用户名: 密码: 验证码:
破碎煤岩体化学注浆加固材料研制及渗透扩散特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注浆是一种比较成熟的岩体加固技术,在煤矿井下采煤工作面和巷道的加固、巷道顶板涌水的封堵、坝体坝基防渗堵漏、基坑加固、海底隧道、建筑物抬升或纠偏、边坡和地基加固等工程中都得到了广泛的应用。与此同时,各种注浆新材料、新工艺和新设备层出不穷,极大地促进了注浆技术的发展。与此不对称的是注浆理论却进展缓慢,研究水平相对落后。主要因为注浆是隐蔽性工程,而且是复杂的系统工程,受制约的影响因素很多,主要有:浆液性质、注浆设计、注浆工艺及被注煤岩体地质力学性质等,甚至还得考虑环境保护等要求。
     本文论述了注浆的发展过程,注浆材料以及注浆的分类,以及详细总结和分析了渗透注浆的基础理论,主要从浆液的流变性,被注介质与浆液的作用关系,注浆压力的选取,浆液的扩散规律等方面做了比较深入的研究工作,并取得了一些成果。
     (1)开发了兼有堵水和加固作用的聚氨酯注浆材料。该注浆材料以水为固化剂,消除了因密封件磨损等设备原因和管路堵塞等其他原因引起的双组份比例不匹配,造成的浆液固化质量下降。可以对矿井大范围淋水条件下破碎煤岩体进行有效封堵水与加固。
     (2)开发了低粘度强渗透性低毒的脲醛树脂注浆材料。该材料在环境温度15℃~25℃时的粘度为60Cp~30Cp,固化速度可以根据固化剂的用量随施工条件调节,抗压强度达到5MPa以上。适用于煤矿采掘过程中,结构软弱、松散,强度极低的煤岩体加固,以保证矿井正常的生产,消除矿井的安全隐患。
     (3)自行设计了恒压三维渗透注浆模拟试验及装置,通过试验得出了渗透系数与围压及浆液的粘度近似成反比。
     (4)从岩体中裂隙分布、渗流水力学特征与化学注浆堵水机理出发,详细分析了影响渗透水裂隙的形成及分类,破碎煤岩体注浆堵水作用机理。
     (5)在基于浆液粘度的时变性规律,并考虑了裂隙倾角和方位角、地下静水压力等诸多影响因素,建立了牛顿流体注浆扩散模型,发展了注浆扩散理论。随着注浆时间的延长,注浆扩散半径不断增大。注浆半径在后期的增长明显小于注浆前期扩散半径的增长。注浆前锋面上的压力梯度逐渐降低,裂隙通道上各点的压力急剧减小(但不呈线性关系),浆液流速和注浆流量逐渐减小,注浆扩散半径存在极限值。
     (6)浆液流变性、裂隙产状和注浆工艺参数对扩散半径的影响很大。浆液初始粘度越大,或者粘度时变性越大,扩散半径越小;扩散半径随力学开度的增大而急剧增长,随注浆压力的增大也呈增大趋势,随地下水静压力的增大而减小。
     (7)通过工程实例进行对比分析,证明本文建立的注浆扩散理论反映了注浆扩散规律,试验结果接近工程实际。本文注浆扩散模型考虑了较多的影响因素,对有关假设和前提作了深入的试验研究和对比分析后得到了定性规律和定量结论,计算中所需的地质参数和浆液性能也可准确测试出来,因而本文建立的扩散模型有一定的实用价值。
Grouting is widely applied to reinforce working face and roadways, plugging water of roof in mine, preventing leakage and reinforcing surrounding rock of dam foundation, rising and correcting building and so on. At the same time, grouting technology is greatly developed by multifarious new grouting materials, new technology and new equipment. By contraries, study on grouting theory develops slowly. The main reason is that grouting is a complicated and systematical technology and affected by many factors which are material character, joint character, grouting technics, climate, design environment and so on.
     In this paper, development of grouting, grouting material and classification of grouting are discussed. Basic theories associated with permeability of grouting are analyzed and summarized in detail. Some new perspectives about rheology of material, relation effecting grouted medium, grouting stress, etc are introduced. Preliminary study has been done. Some results are discussed as follows:
     1.New polyurethane grouting material with effects of waterproofing and rockmass reinforcing has been developed. This material avoids scale unmatching caused by abrasion of sealed components and congestion of pipelines, and can effectively reinforce and close over availably cracked coal and rockmass on condition that large-scale pours water in mine.
     2.New urea-formaldehyde resin grouting material has been developed which has low-lying viscosity and virulence and strong penetrability. The viscosity of the material is 60Cp~30Cp when condition temperature is 15℃~25℃, solidified speed may be adjusted accordingly as solidified dose and the uniaxial compressional intensity can exceed 5MPa. Roof falling due to dislocation of weak incompact coal and rockmass can be solved rockmass through grouting the material. The potential safety problems are removed and the mine can be normally extracted and drilled.
     3.A three-dimensional, stress invariable penetrating experimentation and device has been independently designed. An inverse proportional relation between penetrative coefficient and surrounding stress and viscosity of the material was obtained through the test.
     4.Formation and distribution of flaw of affecting seepage flow are detailedly analyzed depart from distribution of flaw in rockmass, character of seepage flow and mechanism of chemical grouting.
     5.Newton liquid grouting diffusing model is established and grouting diffusing theory is developed based on time-variance of serum’s viscosity as well as other factors such as obliquity and azimuth of crack and underground water stress. The outstretched radius of serum increases constantly along with grouting time, and the increase ratio of the outstretched radius of serum is faster in early period than in late period.It is concluded that stress grads of frontal surface gradually and stress in cranny channels reduce, and velocity of serum flow and flux of serum gradually decrease. There is a extremum in grouting outstretched radius. 6.The radius of serous diffusion is bigger according to initial viscosity of fluid , mechanic width of flaw and pressure of grouting, because breed of flaw and grouting craft affect the radius of serous diffusion.
     7.It is proved through case studies that the grouting outstretched theory reflects serous fluid outstretched rules and the results are consistent with the practical application. Based on comprehensive study and comparatively analyzing on the hypothesis and presupposition involved, the qualitative rule and quantitative conclusion are achieved. The necessary geological parameters and serosity capability can be measured through the grouting outstretched model. The model discussed in this paper has some practical values.
引文
[1] 张景秀.坝基防渗与注浆技术[M].北京:中国水利水电出版社 2002.
    [2] 马国彦,常振华.岩体注浆排水锚固理论与实践[M].北京:中国水利水电出版社 2003.
    [3] 马国彦,林秀山.水利水电工程注浆与地下水排水[M]. 北京:中国水利水电出版社, 2001.
    [4] P.Groppo Sembenelli, G. Sembenelli. Deep jet-grouted Cut-offs in Riverine Alluvia for Ertan CofferDams. Journal of Geotechnical and Geoenvironmental Engineering.1999,125(2):142~153.
    [5] In-Molee, Jae-Sung Lee, Seok-Woo Nam. Effect of seepage force on tunnelface stability reinforced with multi-step pipe grouting.Tunnelling and underground Space Technology 19(2004):551~565
    [6] Anthony F.Stribys, Z.Richard Radwanski, Richard J.Proctor.Los Angeles metro rail project-geologic and geotechnical design and construction constraints. Engineering Geology, 51(1999): 203~224.
    [7] Ing Hieng wong, Teoh Yaw Poh. Effects of jet grouting on adjacent ground and structures. Journal of Geotechnical and Geoenvironmental Engineering. 2000, 126(3): 247~256.
    [8] Shimada, H,Sasaoka, T,Kubota, S. The Application of Flyash Cement in Mining Backfill Material. Australasian Institute of Mining and Metallurgy Publication series, 2003(1):199~204
    [9] 冯志强,康红普,杨景贺.裂隙岩体注浆技术探讨[J].煤炭科学技术,2005(4).
    [10] 冯旭海.压密注浆作用机理与顶升效应关系的研究.煤炭科学研究总院,北京, 2003.
    [11] 赵斌.注浆技术综论.注浆堵水加固技术及应用[M],中国注浆技术43周年论文集.煤炭工业出版社,北京,1998.
    [12] 蒋硕忠.我国化学注浆的发展与近期展望[J].第十届全国化学注浆学术会议论文集.湖南大学学报,2004(增刊).
    [13] 赵红亮,陈剑平.裂隙岩体三维网络流的渗透路径搜索[J].岩石力学与工程学报, 2005 ,24(4).
    [14] 叶林宏,何泳生,冼安如等 论化注浆液与被注岩土的相互作用[J].岩土工程学报,1994(6).
    [15] 李宁,张平,闫建文.注浆的数值仿真分析模型探讨[J].岩石力学与工程学报, 2002,21(3).
    [16] 郝哲,何修仁,刘斌.基于岩体注浆理论的可靠性分析[J].东北大学学报,1999(3).
    [17] 谢兴华,速宝玉.裂隙岩体水力劈裂研究综述[J].岩土力学, 2004(2).
    [18] 张友葩,吴顺川,方祖烈. 土体注浆后的性能分析[J]. 北京科技大学学报,2004(6).
    [19] 柴军瑞,仵彦卿.变隙宽裂隙的渗流分析[J].勘察科学技术,2000(3).
    [20] 张永波,靳钟铭,刘秀英.采动岩体裂隙分形相关规律的实验研究[J].岩石力学与工程学报, 2004,23(10).
    [21] 赵阳升.矿山岩石流体力学[M].北京,煤炭工业出版社,1994.
    [22] 许光祥,张永兴,哈秋聆.粗糙裂隙渗流的超立方和次立方定律及其试验研究[J].水利学报,2003(3).
    [23] 张电吉,白世伟.岩体中节理裂隙面开度的测量方法[J].中国测试技术,2003(5).
    [24] 郝哲,马秀荣.岩体注浆对裂隙的影响分析[J].有色矿冶,2002(6).
    [25] 马秀荣,郝哲.岩体注浆理论评述[J].有色矿冶,2001(2).
    [26] 张弛,王杰,杜嘉鸿等.岩土注浆技术的理论探讨[J].沈阳建筑工程学院学报,2001(1).
    [27] 霍凯成.注浆机理及应用[J].武汉理工大学学报,2002(2).
    [28] 阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报,2005(1).
    [29] 乔卫国, 彼尔绅,乌格梁尼采.合理选择裂隙岩体注浆方法的判据研究[J].化工矿物与加工,2003(6).
    [30] 王慧明,王恩志,孙役. 裂隙岩体非饱和渗流本构关系[J]. 岩石力学与工程学报,2003,22(12).
    [31] 吉小明,白世伟, 杨春和. 裂隙岩体流固耦合双重介质模型的有限元计算[J]. 岩土力学,2003(10).
    [32] 黄涛.裂隙岩体渗流-应力-温度耦合作用研究[J].岩石力学与工程学报,2002, 21(1).
    [33] 王鹏,蔡美峰,周汝弟.裂隙岩体渗透张量的确定和修正[J].金属矿山,2003(8).
    [34] 杨松林,徐卫亚.裂隙岩体有效弹性模量估计的一种方法[J].河海大学学报( 自然科学版),2003(7).
    [35] 易立新.裂隙岩体有效应力及其工程意义[J].中国水利水电科学研究院学报,2003(12).
    [36] 杨万托,余天堂.一种新的节理裂隙岩体弹塑性模型[J].岩土力学,2003(4).
    [37] 李金轩,余修日. 低渗透裂隙岩体压水试验资料分析[J]. 岩石力学与工程学报,2004,23(5).
    [38] 谌文武,孙冠平,宋 畅等.低应力环境岩体软弱夹层的渗透特征[J].岩石力学与工程学报,2003,22(10).
    [39] 李维树,甘国权,朱容国等.工程锚杆注浆质量无损检测技术研究与应用[J].岩土力学,2003(10).
    [40] 卢雪来.钻孔注浆桩后压浆技术在卵砾石层中的应用[J].工程设计与建设,2004(9).
    [41] 李 宁,张 平,闫建文.注浆的数值仿真分析模型探讨[J].岩石力学与工程学报,2002,21(3).
    [42] 李守巨,刘迎曦,王登刚等.基于神经网络的岩体渗透系数反演方法及其工程应用[J].岩石力学与工程学报,2002,21(4).
    [43] 何 翔,李守巨,刘迎曦等.基于遗传神经网络的坝基岩体渗透系数识别[J].岩石力学与工程学报,2004,23(3).
    [44] 李术才,陈卫忠,朱维申等.加锚节理岩体裂纹扩展失稳的突变模型研究[J].岩石力学与工程学报,2003,22(10).
    [45] 刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报,2003,22(10).
    [46] 李 宁, 张 平,段庆伟等.裂隙岩体的细观动力损伤模型[J].岩石力学与工程学报,2002,21(11).
    [47] 王渭明.裂隙岩体地下工程冒落空间预测模型[J].岩石力学与工程学报,2004,23(2).
    [48] 刘元高,周维垣,赵吉东等.裂隙岩体局部化破坏多重势面分叉模型及其应用[J].岩石力学与工程学报,2003,22(3).
    [49] 宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究[J].岩土力学,2004(2).
    [50] 谢兴华,速宝玉.裂隙岩体水力劈裂研究综述 [J].岩土力学,2004(2).
    [51] 王渭明,李先炜.裂隙岩体优势结构面产状反演[J].岩石力学与工程学报,2004,23(6).
    [52] 杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学,2000(10).
    [53] 华心祝,吕凡任,谢广祥.锚注软岩巷道流变研究[J].岩石力学与工程学报,2003,22(2).
    [54] 陈 昊. 三峡工程永久船闸基础岩体F1050断层的加固处理[J]. 岩土力学,2003(10).
    [55] 郑少河,姚海林,葛修润.渗透压力对裂隙岩体损伤破坏的研究[J].岩土力学,2002(12).
    [56] 宋选民,顾铁凤,柳崇伟.受贯通裂隙控制岩体巷道稳定性试验研究[J].岩石力学与工程学报,2002,21(12).
    [57] 郝 哲,王国民,刘 斌.土体注浆堵水的可靠性设计[J].岩土力学,2003(10).
    [58] 贺玉龙,杨立中.围压升降过程中岩体渗透率变化特性的试验研究[J].岩石力学与工程学报,2004,23(2).
    [59] 康天合,郑铜镖,李焕群.循环荷载作用下层状节理岩体锚固效果的物理模拟研究[J].岩石力学与工程学报,2004,23(5).
    [60] 陈 昊.岩体断层基础加固与溶洞注浆处理中的高压注浆技术[J]. 岩土力学,2003(10).
    [61] 王 毅,聂德新,张景科等.岩体裂隙化程度与岩体变形参数的关系研究[J].岩石力学与工程学报,2003,22(10).
    [62] 魏 涛,汪在芹,薛希亮等. CW 系化学注浆材料的研制[J].长江科学院院报,2000(12).
    [63] 庞爱民.HTPB 聚氨酯弹性体的动态力学性能研究[J].固体火箭技术,1999(1).
    [64] 杨秀竹,王星华,雷金山.宾汉体浆液扩散半径的研究及应用[J].水利学报,2004(6).
    [65] 郭广礼,邓喀中,何国清等.采动破裂岩体地基注浆加固及其检测技术[J]. 中国矿业大学学报,2000(5).
    [66] 张向东,徐峥嵘,苏仲杰等.采动岩体分形裂隙网络计算机模拟研究[J].岩石力学与工程学报,2001,20(11).
    [67] 刘 杰,王 媛,杨建贵.采用加速遗传算法反演裂隙岩体渗流参数[J].水利学报,2003(2).
    [68] 张 勤,陈志坚,朱代洪等.层状裂隙岩体稳定性分析的主要问题[J].岩土工程学报,2001(11).
    [69] 王慧明,王恩志,韩小妹等.低渗透岩体饱和渗流研究进展[J].水利学进展,2003(3).
    [70] 吴昌文.地面注浆封堵松散层段井筒涌水[J].煤田地质与勘探,1997(2).
    [71] 李 宁,陈文玲,张 平.动荷作用下裂隙岩体介质的变形性质[J].岩石力学与工程学报,2001,20(1).
    [72] 黄远智,王恩志,孙 役.非线性规划理论在裂隙岩体渗流反馈分析中的应用研究[J].北京大学学报(自然科学版),2000(9).
    [73] 邹 斌,沈 如,齐琳琳.改性脲醛树脂加固基床土质的研究[J].西南交通大学学报,2001(2).
    [74] 李维滨,黄 明,蒋永生.高压注浆预应力锚杆在深基坑支护中的应用[J].东南大学学报,1997(11).
    [75] 吴益民,谢兴保,周力平.高早强预应力锚固注浆材料试验研究[J].长江科学院院报,1998(12).
    [76] 王洪涛,王恩志.各向异性裂隙岩体渗透系数计算方法探讨[J].武汉水利电力大学学报,1997(4).
    [77] 盛金昌,速宝玉,魏保义.基于 Taylor 展开随机有限元法的裂隙岩体随机渗流分析[J].岩土工程学报,2001(7).
    [78] 杨廷毅.加锚层状岩体的变形破坏过程与加固效果分析模型[J].岩石力学与工程学报,1994(12).
    [79] 任伟中.节理围岩特性及其锚固效应模型试验研究[J].地球科学—中国地质大学学报,1997(11).
    [80] 耿克勤,刘光廷,陈兴华.节理岩体的渗透系数与与应变、应力的关系[J].清华大学学报(自然科学版),1996(1).
    [81] 何东辉,熊 彪. 静压注浆技术在地基加固中的应用[J].湖南大学学报,1999(4).
    [82] 薛绍祖,金能春,吴 王君. 聚氨酯化学注浆与背水面防水处理技术[J].长江科学院院报,2000(12).
    [83] 戴振东.聚氨酯粘着性能的试验研究[J].南京理工大学学报,2004(2).
    [84] 柴军瑞.考虑渗透动水压力时等效连续岩体渗流场与应力场耦合分析的数学模型[J]. 四川大学学报 (工程科学版 ),2001(11).
    [85] 陈静羲,梁治安,闵弘.利用动弹模量的变化来评估注浆效果[J].岩土力学,1998(3).
    [86] 高祖纯. 利用岩体完整性指数评价基岩注浆效果的探讨[J].人民长江,2004(5).
    [87] 许梦国,伍佑伦,盛建龙.裂隙岩体固液相耦合的超级有限单元法[J].长江科学院院报,1996(9).
    [88] 王 媛,速宝玉,徐志英.裂隙岩体渗流模型综述[J].水利学进展,1996(9).
    [89] 张金才,刘天泉,张玉卓.裂隙岩体渗透特征的研究[J].煤炭学报,1997(10).
    [90] 杨米加,贺永年,陈明雄.裂隙岩体网络注浆渗流规律[J].水利学报,2001(7).
    [91] 杨米加,贺永年.蒙特卡洛模拟的随机性及裂隙岩体渗透张量分析[J].岩土工程学报,1999(7).
    [92] 沈锡英.渗透注浆中浆液渗流分析[J].同济大学学报,1994(6).
    [93] 李小青,高金川.试论注浆压力对注浆效果的影响[J].地质科技情报,1999(6).
    [94] 谌文武,梁收运,刘 高等.松动岩体的工程特性研究[J].岩石力学与工程学报,2000(11).
    [95] 史元伟,宁宇,魏景云.采煤工作面围岩控制原理和技术(下)[M].徐州:中国矿业大学出版社,2003.
    [96] 冯志强. 注浆木锚杆加固煤壁作用机理分析.采矿工程学新论[M].煤炭科学研究总院北京开采所.北京:煤炭工业出版社, 2005.
    [97] 王广国,杜明芳,苗兴城.压密注浆机理研究及效果检验[J].岩石力学与工程学报,2000(9).
    [98] 张农,侯朝炯,陈庆敏等.岩石破坏后的注浆固结体的力学性能[J].岩土力学,1998(9).
    [99] 熊进,祝红,董建军.长江三峡工程注浆技术研究[M].北京:中国水利水电出版社, 2003.
    [100] 任克昌.化学注浆浆液渗透计算的若干问题[J].水利水电技术,1992(4).
    [101] 叶林完,何泳生,洗安如等.论化注浆液与被注岩土的相互作用[J].岩土工程学报, 1994 (6).
    [102] Hsieh P.A, Neuman,S.P. Field Determination of the Three-Dimensional Hydraulic Conductivity Tensor of Anisotropic Media[J].Water Resources Research,1985,21(11).
    [103] F.K.Ewert.Rock grouting with emphasis on dam sites[M].Berlin:Springer-Verlag,1985.
    [104] D.T Snow.Rock Fracture Spacings,Openings and Porosities[J].J.Soil Mech.Found.Div, Proc.ASCE,1968,94(SM 1)
    [105] Baecher G..B . et al . Statistical Descriptions of Rock Properties and Sampling [A].Proc.U.S.Symp.Rock Mech,18th[C],1977.
    [106] Barton N. Choubey V, The Shear Strength of Rock Joints in the Theory and Practice[J].1997,10(1-2)
    [107] XieHeping . Pariseau W.Cz, Fractal Estimation of Joint Roughness of Coefficient[J].Fractured and Joint Rock Masses USA,June3-5,1992
    [108] Lomize CzM, Flow in Fractured Rocks[M].Gesenergoizdat,Moscow,1951
    [109] Louis Cue.A Study of Ground Water Flow in Jointed Rock and Its Influence on the Stability of Rock Masses[R].Rock Mech.Res.Rep.10, Imp. Col.l. London,1969
    [110] Barton N. Bandis S. Bakhtar K.S, Strength, Deformation and Conductivity Coupling of Rock Joints[J]. Int.J.Rock Mech.Min.Sci.&Geo-mech.Abstr.1985,22(3)
    [112] Walsh J . B , Effect of Pore Pressure and Confining Pressure on Fracture Permeability[J].Int.J.Rock Mech.Min.Sci.&Geo-mech.Abstr.1981,18
    [113] Gale J.E,The Effects of Fracture Type (Induced Yerstts Natural) on the Stress fracture Closure-fracture Permeability Relationships[A] . In : Proc . 23rd Symp . on Rock Mech.[C]. Berkeley: [s.n], 1982
    [114] Hicks T.W. Pine R.J.Willis Richards J. et al, A Hydro-thermo-mechanical Numerical Model for HDR Geothermal Reservoir Evaluation[J]. Int.J.Rock Mech.Min.Sci.and Geo-meth.Abstr,1996,33(5)
    [115] Long C.S.Gilmour P.Witherspoon P,A model for steady fluid flow in random three-dimensional networks of disc-chapel fractures[J]. Water Resources Research, 1985, 21
    [116] Baecher CzB. Lanney N.A. Einstein H.H, Statistical description of rock properties and sampling[A]. In: Proc 18th US Symp Rock Mech,1977(SC)
    [117] Dershowitz W.S. Gordon B.M. Kafritsas J.C, A new three dimensional model for flow of fractured rock [J]. Mem IntAssoc Hydrogeol, 1985(17)
    [118] Louis C,Rock Hydraulic[C].In: Rock Mech.Ed. By L.Muller,1974
    [119] Wittke W,Rock Mechanics-Theory and Applications with Case Histories[M]. Berlin, 1990
    [120] Romero L.et al,A computer program to calculate radionuclide transport in the near field of a repository [R].Stockholm:KarnbranslehauteringAB,1995
    [121] Dershowitz W.S, Rock mechanics approaches for understanding flow and transport pathways[A]. ISRM International Symposium on prediction and Performance in Rock Mechanics and Rock Engineering[C], Italy: International Society of Rock Mechanics, 1996
    [122] Snow D.T, Anisotropic Permeability of Fractured Meida[J]. Water Resources Research, 1969,5(6)
    [123] Long J.C.S.Remer J.S.Wilson C.RL. Witherspoon P.A, Porous Media Equivalents for Networks of Discontinuous Fractures[J]. Water Resources Research,1982,18(3)
    [124] Oda M,An Equivalent Continuum Model for Coupled Stress and Fluid Flow Analysis in Jointed Rock Masses[J]. Water Resources Research,1986,22(13)
    [125] Kwicklis E.M. Healy R.W,Numerical Investigation of Steady Liquid Water Flow in a Variably Saturated Fracture Network[J].Water Resources Research,1993,29(12)
    [126] Huyakorn P.S. et al.. Finite element techniques for modeling groundwater flow infractured aquifers[J].Water Resources Research,1983,19(4)
    [127] Barenblatt G,L.Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematical Mechanics,1960,24(5)
    [128] Warren J.E. Rott P.J, The behavior of naturally fractured reservoirs[J]. J.Soc.Pet.Eng, 1963(3)
    [129] Neretnieks I. Rasmuson A, Diffusion in the rock matrix: A important factor in radionuclide retardation [J].J.Geophys.Res,1980,85(38)
    [130] Lagendijk V. et al., A new multi-continuum model for the simulation of unsaturated flow in fractured permeable system[C].In: After the Rain Has Fallen, J. W Smith(ED.), Memphis, Tennessee,1998
    [131] Louis C . Maini Y N, Determination of in-situ hydraulic parameters in jointed rock[C].Proc.Second Congress on Rock Mechanics,Belgrade,1970
    [132] Louis C.Wittke W, Etude Experimentale des Ecoulements d'eau daps un Massif Rockeux[J],Tachien Project,Formose,Geotechnique,1971(1)
    [133] Arvind V Shroff.Dhananjay L.Shah, Grouting Technology in Tunnelling and Dam Construction [M].Second Edition.A.Balkema/Rotterdam/Brookfield,1999
    [134] John Bensted, Microfine Cements[J].World Cement,1992(12)
    [135] Jens Mittag. The use of microfzne cements for the horizontal sealing of construction pitsin Berlin[A].In: The proceedings of the International Conference on Anchoring and Grouting Towards the New Century[C].Guang Zhou,China,1999
    [136] Mitchell, J.K. In-Place Treatment of Foundation Soils[J]. Journal of the Soil Mechanics and Foundations Division,ASCE New York,1970(1)
    [137] King J.C , Bush, E . GW, Symposium on grouting; grouting of granular materials[J]. Journal Soil Mech.Found. Div., ASCE, 1961, 87(SM2)
    [138] Bell.L.A, A cut-off in rock and alluvium at Asprokremmos Dam(C).Proc. Conf. Grouting in Geotech.Engg,New Orleans.W.H.Baker(ed.).ASCE,New York,1982
    [139] Zimmerman R.W et al, A new lumped-parameter model for flow in unsaturated dual porosity media[J].
    [140] Lippold. R, Pressure grouting with packers[C].Proc.ASCE Jour.SMFE,1958, 84(SM-1)
    [141] Weaver K. D, A critical look at use of "rules of thumb " for selection of grout injection pressures[C],J. K. Raymond, Kevan Sharp, eds. ASCE Geotechnical Special Publication, 2000(104)
    [142] Doe T.W, Korbin GEE, A comparison of hydraulic fracturing and hydraulic jacking stress measurements [C]. In: Proc. 28th US symposium on Rock Mechanics. Tucson, 1987
    [143] Noorishad J., Doe T.W, Numerical simulation of fluid injection into deformable fractures[C]. In: Proc.23rd US Congr. On Rock Mechanics. New York,1982
    [144] Rutqvist J, Determination of hydraulic normal stiffness offractures in hard rocksfield well testing[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1995,32(5)
    [145] Rutqvist J, Theoretical and field studies of coupled hydro-mechanical behaviour of fractured rocks—field experiment and modelling[J]. Min. Sci.&Geomech. Abstr., 1992, 29(4)
    [146] Graf E. D,Compaction grouting technique and observations[J].J.Soil Mech.and Found.Div,ASCE,1969,95(5)
    [147] Graf E. D, Grouting soil improvement and geosynthetics,Geotech.Compaction grouting technique,ASCE. New York, 1992
    [148] Adel M.EI-Kelesh, Mostafa E.Mossaad, Ismail M.Basha. Model of Compaction Grouting[J].Journal of Geotechnical and Geoenvironmental Engineering,2001,127(11)
    [149] Wong H,Y. Compaction of soil during pressure grouting[C]. Private Rep., Cementation Research Ltd,Rickmans,Herts,England,1971
    [150] Wong H.Y, Discussion of compaction grouting[J]. J. Geotech. Engng. Div., ASCE,1974,100(5)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700