用户名: 密码: 验证码:
北秦岭的构造变形与动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭造山带作为中国中央造山带的主要部分,长期以来都是地质学家们关注与研究的热点地区。北秦岭构造带位于秦岭造山带核部,夹持在洛南-栾川断裂带和商丹断裂带之间。它是秦岭造山带变质最强烈和变形最复杂的地区。北秦岭古生代以来造山过程中的构造变形研究对建立华北板块与华南板块之间的最终拼合过程尤为重要。前人在该地区的工作主要集中在北秦岭内部各块体的大地构造属性方面,关于其内部块体与边界断裂的精细构造变形研究尚显不足。因此本文从野外调研入手,主要从构造地质学,变质岩石学和构造热年代学等方面对北秦岭进行综合研究,同时结合区域地质资料探讨了北秦岭古生代构造演化过程,并对其进行了动力学分析。
     (1)通过野外构造观察与室内显微变形分析,揭示出刘岭群北带内部岩石面理倾向NNE,矿物拉伸线理为倾向线理。其构造变形特征主要表现为带内岩石由北向南逆冲,呈构造岩片叠置,形成轴面南倒北倾的紧闭褶皱。对其内部的含榴云母石英片岩的变质作用研究发现,其峰期变质达绿帘-角闪岩相到低角闪岩相变质条件,T=560℃-588℃,P=0.59~0.65GPa,对应大陆造山带环境。对其内部1个含榴云母石英片岩样品和2个千糜岩样品中的白云母进行40Ar-39Ar法定年,得到其冷却年龄分别为247±1Ma,247±1Ma,249±1Ma。
     (2)对商丹带进行了详细的构造变形研究,发现不同部位其构造变形特征有所差别。南带发育由北向南的逆冲的断层和紧闭的同斜褶皱,中心部位内岩石具有面理陡倾,线理近水平的特征,并发育枢纽产状与矿物拉伸线理产状一致的A型褶皱。而北带岩石矿物拉伸线理多为向SEE倾伏,倾伏角为20-50°,A型褶皱枢纽产状与矿物生长线理一致。
     利用糜棱岩化过程中矿物变形温度计和石英C轴组构特征估算商丹带的变形环境主要集中在中一高绿片岩相到低角闪岩相。岩石变形温度主要集中在400-500℃之间,属中高温条件。总体上西段岩石变形温度较东段高。古应力差计算结果显示商丹带的古应力差值较大,达到140MPa。涡度分析表明商丹断裂带的变形以纯剪作用占据主导作用,但包含有简单剪切的分量,在此背景下岩石的有限应变表现为压扁的椭球体。
     (3)对秦岭岩群进行了详细的构造解析,结果指示秦岭岩群主要经历了两个构造旋回。早期晋宁期变质变形具体表现为沉积地层发生角闪岩相变质成为片麻岩等一系列岩石,并形成紧闭-平卧褶皱,发育透入性的片麻理和向NWW缓倾的矿物生长线理。加里东-海西期间秦岭岩群又发生了一次较为强烈的变质变形作用,使得早期褶皱的秦岭岩群内部岩石产生向SEE倾伏的矿物拉伸线理和A型褶皱。变质作用研究表明秦岭岩群变质峰期达角闪岩相,T=686℃,P=0.63Gpa,其加里东-海西期变质p-T轨迹具有顺时针旋转的特点,指示减压抬升过程。结合上述一系列地质现象,说明秦岭岩群在向上抬升过程可能具有平行造山带向西侧向挤出的运动学分量。
     (4)对朱夏断裂带两期活动进行了区分,早期由南向北的逆冲活动使得秦岭岩群逆冲到二郎坪岩群之上,其活动时代大约在400Ma左右。后期右行走滑剪切奠定了当今朱夏断裂带的地质外貌,使得早期的由南向北逆冲剪切作用记录很少被保留。该期活动形成的糜棱岩面理高角度顷向SWS,矿物拉伸线理向ESE缓倾,倾角2-15。,宏观或微观变形证据都很好的指示了右行走滑的运动学特征。该期变形的温度在400-550℃之间,根据糜棱岩中白云母的40Ar-39Ar年代学分析指示出该期剪切活动最迟发生在146Ma左右。
     (5)瓦乔断裂带走向为SEE-NWW,倾向NNE,糜棱岩内矿物拉伸线理既有向NNE的陡倾线理,又有近水平的缓倾线理。研究表明断裂带具有由北向南逆冲的运动学特征,且存在左旋剪切的分量。根据石英C轴组构的优选方位判断其剪切带的变形温度为400-650℃,为中高温变形。通过对断裂带内同构造形成的二云母石英片岩中白云母的40Ar-39Ar定年,首次获得瓦乔断裂带的活动年龄上限为387Ma。
     经过区域综合构造分析,认为北秦岭构造带现今构造格局形成于古生代构造运动。其主要动力学原因是扬子板块与华北板块之间的挤压和碰撞作用。随着秦岭洋的闭合,两大板块开始碰撞拼合,北秦岭内部各块体也完成了拼贴就位,此时北秦岭地区区域变质作用达到顶峰,朱夏断裂带和瓦乔断裂带在区域变质与热变质作用下启动。
As the main part of central orogenic belt of China, The Qinling orogenic belt is always the interested research area among geologists. The north Qinling tectonic belt is located in the core of Qinling orogenic belt, which is bounded by Luonan-Luanchuan fault (LLF) in the north and Shangnan-Danfeng fault (SDF) in the south, and have undergone strong metamorphism and deformation. Therefore, deformation in the orogenesis of the Qinling orogen since the Palaeozoic is very important to reconstructing the last assembly process of the North China Plate and South China Plate. Previous research work in the region is mainly concentrated in the tectonic attribute of blocks in the north Qinling tectonic belt, but lack of fine structure analysis of internal block and boundary faults. In this paper, we present original results of our field investigation, and structural geology, metamorphic petrology and geochronology studies on the north Qinling tectonic belt. Combining with regional geologic data, the tectonic evolution process in Palaeozoic and geodynamics of the north Qinling tectonic belt are discussed.
     The detailed field investigation and microstructure analysis reveals that the rocks in the north belt of Liuling group develop NNE-dipping foliation and dipping stretching lineation. The structural deformation of the north belt of Liuling group is characterized by rocks thrusting toward south, tectonic slices superimposed and forming N-verging tight folds. Metamorphism study on garnet-bearing mica quartz schist suggests the peak metamorphism reaches epidote-amphibolite facies to low amphibolite facies of560℃~588℃and0.59~0.65GPa,and it is similar to the environment of continental orogenic belt. Muscovites from one sample garnet-bearing mica quartz schist and two samples of phyllonite give40Ar/39Ar plateau agesrespectively247±1Ma,247±1Ma, and249±1Ma.
     Fine structural analysis suggests that different parts of Shangdan fault zone have different structural deformation characteristics. South belt develops faults thrusting towards south and N-verging tight homoclinal folds. However mylonites are exposed in the center of Shangdan fault belt with dipping foliations and nearly horizontal stretching lineations, and A-type folds whose hinges occurrence is parallel to the stretching lineation are well developed. To the north, the mineral stretching lineation pitch to SEE with plunge angle of20-50°, and also A-type folds whose hinges occurrence is parallel to the stretching lineation are common to see.
     Mineral deformation thermometer during mylonitization and quartz C axis fabric analysis are carried out to estimate the deformation environment of Shangdan fault zone. The result shows the deformation temperature is mainly between400℃~500℃, and indicates mylonites formed in the middle-high greenschist facies to low amphibolite facies metamorphic conditions. In generally the deformation temperature of west part is higher than theeast part.Differential stress calculation show that ancient stress difference of the Shangdan fault zone is up to140Ma. The kinematic vorticity analysissuggests that the deformation wasmainly dominate by the pure shear, but contains a simple shear component. Under the background of the finite strain of rocks shows the flattened ellipsoid.
     A detailed structural analysis indicates the Qinling Group has undergone two major tectonic cycles. The early sedimentary strata has been subjected metamorphismin Jinning period and formed a metamorphic rock association of schist-gneiss series. The deformation is characterized byformation oftight-recumbent folds and development of penetrativegneissosity and NNW-dipping mineral lineation.During the Caledonian-Hercynian the Qinling Group once again suffered strongly metamorphism and deformation, forming SEE-dipping stretching lineations and A-type folds in early deformed Qinling group. The peak metamorphism of Qinling group reaches amphibolite facies conditions of686℃and0.63Gpa. The p-T path of the Caledonian-Hercynian tectonometamorphiccycle shows clockwise, indicating decompression during rapid uplift.The above all geological phenomena demonstrate the Qinling Group has experienced orogen-parallel westward uplift withboth vertical and horizontal displacement components.
     The Zhuxia fault zone has experienced two tectonic events. Early thrust shearing made the Qinling group thrust over the top of the Erlangping group at about400Ma.Later tectonic event made the early structural deformation seldom preserved. The foliation of mylonite steeply dips to SWS, and stretching lineation plunges ESE at2-15°. Macro and micro deformation evidences strongly suggested that the later tectonic event hasthe kinematics characteristics of dextral shear. The deformation temperature is mainly between400-550℃. The40Ar-39Ar plateau age of muscovitegrains from mylonite suggests the dextral shear occurredno later than146Ma inWNW-ESE direction.
     The Waqiao fault zone is trending SEE-NWW, dips to NNE. Mineral stretching lineationsin mylonite are both the steeply NNE-dipping lineation, and nearly horizontal lineation. The Waqiao Fault zone has the kinematics characteristics of the thrusting from north to southand containing sinistral shear component. Quartz C-axis preferred orientation reflected the deformation temperature of the shear zone is between400-650℃, which belongs to mid-high temperature deformation. A40Ar-39Ar plateau age of muscovitegrains from the mica schistformed in syntectonic period reveals that the Waqiao ductile shearing occurred no later than387Ma.
     On thebasisof tectonic analysis,we proposed that the main component and thepresent tectonic framework of north Qinling tectonic belt were formed during the Palaeozoic orogeny. The main geodynamic mechanism is compression and collision tectonic background between the Yangtze block and the North China block. It is the results of northward subduction of the Qinling ocean. As the Qinling ocean closed, followed by two plates collision, all the blocks in the north Qinling are in place, at this time the regional metamorphism reached its peak. The Zhuxia fault zone and Waqiao fault zone are initiated by the regional metamorphism and thermal metamorphism.
引文
[1]曹淑云,刘俊来,胡玲.角闪石高温脆-韧性转变变形的显微与亚微构造证据[J].中国科学(D辑),2007,37(8):1004-1013.
    [2]陈丹玲,刘良,周鼎武,等.东秦岭松树沟超镁铁质岩中辉石巨晶的成因和40Ar-39Ar定年及其地质意义[J].岩石学报,2002,18(3):355-362.
    [3]陈晶,王清晨,翟明国,等.榴辉岩中石榴石的塑性变形特征[J].中国科学(B),1995,25(10):1116-1120.
    [4]陈能松,韩郁菁,游振东.豫西东秦岭造山带核部杂岩全岩Sm-Nd, Rb-Sr和单晶锆207Pb/206Pb计时及其地壳演化[J].地球科学,1991,16(3):219-227.
    [5]陈岳龙,张本仁,帕拉提·阿布都卡得尔.北秦岭丹凤地区早古生代花岗岩的Pb、Sr、Nd同位素地球化学特征[J].地质科学,1995,30(3):247-258.
    [6]陈志宏,陆松年,李怀坤,等.北秦岭德河黑云二长花岗片麻岩体的成岩时代--TIMS和SHRIMP锆石U-Pb同位素年代学[J].地质通报,2004.23(2):136-141
    [7]崔智林,孙勇,王学仁.秦岭丹凤蛇绿岩带放射虫的发现及其地质意义[J].科学通报,1995,40(18):1686-1688.
    [8]董云鹏,周鼎武,张国伟.东秦岭富水基性杂岩体地球化学特征及其形成环境[J].地球化学,1997,16(3):79-88.
    [9]董云鹏,张国伟,朱炳泉.北秦岭构造属性与元古代构造演化[J].地球学报,2003,24(1):3-10.
    [10]董云鹏,张国伟,杨钊,等.西秦岭武山E-MORB型蛇绿岩及相关火山岩地球化学[J].中国科学,2007,37(增刊Ⅰ):199-208.
    [11]郭彩莲.东秦岭二郎坪地区西庄河花岗岩体的成因及形成机制[D].硕士论文,西安,2010,1-60.
    [12]郭进京,李怀坤,陈志宏.秦岭造山带秦岭杂岩研究中有关问题讨论[J]. 地质调查与研究,2003,26(2):95-102.
    [13]何德锋,钟宏,朱维光.石榴石-黑云母地质温度计在四川拉拉铜矿床的应用[J].矿物学报,2008,28(2):127-134.
    [14]胡能高,赵东林,徐柏青,王涛.北秦岭含柯石英榴辉岩的发现及其意义[J].科学通报,1994,39(21):2013.
    [15]李海,郭召杰,刘瑞殉,等.极Mohr圆在测量具有体积变化的剪切带剪切位移量中的应用——以天山桑树圆子韧性剪切带为例[J].中国科学(D辑),2000,43(2):151-157
    [16]李化启.拉萨地体中的印支期造山作用及其地质意义[D].博士论文.中国地质科学院,2009.
    [17]李加好,宋传中,任升莲,等.秦岭商丹断裂带的构造样式与变形分析[J].地学前缘,2010,17(4):197-205.
    [18]李加好,宋传中,任升莲,等.秦岭商丹构造带商南段岩石变形与变质条件探讨[J].地 质论评,2011,57(5):641-649.
    [19]李王晔.西秦岭东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究——对特提斯洋演化的制约[D].博士论文.中国科学与技术大学,2008.
    [20]李亚林.北秦岭二郎坪岩群与秦岭岩群间构造边界的地质特征[J].陕西地质,1998a,16(2):9-16.
    [21]李亚林,张国伟,宋传中.东秦岭二郎坪弧后盆地双向式俯冲特征[J].高校地质学报,1998b,4(3):286-293.
    [22]李亚林,张国伟.大陆造山带的研究趋势和进展[J].陕西地质,1999,17(1):81-88.
    [23]刘德良,杨强,吴小齐,等.郯庐断裂安徽段桴槎山韧性剪切带的形成时限初探[J].地质科学,2006,41(2):333-343.
    [24]刘国惠,张寿广,游振东,索书田,张国伟,等.秦岭造山带主要变质岩群及其变质演化[M].北京:地质出版社,1993,1-190.
    [25]刘良,陈丹玲,张安达,等.北秦岭高压-超高压变质岩的峰期变质时代及其地质意义[M].二十一世纪初构造地质学发展战略学术研讨会论文摘要,2003,93-96.
    [26]陆松年,李怀坤, 陈志宏,等. 秦岭造山带中-新元古代地质演化及对Rodinia超级大陆事件的响应[J]. 北京:地质出版社,2003,1-194.
    [27]孟庆任,于在平,梅志超.北秦岭南缘弧前盆地沉积作用及盆地发展[J].地质科学,1997,322):136-145.
    [28]欧阳建平,张本仁.北秦岭微古陆形成与演化的地球化学证据[J].中国科学(D辑),1996,26(增刊):42-48.
    [29]裴先治,王涛,李伍平,等.北秦岭商丹地区构造岩浆演化特征[J].西北地质,1995a,16(4): 13-19.
    [30]裴先治,李厚民,李国光,等.东秦岭商丹断裂南侧变质基性火山岩的时代和岩石地球化学特征[J].西北地质科学,1995b,16(2):49-57.
    [31]裴先治.东秦岭商丹构造带的组成与构造演化[M].西安:西安地图出版社,1997,1-184.
    [32]任军峰.北秦岭(陕西段)古生代构造体制转换研究[D].西安:西北大学地质系,2004.
    [33]时毓,于津海,徐夕生,等.秦岭造山带东段秦岭岩群的年代学和地球化学研究[J].岩石学报,2009,25(10):2651-2670
    [34]宋传中,牛漫兰,刘国生.基于变形分解与斜向汇聚理论的秦岭—大别造山带构造变形研究[J].合肥工业大学学报(自然科学版),2005a,28(7):719-726
    [35]宋传中,牛漫兰,王道轩,等.岩石有限应变与造山带构造块体变形要素的估算[J].合肥工业大学学报,2005b,28(9):1141-1145.
    [36]宋传中、张国伟、王勇生等. 秦岭洛南—栾川构造带的变形分解与年代学制约[J].中国科学(D辑),2009a,39(2):144-154.
    [37]宋传中,任升莲, 李加好,等.华北板块南缘的变形分解:洛南—栾川断裂带与秦岭北缘强变形带研究[J].地学前缘,2009b,39(3):181-189.
    [38]宋传中,张国伟,任升莲,等.秦岭—大别造山带中几条重要构造带的特征及其意义[J].西北大学学报(自然科学版),2009c,39(3):368-380.
    [39]宋鸿儒,于在平,孟庆任.东秦岭商丹带黑山变质沉积岩系的沉积构造环境[J].岩石学 报,1995,11(2):193-202.
    [40]孙勇,卢欣样,韩松,等.北秦岭早古生代二郎坪蛇绿岩片的组成和地球化学[J].中国科学(D辑)1996,26(增刊):49-55.
    [41]田伟,魏春景.北秦岭造山带加里东期低Al-TTD系列:岩石特征、成因模拟及地质意义[M].中国科学(D辑),2005,35(3):215-224.
    [42]王世锋,刘瑞.显微构造中应变标志物及应变测量[J].高校地质学报,2002,8(1):62-66.
    [43]王涛,胡能高,裴先治.秦岭杂岩的组成、构造格局及演化[J].地球学报.1997,18(4):345-351.
    [44]王涛,王晓霞,田伟,等.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J].中国科学(D辑),2009,39(07):949-971.
    [45]王学仁,华洪,孙勇.河南西峡湾潭地区二郎坪群微体化石研究[J].西北大学学报(自然科学版),1995,25(4):353-358.
    [46]王洋,裴先治.北秦岭基底杂岩中变质基性岩的性质及其构造背景研究[J].西安工程学院学报,1999,21(11):27-30.
    [47]王勇生,朱光.运动学涡度及其测量方法[J].合肥工业大学学报(自然科学版),2004,24(11):1480-1484
    [48]王勇生,朱光,宋传中,等.郯庐断裂带南段晚期韧性剪切带涡度分析及其构造意义[J].地质论评,2006,52(5):591-600
    [49]王瑜,李锦轶,李文铅.东天山造山带右行剪切及构造演化的40Ar/39Ar年代学证据[J].新疆地质,2002,20:315-319
    [50]魏春景,朱文萍.多硅白云母地质压力计的研究进展[J].地质通报,2007,26(9):1124-1130.
    [51]吴春明,肖玲玲,倪善芹.泥质变质岩系主要的矿物温度计与压力计[J].地学前缘,2007,14(1):144-150.
    [52]吴小奇,刘德良,李振生,等.滇西主高黎贡韧性剪切带糜棱岩形成时限的初探[J].大地构造与成矿学,2006,30(2):136-141.
    [53]吴小奇,刘德良,李振生.初论韧性断裂构造形成时限的研究方法[J].地质科学,2007,42(1):199-208
    [54]夏浩然,刘俊来.石英结晶学优选与应用[J].地质通报,2011,30(1):58-70
    [55]向必伟、朱光、王勇生,等.糜棱岩化过程中矿物变形温度计[J].地球科学进展,2007,2(2):126-133.
    [56]肖思云,张维吉,宋子季,等.北秦岭变质地层[M].西安:西安交通大学出版社,1988,1-320.
    [57]许继锋,韩吟文.秦岭古MORB型岩石的高放射性成因铅同位素组成—特提斯型古洋幔存在的证据[J].中国科学(D辑),1996,26(增刊):34-41.
    [58]许志琴,卢一伦,汤耀庆,等.东秦岭造山带的变形特征及构造演化[J].地质学报,1986,3:237-247.
    [59]许志琴,卢一伦,汤耀庆,等.东秦岭复合山链的形成[M].北京:中国环境科学出版社, 1988,1-193.
    [60]许志琴,崔军文,张建新.大陆山链的变形构造动力学[M].北京:冶金工业出版社,1996.
    [61]许志琴,张建新,徐惠芬,等.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社,1997,1-294.
    [62]许志琴,王勤,梁凤华,等.电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J].岩石学报,200925(7):1721-1736
    [63]闫全人,王宗起,闫臻,等.构造变形、变质作用的精细测年及其在造山带研究中的应用[J].地学前缘,2001,8(3):147-156.
    [64]杨经绥,许志琴,裴先治等.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别[J].地质学报,2002,76(4):484-495.
    [65]杨经绥,刘福来,吴才来,等.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据[J].地质学报,2003,4(77):463-477.
    [66]杨力,陈福坤,杨一增,等.丹凤地区秦岭岩群片麻岩锆石U-Pb年龄:北秦岭地体中-新元古代岩浆作用和早古生代变质作用的记录[J].岩石学报,2010,026(05):1589-1603.
    [67]游振东,索书田,韩郁著,等.秦岭造山带核部杂岩变质过程与构造解析——以东秦岭为例[M].武汉:中国地质大学出版社,1991.
    [68]张本仁,张宏飞,赵志丹,凌文黎.东秦岭及邻区壳、幔地球化学分区和演化及其大地构造意义[J]. 中国科学(D辑),1996,26(3):201-208.
    [69]张本仁,韩吟文,许继锋,欧阳建平.秦岭新元古代前属于扬子板块的地球化学证据[J]. 高校地质学报,1998,4(4):369-381.
    [70]张成立,张国伟,卢欣.东秦岭宽坪花岗岩体特征及其成因[J].西北地质,1994a,15(1):27-34.
    [71]张成立,周鼎武,韩松.陕西商州地区丹凤变质火山岩的地球化学特征[J].地质科学,1994b,29(4):384-392.
    [72]张国伟.秦岭造山带的形成及其演化[M].西安:西北大学出版社,1988,1-192.
    [73]张国伟,周鼎武,于在平,等.秦岭造山带岩石圈组成、结构和演化特征[M].见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1991,121-138.
    [74]张国伟,周鼎武,于在平.大陆造山带成因研究[M].见当代地质科学前沿-我国今后值得重视的前沿研究领域.中国地质大学出版社.1993.
    [75]张国伟,张宗清,董云鹏.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报,1995a,11(2):101-114.
    [76]张国伟,孟庆任,赖绍聪.秦岭造山带结构构造[J].中国科学(B辑),1995b,25(9):994-1003.
    [77]张国伟,郭安林,刘福田,等.秦岭造山带三维结构及其动力学分析[J].中国科学(D辑),1996,26(增刊):1-6.
    [78]张国伟,董云鹏,姚安平.秦岭造山带的基本组成与结构及其构造演化[J].陕西地质,1997,15(2):1-14.
    [79]张国伟,张本仁,袁学诚,肖庆辉,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,1-855.
    [80]张宏远.北秦岭二郎坪群的结构、演化及其区域构造意义[D].博士论文.中国地质科学院,2006.
    [81]张进江,郑亚东.运动学涡度和极摩尔圆的基本原理与应用[J].地质科技情报,1997,16(3):33-39.
    [82]张旗,张宗清,孙勇,等.陕西商县-丹凤地区丹凤群变质玄武岩的微量元素和同位素地球化学[J].岩石学报,1995,11(1):43-54.
    [83]张旗,钱青,王焰.造山带火成岩地球化学研究[J].地学前缘,1999,6(3):113-120.
    [84]张寿广.北秦岭宽坪群变质地质[M].北京:北京科学技术出版社,1991a.
    [85]张寿广,万谕生,刘国惠,等.宽坪群变质杂岩的形成与演化[J].见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1991b,26-37.
    [86]张原庆,钱祥麟,李江海.造山作用概念和分类[J].地质论评,2002,48(2):193-197.
    [87]张宗清,刘敦一,付国民,等.北秦岭变质地层同位素年代研究[J].北京:地质出版社,1994,1-191.
    [88]张宗清,张国伟,付国民,等.秦岭变质地层年龄及其构造意义[J].中国科学(D辑),1996,26(3):216-222.
    [89]张宗清,张国伟,唐索寒,等.秦岭沙河湾奥长环斑花岗岩的年龄及其对秦岭造山带主造山期结束时间的限制[J].科学通报,1999,44(9):981-984.
    [90]赵东林,胡能高,王涛.北秦岭造山带核部杂岩侧向变质带的变质作用研究[J].西安地质学院,1996,18(4):26-32.
    [91]赵东林.北秦岭官坡地区柯石英榴辉岩变质作用的P-T-t轨迹[J].西安地质学院报,1997,19(2):28-33.
    [92]赵姣,陈丹玲,谭清海,等.北秦岭东段二郎坪群火山岩锆石的定年及其地质意义[J].地学前缘,2012,19(4):118-125.
    [93]郑亚东,常志忠.岩石有限应变测量及韧性剪切带[M].北京:地质出版社,1985.1-99.
    [94]周鼎武,张泽军,董云鹏,等.秦岭商南松树沟元古宙蛇绿岩片的地质地球化学特征[J].岩石学报,1995,11(增刊):154-164.
    [95]周鼎武,刘良,华洪,等.北秦岭中、晚元古代地质演化特征及其有关问题讨论[J].高校地质学报,1996,2(2):166-175.
    [96]周鼎武,张成立,华洪,等.南秦岭中、新元古代地层划分对比新认识[J].高校地质学报,1998,4(3):350-357.
    [97]周鼎武,李文厚,张云翔,等.区域地质综合研究的方法与实践:鄂尔多斯盆地-秦岭造山带地质野外实习指导书[M].北京:科学出版社,2002,180-43.
    [98]周喜文,魏春景,卢良兆.高温变泥质岩石中石榴石一黑云母地质温度计的应用——以胶北荆山群富铝岩石为例[J].地学前缘,2003,10(4):353-363.
    [99]朱文萍,魏春景.多硅白云母地质压力计的热力学模拟[J].中国科学(D辑),2007,37(8):1014-1019.
    [100]Boucher L. Preferred deformation of quartzites at low temperatures in an area of natural strain gradient[J]. Tectonophysics,1977,39:25-50.
    [101]Babai H A,La Tour T E.Semibrittle and cataclastic deformation of hornblende-quartz rocks in a ductile shear zone[J]. Tectonophysics,1994,229:19-30.
    [102]Clarke G L, Aitchison J C, Cluzel D. Eclogites and blueschists of the Pam Penisula, NE New Caledonia:a reappraisal [J]. Journal of Petrology,1997,38:843-876
    [103]Cumbest R J, Drury M R, van Roermund H L M, et al. Dynamic recrystallization and chemical evolution of clinoamphibole from Senja Norway[J]. Contrib Mineral Petrol,1989, 101:339-349.
    [104]Dong Y P, Zhou D W, Zhang G W. Geochemistry and formation setting of Fushui complex, eastern Qinling. Geochemica,1997,26 (3):79-88
    [105]Dong Y P, Zhou M F, Zhang G W, et al. The Grenvillian Songshugouophiolite in the Qinling Mountains, Central China:implications for the tectonic evolution of the Qinling orogenic belt[J]. Journal of Asian Earth Sciences,2008b,32:325-335.
    [106]Dong Y P, Genser J, Neubauer F, et al. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China[J]. Gondwana Reseach,2010, 19(4):881-893.
    [107]Dong Y P, Zhang G W, Hauzenbeger C, et al. Palaeozoic tectonics and evolutionary history of the Qinling orogen:Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos,2011a,112:39-56.
    [108]Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of Qinling orogen, China:review and synthesis[J]. Journal of Asian Earth Sciences,2011b,41:213-237.
    [109]Dong Y P, Liu X M, Neubauer F. Timing of Paleozoic amalgamation between the North China and South China Blocks:Evidence from detrital zircon U-Pb ages[J]. Tectonophysics, 2013,173-191.
    [110]Donson M H. Clousure temperature in cooling geochronological and petrological systems[J]. Contrib Mineral Petrol,1973,40:259-279
    [111]Essene E J. The current status of thermobarometry in metamorphic rocks[J]. Am. Miner, 1989,74:1-44.
    [112]Ferry J M, Spear F S. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet[J]. Contributions to Mineralogy and Petrology,1978,66:113-117.
    [113]Faure M, Lin W, Le Breton N.Where is the North China-South China block boundary in eastern China[J].Geology,2001,29:119-122.
    [114]Gao S,Zhang B R,Gu X M,et al. Silurian-Devonian provenance changes of South Qinling basins:implications for accretion of the Yangtze (South China) to the North China Cratons [J].Tectonophysics,1995,250:183-197.
    [115]Hsu K J, Wang Q, Li J,et al. Tectonic evolution of Qinling Mountains, China[J]. Eclogae Geologicae Helvetiae,1987,80:735-752.
    [116]Hu NG, Yang J X, An S Y, et al. Metamorphism and tectonic evolution of Shangdan shear zone, North Qinling Mountains, central China[J]. J. Metamorph. Geol,1993,11:537-548.
    [117]Holdway M J.Application of new experimental and garnet margules data to the garnet-biotite geothermometer[J].American Mineralogist,2000,85:881-892.
    [118]Kroner A, Zhang G W, Zhuo D W, et al. Granulites in the Tongbai area, Qinling belt,China: geochemistry, petrology, single zircon geochronology and implications for tectonic evolution of eastern Asia[J]. Tectonics,1993,12:245-255.
    [119]Li S G, Xiao Y L, Liou D L,et al. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites[J]. Chemical Geology,1993,109:89-111.
    [120]Li Z X. Collision between the North and South China blocks:a crustal-detachment model for suturing in the region east of the Tanlu fault[J]. Geology,1994,22:739-742.
    [121]Mattauer M, Matte Ph, Malavielle J, et al. Tectonics of Qinling belt:built-up and evolution of Eastern Asia[J]. Nature,1985,317:496-500.
    [122]Massonne H J, Szpurka Z. Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2O-MgO-Al2O3-H2O and K2O-FeO-Al2O3-SiO2-H2O[J]. Lithos,1997,41:229-250.
    [123]Meng Q R, Zhang G W. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology,1999,27,123-126.
    [124]Nicolas A and Poirier J P. Crystalline plasticity and solid state flow in metamorphic rocks[J]. New York:Wiley,1976,444.
    [125]Nyman M W, Law R D S, Melik E A. Cataclastic deformation for the development of core mantle structures in amphibole[J]. Geology,1992,20:455-458.
    [126]Passchier C W and Trouw R A.Microtectonics. Berlin:Springer,1996,49-95.
    [127]Passchier C W, Urai J L.Vorticity and strain analysis using Mohr diagrams[J]. Journal of Structural Geology,1988,10:755-763.
    [128]Phillips G, Wilson C J L, Phillips D, et al. Thermochronological (40Ar/39Ar) evidence of Early Palaeozoic basin inversion within the southern Prince Charles Mountains, East Antarctica:implications for East Gondwana[J]. Journal of the Geological Society,2007,164: 771-784.
    [129]Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics,2003, 66:1-53.
    [130]Ratschbacher L, Franz L, Enkelmann E, et al. The Si no-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains[J]. Geological Society of America Special Publication 2006,403:45-75.
    [131]Sengor A M C. East Asian tectonic collage[J]. Nature,1985,318:16-17.
    [132]Simpson C. Deformation of granitic rocks across the brittle-ductile transition[J]. Journal of Structural Geology,1985,7:503-511.
    [133]Simpson C, De Poar D G Strain and kinematic analysis in general shear zones[J]. Journal of Structural Geology,1993,15:1-20.
    [134]Skrotzki W. Defect structures and deformation mechanisms in naturally deformed hornblende [J]. Phys Status Solid,1992,131:605-624
    [135]Sun W D, Li S G, SunY, et al. Mid-Paleozoic collision in the north Qinling:Sm-Nd, Rb-Sr and 40Ar/39Ar ages and their tectonic implications[J]. Journal of Asian Earth Sciences 2002b, 21:69-76.
    [136]TikoffB, Fossen H. The limitations of three-dimensional kinematic vorticity analysis[J]. Journal of Structural Geology,1995,17(12):1771-1784.
    [137]Twiss R J. Theory and application of a recrystallized grain-size paleopiezometer[J]. Pure Appl Geophys,1977,115:227-244.
    [138]Wallis S. Vorticity analysis and recognition of ductile extention in the Sanbagawa belt, SW Japan[J]. Journal of Structural Geology,1995,17(8):1077-1093.
    [139]Wang T, Pei X Z, Wang X X,et al. Orogen-parallel westward oblique uplift of the Qinling basement complex in the core of the Qinling Orogen (China):An Example Rocks in a collisional orogen[J]. The Journal of Geology,2005,113:181-200.
    [140]Wang X X, Wang T, Zhang C L. Neoproterozoic, Paleozoic and Mesozoic granitoid magmatism in the Qinling Orogen, China:Constraints on orogenic process. Journal of Asian Earth Sciences,2013(In Press)
    [141]Wei C S, Zhan M G, Wei J Q, et al. Meso-and Neoproterozoic tectonothermal events and structural evolution in Eastern Qinling orogenic belt, China[J]. Gondwana Research,1999, 2:525-529.
    [142]Wu C M, Zhang J, Ren L D.Empirical garnet-muscovite-plagioclase -quart geobarometry in medium-to high-grade metapelites[J]. Lithos,2004,78(4):319-332.
    [143]Wu C M, Zhang J, Ren L D. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium-to high-grade metapelites[J]. Journal of Petrology,2004,45(9): 1907-1921.
    [144]Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen:An overview on theQinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research,2012,23(4):1402-1428
    [145]Xue F, Lerch M F, Kroner A,et al. Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic:a review and new tectonic model[J].1996b, Tectonophysics,253, 271-284.
    [146]You Z D,Han Y J,Suo S T,et al. Metamorphic history and tectonic evolution of the Qinling Complex,eastern Qinling Mountains,China[J]. Journal of Metamorphic Geology,1993,11: 549-560.
    [147]Yin A, Nie S Y. An indentation model for the north and south China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia[J].1993, Tectonics,12, 801-813.
    [148]Yu Z P, Meng Q R. Late Paleozoic sedimentary and tectonic evolution of the Shangdan zone, eastern Qinling.China[J]. Journal of Southeast Asian Earth Sciences,1995, 11(3):237-242.
    [149]Zhang H Y, Zhao C Q, Xu F L, et al. The structural framework of the Erlangping group in North Qinling, Central China[J]. Journal of Geological Research,2012, Article ID 850282, 7 pages.
    [150]Zhu G, Wang Y S, Liu G S, et al.40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. Journal of Structural Geology,2005,27(8):1379-1398.
    [151]Zhu X Y, Chen F K, Li S Q, et al. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China:Evidence from detrital zircon U-Pb ages and Hf isotopic composition[J]. Gondwana Research,2011,20(1):194-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700