. Mezger K, 1992. Temporal evolution of regional granulite terranes: implication for theformation of lowermost continental crust. In: Fountain D M, Arculus A, Kay R W, ed.Continental Lower Crust. Elsevier, 447~478.
    50. Meert J. G. 2002. Paleomagnetic Evidence for a Paleo-Mesoproterozoic SupercontinentColumbia Original Research Article. Gondwana Research, 5(1):207-215.
    51. Meert J. G, Lieberman B. S.. 2008. The Neoproterozoic assembly of Gondwana and itsrelationship to the Ediacaran–Cambrian radiation Review Article. Gondwana Research, 14(1–2):5-21.
    52. Myers J S. 1993. Precambrian history of west Australian craton and adjacent orogens[J].Ann Rev Earth Planet Sci, 21:453~485.
    53. Newton R C, Perkins D. 1982. Thermodynamics calibration of geobarometers based on theassemblages garnet-plagioclase-orthopyroxene(clinopyroxene)-quartz. Am. Mineral., 67:203~222.
    54. Newton R C. 1985. Temperature, pressure and metamorphic fluid regions in the amphiDolitefacies to granulite facies transition zones. In: Tobi A C, Touret L R, ed. The Deep ProterozoicCrust in the North Atlantic Province. D Redial Publishing Company, 75~104.
    55. O’Reilly S Y, Griffin W L, 1996, 4D lithosphere mapping: methodology and examples.Tectonophisics, 262:3~18.
    56. Peng P. 2010. Reconstruction and interpretation of giant mafic dyke swarms: a case study of
    1.78~1.77Ga magmatism in the North China Craton. Geological Society, Lonton, SpecialPublications,338: 163~178.
    57. Percival J A, et al. 1989. Seismic reflection profiles across deep continental crust exposed inthe Kapuskasing uplift structure. Nature, 342~420.
    58. Percival J A, Fountain D M, Salisbury M H. 1992. Exposed crustal cross sections as windowson the lower crust. In: Fountain D M, Arculus R, Kay R W, ed. Continental Lower Crust.Elsevier, Amsterdam, 317~362.
    59. Percival J A, Fountain D M. 1989. Metamorphism and melting at an exposed example of theConard discontinuity, Kapuskasing Uplift, Canada. In: Bridgwate D, ed. FluidMovement-Element Transport and the Composition of the Deep Crust. Kluwer, Dordrecht,51~60.
    60. Percival J A, McGrath P H. 1986. Deep crustal structure and tectonic history of the northernKapuskasing uplift of Ontario: An intergreted petrological-geophysical study~ Tectonics, 5:553~552.
    61. Percival J A. 1990. Archean tectonic settings of granulite terranes of Superior Province,Canada, A view from bottom. In, Vielzeuf D, Vidal Ph, ed. Granulites and Crustal Evolution.Kluwer Academic Publishers, Netherlands 171~193.
    62. Qiu Y M, Gao S, McNaughton N J, et al.2000. First evidence of >3.2 Ga continental crust inthe Yangtze craton of South China and its implications for Archean crustal evolution andPhanerozoic tectonics. Geology, 28: 11~14
    63. Rapp, R.P., 1994. Partial melting of metabasalts at 2.7 GPa: experimental results andimplications for lower crustal and subduction zone processes[J]. Miner. Mag. 58A:760~761.
    64. Rogers J J W, Santosh M. 2002. Configuration of Columbia, a MesoproterozoicSupercontinent. Gondwana Research, 2002, 5 (1): 5~22.
    65. Rogers J. J.W., Santosh M.. 2009. Tectonics and surface effects of the supercontinentColumbia Original Research Article. Gondwana Research, V15(3–4):373-380.
    66. Rogers J. J.W., Santosh M.. 2003. Supercontinents in Earth History Original Research ArticleGondwana Research, 6(3):357-368.
    67. Rogers J. J.W., Santosh M.. 2006. The Sino-Korean Craton and supercontinent history:Problems and perspectives Original Research Article. Gondwana Research, 9(1–2): 21-23.
    68. Rudnick LR. 1992. Xenoliths samples of the lower continental crust[C]. In: Fountain DM ,Arculus R, Kay RW ( eds. ). Continental Lower Crust, Elsevier, 269~368.
    69. Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lowercrustal perspective. Rew. Geophys. , 33(3) :267~309.
    70. Rudnick R L, Presper T. 1990. Geochemistry of intermediate- to high-pressure granulites. In:Vielzeuf D, Vidal Ph, ed. Granulites and Crustal Evolution. Kluwer, Dordrecht, 523~550.
    71. Rudnick R L. 1992. Xenoliths-Samples of the lower continental crust. In: Fountain D M,Arculus R, Kay R W, ed. Continental Lower Crust. Elsevier: Amsterdam, 269~ 316.
    72. Santosh M.. 2010. Assembling North China Craton within the Columbia supercontinent: Therole of double-sided subduction Original Research Article. Precambrian Research, 178(1–4):149-167
    73. Santosh M, Sajeev K, Li J H. 2006. Extreme crustal metamorphism during Columbia super-continent assembly: Evidence from North China Craton.Gondwana research, 16(3-4):256~266.
    74. Santosh M, Wilde S A, Li J H. 2007. Timing of Paleoproterozoic ultrahigh-temperaturemetamorphism in the North China Craton: Evidence from SHRIMP U–Pb zircon geochronology..Precambrian Research, 159(3-4):178~ 196.
    75. Saeed S., Stern C. R.. 2011. Petrochemistry and genesis of olivine basalts from smallmonogenetic parasitic cones of Bazman stratovolcano, Makran arc, southeastern Iran OriginalResearch Article. Lithos, 125(1–2):607-619.
    76. Scotese C.R., Boucot A.J., McKerrow W.S.. 1999. Gondwanan palaeogeography andpaleoclimatology Original Research Article. Journal of African Earth Sciences, 2(1):99-114.
    77. Stampfli G.M., Borel G.D. 2002. A plate tectonic model for the Paleozoic and Mesozoicconstrained by dynamic plate boundaries and restored synthetic oceanic isochrons OriginalResearch Article. Earth and Planetary Science Letters, 19691–2):17-33.
    78. Shu L S, Deng X L, Zhu W B, Maa D S, Xiao W J. 2011.Precambrian tectonic evolution ofthe Tarim block, NW China: New geochronological insights from the Quruqtagh domain[J].Journal of Asian Earth Sciences,(in press).
    79. Smithson S B, Brown S K. 1977. A model for lower continental crust. Earth Planet. Sci. Lett. ,35:134~144.
    80. Songnian Lu, Huaikun Li, Chuanlin Zhang, Guanghua Niu. 2008. Geological andgeochronological evidence for the Precambrian evolution of the Tarim Craton and surroundingcontinental fragments[J]. Precambrian Research 160:94~107.
    81. Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In: Saunders A D, Norry M J (Eds.),Magmatism in the Ocean Basins. Geological Society of London, Special Publication 42,313~345.
    82. Veevers J.J.. 2005. Edge tectonics (trench rollback, terrane export) of Gondwanaland-Pangeasynchronized by supercontinental heat Original Research Article. Gondwana Research, 8(4):449-456.
    83. Veevers J.J.. 2004. Gondwanaland from 650–500 Ma assembly through 320 Ma merger inPangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometricdating Original Research Article. Earth-Science Reviews, 68(1–2):1-132.
    84. Wan Y S, Liu D Y, Dong C Y, Xu Z Y, Wang Z J, Wilde S A, Yang Y H, Liu Z H, Zhou H Y.
    2008. The Precambrian knondalite belt in the Daqingshan area, North China Craton: evidence formultiple metamorphic events in the Paleoproterozoic[J]. Geological Society of London ,308(3):351~378.
    85. Wan Y S, Song B, Liu D Y, Wilde S A, Wu J S, Shi Y R, Yin X Y, Zhou H Y. 2006. SHRIMPU-Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North ChinaCraton: evidence for a major Late Paleoproterozoic tectonothermal event[J]. PrecambrianResearch, 149, 249~271.
    86. Wang Y J, Zhao G C, Fan W M, et al.2007. LA-ICP-MS U-Pb zircon geochronology andgeochemistry of Paleoproterozoic mafic dikes from western Shandong Province: Implications forback-arc basin magmatism in the Eastern Block, North China Craton. Precambrian Res, 154:107~124
    87. Wenbin Zhu, Bihai Zheng, Liangshu Shu, Dongsheng Ma, Hailin Wu, Yongxiang Li, WentaoHuang, Junjie Yu. 2011. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschistterrane, northwestern Tarim, China: Insights from LA-ICP-MS zircon U-Pb ages andgeochemical data[J]. Precambrian Research, 185: 215~230.
    88. Wilde S A, Zhao G C, Sun M. 2002. Development of the North China Craton during the lateArchaean and its final amalgamation at 1.8 Ga : some speculations on its position within a globalPaleoproterozoic supercontinent [J]. Gondwana Research, 5: 85~94.
    89. Wilde S A, Zhao G C, Wang K Y, Sun M. 2004. First precise SHRIMP U-Pb zircon ages forthe Hutuo Group, Wutaishan: further evidence for the Palaeoproterozoic amalgamation of theNorth China Craton [J]. Chinese Science Bulletin, 49, 83~90.
    90. Wilde Simon A, Cawood Peter A, Wang Kaiyi, Nemchin Alexander A. 2005. Granitoidevolution in the Late Archean Wutai Complex, North China Craton[J]. Journal of Asian EarthSciences, 24: 597~613.
    91. Wilde, S. A., 1998, SHRIMP U–Pb zircon dating of granites and gneisses in theTaihangshan-Wutaishan area:Implications for the timing of crustal growth in the North Chinacraton. The 9th International Conference on Geochronology, Cosmochronology and IsotopeGeology, Abstract, Beijing, Chinese Science Bulletin, v. 43, 144.
    92. Wilde, S. A., Cawood, P., Wang, K. Y., and Nemchin, A., 1997, The relationship and timingof granitoid evolution with respect to felsic volcanism in the Wutai Complex, North China craton:Proceedings of the 30th International Geological Conference: Precambrian Geology andMetamorphic Petrology, v. 17, 75~88.
    93. Williams I S. 1998. U-Th-Pb geochronology by ion microprobe[J]. In: McKibben M A,Shanks III W C, Ridley W I (eds.), Applications of Microanalytical Techniques to understandingMineralizing Processes. Reviews in Economic Geology, 7: 1~35.
    94. Williams H., Hoffman P. F., Lewry J. F., James W.H. Monger, Toby Rivers. 1991. Anatomyof North America: thematic geologic portrayals of the continent Original Research Article.Tectonophysics, 187(1–3):117-134.
    95. Wu Fuyuan, Zhao Guochun, Wilde Simon A, Sun Deyou,2005,Nd isotopic constraints oncrustal formation in the North China Craton. Journal of Asian Earth Sciences, 24:523~545
    96. Wu Y B, Gao S, Gong H J, et al.2009. Zircon U-Pb age, trace element and Hf isotopecomposition of Kongling terrane in the Yangtze Craton: Refining the timing of Palaeoproterozoichigh-grade metamorphism. J Metamorphic Geol,27: 461~477
    97. Xia X P, Sun M, Zhao G C, Wu F Y, Xu P, Zhan J H, Luo Y. 2006. U-Pb and Hf isotopicstudy of detrital zircons from the Wulashan khondalites : Constraints on the evolution of theOrdos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters,241:581~593.
    98. Xu B, Jian P, Zheng HF, Zou HB, Zhang LF, Liu DY. 2005. U-Pb zircon geochronology andgeochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest Cbina:implications for the breakup of Rodinia supercontinent and Neoproterozoic lociations[J].Precambrian Research , 136:107~123
    99. Yakubchuk A.. 2008.The gyroscopic Earth and its role in supercontinent and metallogeniccycles Original Research Article. Ore Geology Reviews, 34(3):387-398.
    100. Zhai M G, Liu W J. 2003. Palaeoproterozoic tectonic history of the North China craton: areview[J]. Precambrian Research, 122:183~199.
    101. Zhai Mingguo , Liu Wenjun, 2003, Palaeoproterozoic tectonic history of the North Chinacraton: a review. Precambrian Research, 122 :183~199.
    102. Zhai Mingguo, Guo Jinghui, Liu Wenjun,2005,Neoarchean to Paleoproterozoic continentalevolution and tectonic historyof the North China Craton: a review Journal of Asian EarthSciences 24:547~561
    103. Zhai, M.G., Zhao, G.C., Zhang, Q., 2002. Does the Dongwanzi 2505 Ma ophiolite exist?Comment on‘The Archean Dongwanzi ophiolite complex, North China craton:
    2.505-billion-year-old oceanic crust and mantle’by T.M. Kusky et al. (2001). Science 295, 923a.
    104. Zhang C L, Li Z X, Li X H, Yu H F, Ye H M. 2007. An early Paleopro- terozoic high-Kintrusive complex in southwestern Tarim Block, NW China: Age, geochemistry, and tectonicimplications[J]. Gondwana Res., 12: 101~112.
    105. Zhang C.L,, Yang D. S., Wang H. ., et al. Neoproterozoic mafic-ultramafic layered intrusionin Quruqtagh of northeastern Tarim Block, NW China: Two phases of mafic igneous activitywith different mantle sources. Gondwana Research, 2011 (19) :177~190.
    106. Zhang S B, Zheng Y F, Wu Y B, et al. 2006b. Zircon U-Pb age and Hf-O isotope evidencefor Paleoproterozoic metamorphic event in South China. Precambrian Res, 151: 265~288
    107. Zhang S B, Zheng Y F, Wu Y B, et al.2006a. Zircon isotope evidence for≥3.5 Ga continentalcrust in the Yangtze craton of China. Precambrian Res, 146: 16–34
    108. Zhao G C , Cawood P A , Wilde S A and Sun M. 2002. Review of global 2.1-1.8Ga orogens:implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 59: 125~162.
    109. Zhao G C, Sun M, Wilde S A, et al.2004. A Paleo-Mesoproterozoic supercontinent:Assembly, growth and breakup. Earth Sci Rev, 67: 91~123
    110. Zhao G C, Sun M, Wilde S A, Li S Z. 2005. Late Archean to Paleoproterozoic evolution ofthe North China Craton: key issues revisited[J]. Precambrian Research, 136:177~202.
    111. Zhao Guochun, Cawood Peter A, Wilde Simon A, Sun Min,2002,Review of global 2.1–1.8Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59:125~162
    112. Zhao Guochun, Sunin, Wilde S A, Li Sanzhong, 2005. Late Archean to Paleoproterozoicevolution of the North China Craton: key issues revisited[J]. Precambrian Research136 :177~202
    113. Zhao, G. C., 1999b, Tectonothermal history of the basement rocks in the western zone of theNorth China craton and its tectonic implications. Tectonophysics, v. 310, 37~53.
    114. Zhao, G. C., 2000a, Petrology and P–T path of the Fuping mafic granulites: implications fortectonic evolution of the central zone of the North China Craton. Journal of MetamorphicGeology, v. 18, 375~391.
    115. Zhao, G. C., 2001, Paleoproterozoic amalgamation of the North China Craton. GeologicalMagazine, v. 138, 87~91.
    116. Zhao, G. C., Cawood, P. A., and Lu, L. Z., 1999, Petrology and P–T history of the Wutaiamphibolites: implications for tectonic evolution of the Wutai Complex, China. PrecambrianResearch, v. 93, 181~199.
    117. Zhao, G. C., Cawood, P. A., Wilde, S. A., and Lu, L. Z., 2001b, High-pressure granulite(retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonicimplications. Journal of Petrology, v. 42, 1141~1170.
    118. Zhao, G. C., Cawood, P. A., Wilde, S. A., Sun, M., and Lu, L. Z., 2000b, Metamorphism ofthe basement rocks in the Central Zone of the North China Craton: Implications forPaleoproterozoic evolution. Precambrian Research, v. 103, 55~88.
    119. Zhao, G. C., Wilde, S. A., Cawood, P. A., and Lu, L. Z., 1998, Thermal evolution of Archeanbasement rocks from the eastern part of the North China craton and its bearing on tectonic setting.International Geology Review, v. 40, 706~721.
    120. Zhao, G. C., Wilde, S. A., Cawood, P. A., and Lu, L. Z., 1999a, Thermal evolution of twotypes of mafic granulites in the North China craton: evidence for both mantle plume andcollisional tectonics. Geological Magazine, v. 136, 223~240.
    121. Zhao, G. C., Wilde, S. A., Cawood, P. A., and Sun, M., 2001a, Archean blocks and theirboundaries in the North China Craton: Lithological, geochemical, structural and P–T pathconstraints and tectonic evolution. in Cruden, A. R., editor, Precambrian Terrane Boundaries,Precambrian Research, v. 107, 45~73.
    122. Zheng J P, Griffin W L, O’Reilly S Y, et al.2006. Widespread Archean basement beneath theYangtze craton. Geology, 34: 417~420
    123. Zing A. 1990. The Ivrea crustal cross-section (northern Italy and southern Switzerland). InsSalisbury M H, Fountain D M, ed. Exposed Cross-Section of Continental Crust. Kluwer Acad.Publ. , 1~19.
    124.车自成,孙勇.1996.阿尔金麻粒岩相杂岩的时代及塔里木盆地的基底[J].中国区域地质,56(1):51-57.
    125.车自成,刘良,孙勇. 1995.阿尔金铅、钕、氩、氧同位素研究及其早期演化[J].地球学报,3:334~337.
    126.陈能松,王勤燕,陈强,李晓彦,龚松林. 2007.柴达木和欧龙布鲁克陆块基底的组成和变质作用及中国中西部古大陆演化关系初探.地学前缘, 14(1):43~55.
    127.陈能松,王新宇,张宏飞,孙敏,李晓彦,陈强. 2007a.柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成:基底性质和构造属性启示.地球科学——中国地质大学学报,32(1):7~21.
    128.陈正乐,陈宣华,王小凤等.新疆阿尔金山拉配泉铜矿矿区地质特征及成因初析[J].地质力学学报,2002,Vol.8(1):71~78
    129.崔军文. 1999.阿尔金断裂系.北京:地质出版社.
    130.程裕淇,张寿广,1982.中国变质带、变质幕及其相关问题.中国区域地质,(2): 1~14 .
    131.邓晋福,吴宗絮,杨建军,等,1995.格尔木-额济纳旗地学断面走廊域地壳-上地幔岩石学结构与演化过程.地球物理学报,38(增刊2):130~144.
    132.邓兴梁,舒良树,朱文斌,马东升,王博. 2008.新疆兴地断裂带前寒武纪构造一岩浆一变形作用特征及其年龄.岩石学报, 24(11): 2800~2808.
    133.董富荣,李嵩龄,冯新昌. 1999.库鲁克塔格地区新太古代深沟片麻杂岩特征.新疆地质,17(1):82~87.
    134.董昕,张泽明,唐伟. 2011.塔里木克拉通北缘的前寒武纪构造热事件——新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定.岩石学报, 27(1):47~58.
    135.杜利林,杨崇辉,王伟,任留东,万渝生,宋会侠,耿元生,侯可军. 2011.五台地区滹沱群时代与地层划分新认识:地质学与锆石年代学证据[J].岩石学报, 27(4):1037-1055.
    136.高山, Qiu Y M,凌文黎. 2001.崆岭高级变质地体单颗粒锆石SHRIMP U-Pb年代学研究——扬子克拉通>3.2 Ga陆壳物质的发现.中国科学D辑:地球科学, 31: 27–35
    137.耿元生,沈其韩,任留东. 2010.华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制[J].岩石学报, 26(7):1945~1966.
    138.耿元生,万渝生,沈其韩,等,2000.吕梁山地质早前寒武纪主要地质事件的年代格架.地质学报,74(3): 216~223.
    139.关鸿,孙敏,徐平,1998.阜平杂岩中几种不同类型片麻岩的锆石激光探针等离子体质谱年代学.岩石学报, 14(4):460~470.
    140.葛肖虹.中国西北大陆构造若干问题的新认识,大陆构造及陆内变形暨第六届全国地质力学学术讨论会论文集,北京:地震出版社,1999.34-35.
    141.郭敬辉,王松山,梁海清,等,2001.变斑晶石榴石40Ar/39Ar年龄的含义与华北高压麻粒岩变质时代.岩石学报,17(3)436~442.
    142.郭敬辉,翟明国, 2000.华北克拉通桑干地区高压麻粒岩变质作用的Sm-Nd年代学.科学通报,45(19): 2055~2061.
    143.郭敬辉,翟明国,张毅刚,等,1993.怀安蔓曹沟早前寒武纪高压麻粒岩混杂岩带地质特征,岩石学和同位素年代学.岩石学报, 8(4): 329~341.
    144.郭召杰,张志诚,贾承造,魏国齐. 2000.塔里木克拉通前寒武纪基底构造格架[J].中国科学D辑, 30(6): 568~575.
    145.郭召杰,张志诚,刘树文,等.2003.塔里木克拉通早前寒武纪基底层序与组合:颗粒锆石U-Pb年龄新证据[J].岩石学报, 19 (3):537~542.
    146.郝国杰,陆松年,王惠初,辛后田,李怀坤. 2004.柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块的地质演化[J].地学前缘, 11(3):115~122
    147.胡霭琴,韦刚健. 2006.塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J].地质学报, 80(1) : 126~134.
    148.胡霭琴,张国新,陈义兵,张前锋. 2001.新疆大陆基底分区模式和主要地质事件的划分[J].新疆地质, 19 (1): 12~19.
    149.胡霭琴,韦刚健.2006.塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J].地质学报, 80 (1) :126~134.
    150.黎敦朋,李新林,周小康,等. 2007.塔里木西南缘新太古代变质辉长岩脉的锆石SHRIMPU-Pb定年及其地质意义.中国地质.34(2):262~269.
    151.李惠民,陆松年,郑健康,等. 2001.阿尔金山东端花岗片麻岩中3.6Ga锆石的地质意义[J].矿物岩石地球化学通报,20(4): 259~262.
    152.李惠民,陆松年,郑健康,于海峰,赵风清,左义成. 2001.阿尔金山东端花岗片麻岩中
    3.6Ga锆石的地质意义[J].矿物岩石地球化学通报, 20(4): 259~262.
    153.李继亮,王凯怡,王清晨,等, 1990,五台山早元古代碰撞带初步认识.地质科学,25(1): 1~11.
    154.李江海,侯贵廷,钱祥鳞, Halls H C, Davis D. 2001.恒山中元古代早期基性岩墙群的单颗粒锆石U-Pb年龄及其克拉通构造演化意义[J].地质论评, 47(3):234~238.
    156.李江海,钱样麟,侯廷贵,等, 2000.“吕梁运动”新认识.地球科学,25(l): 15~20.
    157.李江海,1997.早前寒武纪洋壳的地质记录及其板块构造意义.地质科技情报, 16(1):10~16.
    158.李江海,牛向龙,程素华,钱祥麟.2006.大陆克拉通早期构造演化历史探讨:以华北为例.地球科学:中国地质大学学报, 31(3): 285~293.
    159.李秋根,刘树文,王宗起,张帆,陈友章,王涛. 2008.中条山绛县群碎屑锆石LA-ICP-MSU-Pb测年及其地质意义[J].岩石学报, 24(6):1359~1368.
    160.李晓彦,陈能松,夏小平,孙敏,徐平,王勤燕,王新宇. 2007.莫河花岗岩的锆石U-Pb和Lu-Hf同位素研究:柴北欧龙布鲁克微陆块始古元古代岩浆作用年龄与地壳演化约束[J].岩石学报, 23(2) :513~522.
    161.李志昌,方向.1998.鄂西黄陵地区太古宙变质岩La-Ce同位素体系.地球化学,27(2):117~124.
    162.凌文黎.1996.扬子克拉通北缘元古宙基底同位素地质年代学和地壳增生历史:Ⅰ后河群和西乡群.地球科学, 21: 491~494
    163.刘良.1999.阿尔金高压变质岩与蛇绿岩及其大地构造意义.北京:中国科学院地质研究所.
    164.刘树文. 1994. TTG片麻岩与地球早期动力学.地学前缘,1(1~2):151~157.
    165.刘永顺,于海峰,辛后田,陆松年,修群业,李铨. 2009.阿尔金山地区构造单元划分和前寒武纪重要地质事件[J].地质通报, 28(10):1430~1438.
    166.陆松年,于海峰,李怀坤.2006.中国西部前寒武纪重大地质事件及构造演化[M].北京:地质出版社,1~206.
    167.陆松年,于海峰,赵凤清,等.2001.青藏高原北部前寒武纪地质初探[M].北京:地质出版社, 21~34.
    168.陆松年,袁桂邦. 2003.阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据[J].地质学报, 77(1): 61~68.
    169.陆松年,于海峰,李怀坤. 2006.中国西部前寒武纪重大地质事件及构造演化[M].北京:地质出版社, 1~206.
    170.毛德宝,钟长汀,陈志宏,等,1999.承德北部高压基性麻粒岩的同位素年龄及其地质意义.岩石学报, 15(4): 524~531
    171.梅华林,于海峰,陆松年,李惠民,李铨,等.1998.甘肃敦煌太古宙英云闪长岩:单颗粒锆石U-Pb年龄和Nd同位素[J].前寒武纪研究进展,21(2):41~45.
    172.孟繁冲,张建新,相振群,等.塔里木盆地东北缘敦煌群的形成和演化:锆石U-Pb年代学和Lu-Hf同位素证据[J].岩石学报,2011,27(1):59~76.
    173.彭敏,吴元保,汪晶,等. 2009.扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义.科学通报, 54: 641~647
    174.钱样麟.1992.华北北部太古宙克拉通化过程及地体拼贴和板块构造模式.见:中国地质学会“七·五”地质科技成果学术交流会议论文集.北京:北京科学技术出版社,93~97
    175.乔广生,王凯怡,郭起凤,张桂存,1987.冀东早太古岩石Sm-Nd同位素年龄测定.地质科学, 01:26~34.
    176.戚学祥,李海兵,吴才来.北阿尔金恰什坎萨依花岗闪长岩的锆石SHRIMP U-Pb定年及其地质意义.科学通报,2005:6:146~173.,
    177.沈其韩,钱祥麟,1995.中国太古代地质体成分、阶段划分和演化.地质学报,(2): 113~120.
    178.史大年,余钦范, Georges POUPINET,等.阿尔金断裂带附近地壳结构的接收函数成像及其地球动力学意义[J].地质学报, 2007,(01): 154~172.
    179.孙大中,胡维兴(主编),1993.中条山前寒武纪年代构造格架和年代地壳结构.北京:地质出版社.
    180.万渝生,刘敦一,王世炎,赵逊,董春艳,周红英,殷小艳,杨长秀,高林志. 2009.登封地区早前寒武纪地壳演化——地球化学和锆石SHRIMP U-Pb年代学制约[J].地质学报,83(7):982~999.
    181.万渝生,苗培森,刘敦一,杨崇辉,王伟,王惠初,王泽九,董春燕,杜利林,周红英. 2010.华北克拉通高凡群、滹沱群和东焦群的形成时代和物质来源:碎屑锆石SHRIMP U-Pb同位素年代学制约[J].科学通报, 55(7):572~578.
    182.万渝生,许志琴,杨经绥,张建新. 2003.祁连造山带及邻区前寒武纪深变质基底的时代和组成[J].地球学报,24(4):319~324.
    183.王凯怡,李继亮,郝杰,等,1997.山西五台山区晚太古代镁铁质一超镁铁质岩:一种可能的古蛇绿杂岩.岩石学报,13(2): 139~151.
    184.王云山,陈基娘. 1987.青海省及毗邻地区变质相带与变质作用.北京:地质出版社.42~76.
    185.王永和,校培喜,潘长利,等.“阿尔金群”的解体与阿尔金杂岩特征.西北地质,2004,4:132~140.
    186.吴昌华,李惠民,钟长汀,等,2000.阜平片麻岩和湾子片麻岩单颗粒错石U-Pb年龄一一阜平杂岩并非统一太古宙基底的年代学证据.前寒武纪研究讲展,23(3): 129~139
    187.吴昌华,孙敏,李惠民,赵国春,夏小平.2006.乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄——孔兹岩沉积时限的年代学研究[J].岩石学报, 22(11):2639~2654.
    188.吴元保,郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589~1604.
    189.肖庆辉,卢欣祥,王菲,孙延贵,尉向东,邢作云. 2003.柴达木北缘鹰峰环斑花岗岩的时代及地质意义[J].中国科学D辑:地球科学, 33 (12):1193~1200.
    190.辛后田,王惠初,周世军. 2006.柴北缘的大地构造演化及其地质事件群[J].地质调查与研究, 29 (4):311~320.
    191.辛后田,赵凤清,罗照华,等.2011.塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的确定及其地质意义,地质学报, 85(12):1978~1993.
    192.熊庆,郑建平,余淳梅,等. 2008.宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用.科学通报, 53: 2782–2792.
    193.修群业,于海峰,刘永顺,陆松年,毛德宝,李惠民,李铨.阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄.地质学报.2007,18(6)
    194.许志琴,杨经绥,张建新,姜枚,李海兵,崔军文.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报.1999.73(3):193~205.
    195.薛怀民,金振民,董树文.1999. TTG岩石组合及其成因的实验模拟.地质科技情报,18(3):21~29.
    196.叶发广,1994,下地壳深成变质作用的研究进展.国外前寒武纪地质,(1):l~9.
    197.杨经绥,吴才来,史仁灯.阿尔金山米兰红柳沟的席状岩墙群:海底扩张的重要证据.地质通报, 2001,21(2):69~74
    198.于海峰,梅华林,李铨. 1998.甘肃敦煌地区太古宙孔兹岩系特征[J].前寒武纪研究进展, 21(1): 19~25.
    199.于海峰,梅华林,李铨.1998,。,甘肃敦煌地区太古宙孔兹岩系特征[J].前寒武纪研究进展, 21(1): 19~25.
    200.于海峰,陆松年,刘永顺,修群业,李铨. 2002.“阿尔金山岩群”的组成及其构造意义[J].地质通报, 21(12): 834~840.
    201.翟明国,刘文军.2001.麻粒岩的形成及其对大陆地壳演化的贡献[J].岩石学报,17(1):28~38.
    202.翟明国,彭澎. 2007.华北克拉通古元古代构造事件.岩石学报, 23(11):2665~2682.
    203.翟明国、卞爱国,2000,华北克拉通新太古代末超大陆拼合及古元古代末--中元古代裂解.中国科学,30(增刊):129-137.
    204.翟明国. 2008.华北克拉通中生代破坏前的岩石圈地幔与下地壳.岩石学报,24(10):2185~2204.
    205.张建新,李怀坤,孟繁聪,相振群,于胜尧,李金平. 2011.塔里木盆地东南缘(阿尔金山)“变质基底”记录的多期构造热事件:锆石U-Pb年代学制约.岩石学报, 27(1):23~46.
    206.张璐,廖梵汐,巴金,许利盼,王勤燕,陈能松.2011.全吉地块花岗片麻岩中镁铁质岩包体的矿物演化和锆石定年与古元古代区域变质作用.地学前缘, 18(2):79~84.
    207.张良臣,吴乃元. 1985.天山地质构造及演化史.新疆地质,第3期: 26~37.
    208.赵国春,孙敏. 2002.华北克拉通基底构造单元特征及早元古代拼合.中国科学(D),32(7):538~549.
    209.赵国春. 2009.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报,25(8):1772~ 1792.
    210.郑健康. 1995.阿尔金造山带东段地质构造演化概论.青海地质,第2期:1~10.
    211.钟长汀,邓晋福,万渝生,毛德宝,李惠民. 2007.华北克拉通北缘中段古元古代造山作用的岩浆记录: S型花岗岩地球化学特征及锆石SHRIMP年龄.地球化学,36(6)585~600.
    212.周喜文,耿元生. 2009.贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约.岩石学报, 25(8): 1843~1852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700