用户名: 密码: 验证码:
岩溶隧道防突厚度及突水机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着我国西部大开发战略的快速推进,西部地区交通等基础建设迅猛发展,长大岩溶隧道建设越来越多。岩溶隧道修建过程中,经常遇到突水、涌泥等大型地质灾害,轻则冲毁器具,贻误工期,重则造成人员伤亡和重大经济损失。本文以岩溶区隧道施工中防突层突水灾变为研究对象,通过工程实例调查、室内试验、理论分析以及数值模拟等手段,分析山岭隧道—岩溶系统概化模型及岩溶隧道突水机理,建立隧道与周边隐伏溶腔间岩层最小防突厚度及掌子面前方岩墙安全厚度的计算方法,并总结和概括岩溶隧道突水防治对策,取得了一系列具有重要理论意义和工程应用价值的研究成果:
     (1)以最具代表性的宜万线岩溶隧道为例分析了山岭隧道岩溶发育特征、分布规律及形态,阐明了隧址区的地层岩性、岩层构造、地下水渗流途径等因素是深部大型岩溶形态及空间分布的主控因素,总结了不同岩溶形态的地质灾害及风险,并进一步分析了其与岩溶隧道的位置关系。基于此,将隧道—岩溶系统概化为弹性梁板模型、双孔洞模型、裂隙导通模型等四种力学模型,为采用定量手段研究岩溶隧道灾害机理提供基础;
     (2)通过室内单轴压缩试验、三轴压缩试验以巴西劈裂试验对岩溶区灰岩的基本力学性质和强度特征进行了深入研究,发现自然状态和饱和状态的岩溶区灰岩力学性质差别显著。结合现场调查得出的岩体结构特征和主要结构面的表面状况,确定了地质强度指标GSI和岩体的霍克—布朗岩体强度参数及变形模量;
     (3)通过实际岩溶隧道突涌水实例的调查与分析,将岩溶突水划分为高压裂隙突水、富水溶腔突水、地下暗河或岩溶管道突水及断层突水,并从微、宏观层面分析了岩溶隧道突水机理,指出围岩二次应力重分布和高水头岩溶水压力共同作用下的综合破坏型突水是岩溶隧道突水的主要类型,并通过离散元数值模拟对隧道与水压充填溶腔间防突岩层破坏突水灾变过程进行了验证;
     (4)针对大尺度隐伏溶腔,将防突岩层简化为两端固定梁模型,采用弹性理论,基于岩体抗弯、抗剪强度准则建立岩层最小防突厚度计算方法;针对中小尺度隐伏溶腔,采用Schwarz交替法结合格里菲斯强度准则计算岩层最小防突厚度,并编制基于该方法的计算程序,同时讨论了埋深、侧压力系数、溶腔尺度等因素对防突厚度的影响,特别是岩溶水压力的影响;针对裂隙导通突水模式,采用最小拉应力理论研究了隐伏断层活化突水方向,根据裂纹扩展准则建立了该突水模式下的最小防突厚度计算公式;
     (5)从断裂力学角度分析了高压岩溶水作用下裂隙的扩展机理,发现自然营造力作用下的水压劈裂多属压剪破坏模式。运用断裂力学和水力学理论分析了隧道掌子面突水的滞后效应和扩径效应,指出裂纹扩展的跳跃性在宏观上表现为隧道掌子面突水的滞后性;掌子面突水通道的最终形成需经过多个阶段,其最终尺寸受岩溶水压力、掌子面岩体工程质量等因素的控制。在综合分析基础上,认为隧道掌子面突水是由于开挖扰动降低了水压劈裂的临界水压力导致的,基于此观点,建立了基于临界水压力的掌子面岩墙安全厚度计算公式;
     (6)根据防突厚度及突水机理的研究成果,结合岩溶隧道灾害治理的工程实践及前人在此方面的研究结论,总结、概括了岩溶隧道突水防治的基本原则、突水治理对策,重点讨论了防治高压富水充填溶腔突水突泥灾害的新技术—释能降压法。
Accompanying the enforcement of strategy to develop western regions, transport and other infrastructures of western China expand substantially and long tunnel in karst zone increases dramatically. Geological hazard of water inrush and mud outburst often occur in the process of karst tunnel construction, which often lead to equipment destroyed and construction period bungled, even serious casualty and economic loss. This article is a subject which studies the disater-induced waterinrush of against-inrush rock in construction. Generalized model of mountain tunnel-Karst system and mechanism of water inrush of karst tunnel are studied in a deep-going way, and Against-inrush thickness of rock pillar between tunnel and concealed karst cave with high-pressure and rich water, safe thickness of rock wall in front of tunnel face are eatablished by engineering cases investigation, laboratory experiment, theoretical analysis and numerical simulation, Meantime, prevention measures of water-inrush of karst tunnel are summarized, consequently, series of meaningful research achievements has been obtained:
     (1) The property of karst development and underground karst of mountain tunnel are summarized through analysis the most representative karst tunnel on Yiwan railway, meantime, based on the practical example of karst tunnel, the location relationship between tunnel and karst structure is classified and the major geological hazards of karst tunnel are discussed. Finally, the system of tunnel and karst is generalized into four mechanics models, which supply support for analyzing the mechanism of water and mud inrush or mid-stratum collapse by quantitative analysis;
     (2) Mechanical behaviors and strength properties of limestone from karst region are studied intensively through uniaxial compression test, triaxial compression test, brazilian test and mechanical behaviors under natural an saturated condition are different remarkably. Combined with rock mass structural features and surface characteristics of discontinuitity obtained from field investigation, the geological strength index(GSI), Hoek-brown strength parameters and deform modulous are determined;
     (3) According to engineering cases of water inrush and mud outburst of karst tunnel, water-inrush is divided into high-pressure fissure water-inrush, water-inrush of karst cave with rich water, water-inrush of underground river, karst channel or fault. From micro and macro view, mechanism of water-inrush is analyzed and studied, and, it is pointed that comprehensive failure waterbust under secondary stress distribution and karst water pressure is the main type of karst tunnel waterinrush, process of disater-induced waterinrush of against-inrush rock under geostress and high water pressure is testified by means of discrete element numerical simulation;
     (4) As far as concealed karst cave at circumference is concerned, different mechanical models are established according to concrete situation. on account of large scale, the destabilization mechanism mid-rock is analyzed and simplified into restrained beam. The theoretical formula for the against-inrush thickness are deduced according to the elastic theory, based on anti-bending and anti-shear criterion; aiming at small and medium sized concealed cave, the against-inrush thickness is calculated by the mechanical model solved by Schwarz alternating methods with Griffith strength theory, moreover, base on this method, the program is designed on Maple platform, subsequently, each influential factor of against-inrush thickness is discussed, especially, water pressure in karst cave. As for model of water inrush along the activation fault, water-inrush orientation of activated concealed fault by use of minimum tensile stress theory, analytical formula of against-inrush thickness is deduced based on crack propagation criterion;
     (5) The frequent occurrence of water and mud inrush caused by karst cave with high pressurized water ahead of tunnel face has been the critical problem to be researched and resolved in tunnel construction in kasrt area. From view of fracture mechanics, the mechanism of crack extension is analyzed under high karst water pressure, as a result, the outcomes show that hydraulic fracturing under natural pressure mostly belongs to compression-shear(type 11) failure mode. The hysteresis effect and diameter-expanding effect of water-inrush of tunnel face have been studied by use of fracture mechanics and hydromechanics. It is illustrated that the hysteresis effect of water-inrush is macro-view property of the skip of crack extension, meantime, the results also demonstrate that the final formation of water-inrush passage need experience some stages and its final size is controlled by karst water pressure and the quality rock mass of tunnel face and so on and so forth. On the basis of comprehensive analysis, the reason why water-inrush occurs in the vicinity of tunnel face is that the critical water pressure of hydraulic fracturing decreases induced by excavation and disturbance. Accordingly, based on the critical water pressure, the calculating formula of safe thickness of rock wall has been established:
     (6) Finally, in the light of research achievements about against-inrush thickness and waterburst mechanism, the basic principles and prevention measures of against-inrush are summed up combined with cases of hazards management of many karst tunnel and research conclusions by other scholar. A new technical method to prevent water inrush-energies-release and depressurization technology is emphatically discussed.
引文
[1]Hoek E., Brown E.T岩石地下工程[M].连志生,田良灿等译.北京:冶金工业出版社,1986
    [2]B.H.G.布雷迪,E.T.布朗.地下采矿岩石力学[M].冯树仁,佘诗刚等译.北京:煤炭工业出版社,1986.
    [3]MaKoocKNR岩溶地层中地下建筑物的施工[J].隧道译丛,1994(1)
    [4]中华人民共和国交通部,公路隧道设计规范TJGD70-2004,北京:人民交通出版社,2004
    [5]王梦恕.对岩溶区隧道施工水文地质超前预报的意见[J].铁道勘察,2004(1):7-9.
    [6]于波.深埋隧洞中的岩溶地基工程地质问题及地基处理[J].岩石力学与工程学报,2004,23(1):403-407
    [7]李彪,梁富清.高速公路隧道施工中的岩溶问题研究[J].工程力学,2004(增刊)
    [8]铁道部第二勘察设计院.岩溶工程地质[M].北京:中国铁道出版社,1984
    [9]吴梦军,许锡宾,赵明阶.岩溶地区公路隧道施工力学响应研究[J].岩石力学与工程学报,2004,23(9):1525-1529
    [10]傅鹤林.隧道衬砌荷载计算理论及岩溶处治技术[M].长沙:中南大学出版社,2005
    [11]邹成杰.水利水电岩溶工程地质[M].北京:地质出版社,1994
    [12]刘招伟.圆梁山隧道突水机理及其防治对策[D].北京:中国地质大学,2004
    [13]杨昌宇.武隆隧道岩溶暗河整治方案探讨[J].现代隧道技术,2003,40(6):12-15
    [14]刘丹,关宝树.铁路隧道涌(突)水基本特征及地质环境效应.科技动态报告文集[M].西南交通大学出版社,1995:212-219
    [15]罗鉴银,傅瓦利.岩溶区开凿隧道队地下水循环系统的破坏—以重庆市中梁山为例[J].西南农业大学学报(自然科学版),2005,27(4):432-435
    [16]王建秀.腐蚀损伤岩体中的水化—水力损伤及其在隧道工程中的应用研究[D].成都:西南交通大学,2002
    [17]程晔.岩溶区高度公路路桥基础稳定评价方法与应用研究[D].长沙:湖南大学,2005
    [18]宋战平.隐伏溶洞对隧道围岩——支护结构稳定性的影响研究[D].西安:西安理工大学,2006
    [19]任美锷,刘振中.岩溶学概论[M].北京:商务印书馆,1983
    [20]邹成杰.鲁布革电站引水隧洞的岩溶发育特征及其工程意义[J].中国岩溶,1991,12(5):715-719
    [21]陈成宗,何发亮.隧道工程地质与声波探测技术[M].成都:西南交通大学出版社,2004.
    [22]李志国.隧道岩溶处理技术[J].铁道标准设计,2003(增刊)
    [23]吴梦军,许锡宾,刘绪华.岩溶地区公路隧道围岩稳定性模型试验研究[A].中国岩石力学与工程学会第七次大学学术论文集[C].北京:中国科学技术出版社,2002
    [24]吴梦军,许锡宾,刘绪华等.岩溶对公路隧道围岩稳定的影响研究[J].地下空间,2003,23(1):59-62
    [25]赵明阶,徐容,许锡宾.岩溶区全断面开挖隧道围岩变性特性模拟[J].同济大学学报(自然科学版),2004,32(6):710-715
    [26]赵明阶,敖建华,刘绪华.岩溶尺寸对隧道稳定性影响的模型试验研究[J].岩石力学与工程学报,2004,23(2):213-217
    [27]赵明阶,徐容,许锡宾.岩溶区全断面开挖隧道围岩变形规律及其监测[J].同济大学学报(自然科学版),2004,32(7):866-871.
    [28]赵明阶.隧道顶部岩溶对围岩稳定性影响的数值分析[J].岩土力学,2003,24(3):445-449
    [29]赵明阶,敖建华,刘绪华等.隧道底部溶洞对围岩的变形特性的影响分析[J].重庆交通学院学报,2003,232(2):21-23
    [30]尹尚先,王尚旭,武强.陷落柱突水模式及理论判据[J].岩石力学与工程学报,2004,24(3):964-968
    [31]王勇.铁路隧道与溶洞安全距离预测模型研究[D].北京:北京交通大学,2004
    [32]王勇,乔春生,孙彩虹等.基于SVM的溶洞顶板安全厚度智能预测模型[J].岩土力学,2006,27(6):1000-1004
    [33]赖永标,乔春生.基于SVM隧道与溶洞安全距离预测模型[J].四川大学学报(工程科学版),2007,39(增刊):72-79
    [34]史史雍,梅世龙,杨志刚.隧道顶部溶洞对围岩稳定性的影响分析[J].地下空间与工程学报,2005,1(5):698-702
    [35]迟明杰,赵成刚,杨小林,等.岩溶区隧道爆破开挖地震危害控制的研究.中国安全科学学报,2004,14(9):68-71
    [36]梁伟民,杨小林,赵军,等.溶洞对隧道爆破开挖影响的数值模拟研究[J].采矿与安全工程学报,2006,23(4):452-455
    [37]程星,黄润秋.铁路振动及其在岩溶塌陷中的致塌力研究[J].岩石力学与工程学报,2003,22(12):2062-2066
    [38]刘招伟,何满潮,王树仁.圆梁山隧道岩溶突水机理及防治对策研究[J].岩土力学,2006,27(2):228-232,246
    [39]臧守杰.强岩溶区隧道施工中隧底最小安全厚度分析研究[J].隧道建设,2007,27(5):17-19
    [40]于昆蓉,杨毅,李建设.某隧道岩溶突水机理及安全岩塞厚度的确定[J].隧道建设,2007,27(3):13-16
    [41]张炜,李治国,王全胜.岩溶隧道涌突水原因及治理技术探讨[J].隧道建设,2008,28(3):257-262
    [42]莫阳春,周晓军.达成高速铁路岩溶隧道围岩稳定性研究[J].中国铁道科学,2008,29(3):52-57
    [43]Meguid M.A., Dand H.k.. the effect of erosion voids on existing tunnel linings[J]. tunneling and underground space technology,2008,4(2):1-9
    [44]李利平,李术才,张庆松.岩溶地区隧道裂隙水突出力学机制研究[J].岩土力学,2010,31(2):523-528
    [45]李利平.高风险岩溶隧道突水灾变机理及其应用研究[D].济南:山东大学,2009
    [46]莫阳春.高水压充填型岩溶隧道稳定性研究[D].成都:西南交通大学,2009
    [47]陈卫忠,杨建平,杨家岭,等.裂隙岩体应力渗流耦合模型在压力隧洞工程中的应用[J].岩石力学与工程学报,2006,25(12):2384-2391
    [48]唐红侠,周志芳,王文远.水劈裂过程中岩体渗透性规律及机理分析[J].岩土力学,2004,25(8):1320-1322
    [49]詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析解理论研究[J].岩石力学与工程学报,2007,26(6):1173-1181
    [50]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994
    [51]王成,邓安福.岩体节理内压致裂解析研究[J].岩石力学与工程学报,2002,21(5):640-643
    [52]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水利劈裂作用分析[J].岩石力学与工程学报,2000,19(5):573-576
    [53]李宗利,张宏朝,任青文,等.岩石裂纹水力劈裂分析与临界水压计算[J].岩土力学,2005,26(8):1216-1220
    [54]Papanastasiou P. An efficient algorithm for propagating fluid-driven fractures[J]. Computational Mechanics,1999,24(4):258-267
    [55]Volko P, Economides M J. Propagation of hydraulically induced fractures-A continuum damage mechanics approach[J]. International Journal of Rock Mechanics and Min Science & Geomechanics Abstracts,1994,31(3):221-229
    [56]Dunat X, Vinches M, Henry J P, el al. Modeling of hydro-mechanical coupling in rock joints[J]. Mechanics of Jointed and Faulted Rock[C], Rossmanich:Balkeman: 1998
    [57]Axel K L Ng, John C Small. A case study of hydraulic fracturing using finite element methods[J]. Canada Geotechnique Jouranl,1998,36:861-875.
    [58]盛金昌,赵坚,速宝玉.高水头作用下水工压力隧洞的水力劈裂分析[J].岩石力学与工程学报,2005,24(7):1226-1230
    [59]王建秀,朱合华,唐益群,等.石灰岩损伤演化的断裂力学模型及耦合方程[J].同济大学学报(自然科学版),2004,32(10):1320-1324
    [60]赵延林,曹平,林杭,等.渗透压作用下压剪岩石裂纹流变断裂贯通机制及破坏准则探讨[J].岩土工程学报,2008,38(4):511-517
    [61]谢兴华,速宝玉,高延法,等.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,24(6):987-993
    [62]Mesri G, Adaehi, Ullrich C R. Pore response in rock to undrained change in all round stress[J]. Geotechnique,1976,26(2):317-330.
    [63]Papanastasiou P, Thiercelin M. Influence of inelastic rock behavior in hydraulic fracturing[A]. In:Haimson B(ed). Rock Mechanics in 1990S:pre-print proceedings of the 34th U.S. Symposium on Rock Mechanics[C]. Madison: University of Wisconsin-madison,1993,339-342
    [64]Guy Archambault, Stephane Poirier, Alain Rouleau, et al. The behavior of induced Pore fluid pressure in undrained triaxial shear test on fractured porous anology rock material specimens[J]. Mechanics of Jointed and Faulted Rock[C], Rossmanich:Balkeman:1998
    [65]张红日,张文泉,温兴林.矿井底板突水过程中岩溶承压水的作用[J].中国地质灾害与防治学报,1999,10(1):88-92
    [66]王鹰,陈强,魏有仪,等.岩溶发育区深埋隧道水岩相互作用机理[J].中国铁道科学,2004,25(4):55-57
    [67]王树仁,何满潮,刘招伟.岩溶隧道突水灾变过程分析及控制技术[J].北京科技大学学报,2006,28(7):613~618
    [68]孙谋,刘维宁.隧道涌水对围岩特性影响分析[J].隧道建设,2008,28(2):143-147
    [69]史忠毓,王晓峰.运用FLAC2D程序对某隧道突水事帮机理的探讨[J].企业科技与发展,2009,11:87-89
    [70]李围.岩溶山区公路隧道施工突水的机理和模式分析[J].贵州大学学报(自然科学版),2009,6(6):125-128
    [71]黄明利,王飞,路葳,等.隧道开挖诱发富水有压溶洞破裂突水过程数值模拟[J].中国工程科学,2009,11(12):93-96
    [72]聂志凌.水压充填型岩溶隧道突水机理及衬砌结构力学特性研究[D].成都:西南交通大学,2009
    [73]王建秀,冯波,张兴胜,等.岩溶隧道围岩水力破坏机制研究[J].岩石力学与工程学报,2010,29(7):1363-1370
    [74]Marc Pesendorfer, Simon Loew. Subsurface exploration and transient pressure testing from a deep tunnel in fractured and karstified limestones(Lotschberg Base Tunnel, Switzerland) [J]. International journal of rock mechanics and mining science,2009,47(2010):121-127
    [75]Ulriksen C, Peter F.. Application of impulse radar to civil engineering[M]. Lund: Dept. of engineering geology,1982
    [76]Kevin Black, Peter Kopac. The application of ground penetrating radar in highway engineering[J]. Public roads,1992,56(3):96-103
    [77]Christian D. Klose fuzzy rule-based expert system for short-range seismic prediction[J]. Computers & Geosciences,2002,28(3):377-386
    [78]Edward Button, Hetfried Bretterebner and Peter Schwab. The application of TRT-Ture reflection tomography at Unterwald tunnel[J]. Geophysics,2002,47(7): 51-56
    [79]Franjo Sumanovac, Mario Weisser. Evaluation of resistivity and seismic method for hydrogeological mapping in karst terrains[J]. Journal of applied geophysics, 2001,07:13-38
    [80]Pitambar Gautam, Surendra Raj Pant, Hisao Ando. Mapping of subsurface structure with gamma ray and electrical resistivity profiles:a case study from Pokhara valley, central Nepal[J]. Journal of applied geophysics,2000, 45(2):97-110
    [81]王梦恕.对岩溶地区隧道施工水文地质超前预报的意见[J].铁道勘察,2004,1:7-10
    [82]白冰,周健.探地雷达测试技术发展概况及其应用现状[J].岩石力学与工程学报,2001,20(4):527-531
    [83]刘斌,李术才,李树忱,等.复信号分析技术在地质雷达预报岩溶裂隙水中的应用研究[J].岩土力学,2009,30(7):2191-2196
    [84]王鹰,陈强,魏有仪,等.红外探测技术在圆梁山隧道突水预报中的应用[J].岩石力学与工程学报,2003,22(7):855-857
    [85]苏茂鑫,李术才,李貅.瞬变电磁三维成像技术在地质预报中的应用[J].山东大学学报(工学版),2009,39(4):61-64
    [86]吴有信.宜万铁路马鹿箐隧道瞬变电磁法勘察效果[J].山东大学学报(工学版),2007,4(1):21-26
    [87]刘志刚,刘秀峰.TSP(隧道地震勘探)在隧道隧洞超前预报中的应用与发展[J].岩石力学与工程学报,2003,22(8):1399-1402
    [88]薛翊国,李术才,张庆松,等.TSP203超前预报系统探测岩溶隧道的应用研究[J].地下空间与工程学报,2007,3(7):1187-1191
    [89]葛颜慧.岩溶隧道突水风险评价与预警机制[D].济南:山东大学,2010
    [90]刘志刚.概论岩溶或地质复杂隧道隧洞地质灾害超前预报技术[J].铁道建筑技术,2003,2:1-5
    [91]齐传生,王洪勇.圆梁山隧道综合超前地质预报技术[J].铁道勘察,2004,5:52-56
    [92]Zang, C. W. Huang H. W., Zhang Z. X.. Forecasting the strata condition of along road tunnel by using synthetic judgment[J]. International journal of rock mechanics and mining sciences,2004,41(3):406-407
    [93]李术才,薛翊国,张庆松,等.高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J].岩石力学与工程学报,2008,27(7):1297-1307
    [94]李术才,李树忱,张庆松,等.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217-224
    [95]吴治生,付伯森.南岭隧道突发性涌泥介绍及成因分析[J].铁道工程学报,1987,2:100-103
    [96]吴治生,付伯森.南岭隧道岩溶注浆概况及经验教训[J].铁道工程学报,1989,2:168-176
    [97]陈成宗,何发亮.大瑶山隧道九号断层的特性与工程对策[J].岩石力学与工程学报,1992,11(1):72-78
    [98]李治国,邹冲,孙国庆.圆梁山隧道2#溶洞注浆技术研究[J].岩石力学与工程学报,2004,23(增2):5158-5164
    [99]张顶立,李治国,张民庆.圆梁山隧道高压富水区帷幕注浆及止浆技术[J].中国铁道科学,2004,25(3):27-31
    [100]刘招伟,张顶立,张民庆.圆梁山隧道毛坝向斜高水压富水区注浆施工技术[J].岩石力学与工程学报,2005,24(10):1728-1734
    [101]张建法.圆梁山隧道粉细砂充填型溶洞钻孔注浆快速施工技术[J].隧道建设,2009,29(1):88-92
    [102]马栋.宜万铁路复杂岩溶隧道水害综合防治技术[J].中国工程科学,2009,11(12):94-98
    [103]张成平,张顶立,叶英,等.高压富水岩溶隧道注浆机理及作用效果分析[J].地下空间与工程学报,2009,5(5):996-1002
    [104]杨兵,肖广智.宜万铁路马鹿箐隧道高压富水岩溶治理技术[J].中国工程科学,2009,11(12):69-76
    [105]谭忠盛,乔春生,王永红,等.高压富水充填型大型岩溶区的隧道修建技术研究[R].北京:北京交通大学,2009
    [106]金新峰.宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D].北京:中国地质科学院,2007
    [107]王勐,许兆义,王连俊,等.铁路深埋隧道区岩溶发育特征研究[J].工程地质学报,2004,12(03):253-258
    [108]张民庆,黄鸿健,苗德海,等.宜万线隧道工程岩溶治理技术与工程实例[J].铁道工程学报,2008,112(01):26-36,52
    [109]乔春生.溶洞、暗河地段隧道的结构型式和施工技术研究阶段成果报告[R].北京:北京交通大学,2008
    [110]马栋,李庚许.宜万铁路大支坪隧道+990岩溶治理技术[J].中国工程科学,2009,11(12):53-60
    [111]苗德海.宜万铁路岩溶隧道灾害及防治对策[J].铁道标设计,2007, (7)96-99
    [112]李冰,白明洲,许兆义.宜万铁路野三关隧道施工期岩溶灾害危险性分析与安全对策研究[J].中国安全科学学报,2006,16(9):4-9
    [113]邓谊明.宜万线别岩槽隧道出口DK406+422特大突水分析[J].铁道工程学报,2008,112(01):62-65
    [114]孙明彪.宜万铁路野三关隧道602溶腔处治[J].现代隧道技术,2010,47(01):91-98
    [115]薛斌,张民庆.云雾山隧道岩溶发育特征及治理[J].中国工程科学,2009,11(12):61-68
    [116]陈子荫.围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994
    [117]张路青,吕爱钟.双孔圆形洞室围岩应力分析的交替法研究[J].岩石力学与工程学报,1998,17(5):534-543
    [118]Lu Aizhong, Zhang Luqing. Alternating method study on stress analysis of surrounding rock for two random geometry tunnel[J]. Journal of coal science & engineering,1997,03 (2):24-29
    [119]赵延林,曹平,文有道.渗透压作用下压剪岩石裂纹损伤断裂机制[J].隧道建设,2008,39(4):838-844
    [120]王家臣,陈忠辉.矿井突水的动力学特征及控制因素(子课题二)[R].北京:中国矿业大学,2009
    [121]李奎.隧道岩溶围岩力学特性的初步研究[D].成都:西南交通大学,2005
    [122]石祥锋.岩溶区桩基荷载下隐伏溶洞顶板稳定性研究[D].中国科学院武汉岩土力学研究所,2005
    [123]曾晟,杨仕教,张新华,等.单轴压缩下石灰岩损伤统计本构模型与试验研 究[J].南华大学学报(自然科学版),2005,19(1):69-72,95
    [124]孙明贵,黄先伍,李天珍,等.石灰岩应力-应变全过程的非Darcy流渗透特性[J].岩石力学与工程学报,2006,25(3):484-491
    [125]陈占清,李顺才,茅献彪,等.饱和含水石灰岩散体蠕变过程中孔隙度变化规律的试验[J].煤炭学报,2006,31(1):26-30
    [126]姚改焕,宋战平,余贤斌.石灰岩声发射特性的试验研究[J].煤田地质与勘探,2006,34(6):44-46
    [127]李苍松,廖烟开,谷婷.岩溶围岩力学特性试验的初步研究[J].地下空间与工程学报,2007,Z1期,1358-1362,1386
    [128]WAWERSIK W R, FAIRHURST C. A study of brittle rock fracture in laboratory compression experiments[J]. Int Rock Mech and Min Sci& Geomech Abstr, 1970,7(5)
    [129]葛修润,周百海,刘明贵.对岩石峰值后区特性的新见解[J].中国矿业,1992,1(02):57-60
    [130]葛修润.岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J].岩土工程学报,2008,30(1):1-20
    [131]Hoek E. and Wood D.. A modified Hoek-Brown failure criterion for jointed rock masses[J]. proc. Int. Conf. Eurock'92, chest, England,202-214,1992
    [132]宫凤强,李夕兵,ZHAO J巴西圆盘劈裂试验中拉伸模量的解析算法[J].岩石力学与工程学报,2010,29(5):881-891
    [133]ISRM Testing Commission. Suggested method for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics Mining Sciences and Geomechanics Abstracts,1978,15(3):99-103.
    [134]喻勇.质疑岩石巴西圆盘拉伸强度试验[J].岩石力学与工程学报,2005,24(7):1150-1157
    [135]尤明庆,苏承东.平台圆盘劈裂的理论和试验[J].岩石力学与工程学报,2004,23(1):170-174
    [136]汪亦显,曹平.硬岩巴西劈裂法试验误差影响率分析[J].岩土工程学报,2007,29(7):1085-1089
    [137]BIENIAWSKI Z T. Determining rock mass deformability:experience from case histories[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1978,15(5):237-247
    [138]SERAFIM J L, PEREIRA J P. Consideration of the geomechanical classification of Bieniawski[C]//Proceedings of International Symposium on Engineering Geology an d Underground Construction Lisbon:Portugal,1983:33-44
    [139]NICHOLSON G A, BIENIAWSKI Z T. A nonlinear deformation modulus based on rock mass classification[J]. Geotechnical and Geological Engineering,1990, 8(3):181-202.
    [140]HOEK E, CARRANZA-TORRES C T, CORKUM B. Hoek-Brown failure criterion[C]//Proceedings of the Fifth North American Rock Mechanics Symposium(2002 edition).Toronto:[S.n.],2002:267-273.
    [141]BARTON N. Some new Q-value correlations to assist in site characterization and tunnel design[J].International Journal of Rock Mechanics and Mining Sciences, 2002,39(2):185-216
    [142]HOEK E, DIEDERICHS M S. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics and Mining Sciences,2006, 43(2):203-215
    [143]HOEK E, BROWN E. Practical estimates or rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences and Geological Geomechanics Abstracts,1997,34(8):1165-1186
    [144]HOEK E, MARINOS P, BENISSI M. Applicability of the geological strength index(GSI)classification for very weak and sheared rock mechanical parameters of large—volume jointed rock mass[J]. Bulletin of Journal of Engineering Geology and the Environment,1998,57(2):151-160.
    [145]MARINOS P, HOEK E. GSI:a geologically friendly tool for rock mass strength estimation[C]//Proceedings of Geoengineering 2000 Conference. Melbourne:[s.n.] 2000:1422-1442
    [146]白国良.岩体宏观学参数估计方法研究[J].矿山测量,2009,06:21-23
    [147]Hoek, E.. Strength of jointed rock masses,23rd. Rankine Lecture. Gotechnique, 1983,33(3):187-223.
    [148]卢书强,许模.基于GSI系统的岩体变形模量取值及应用[J].岩石力学与工程学报,2009,28(增1):2736-2742
    [149]SONMEZ H, ULUSAY R. Modifications to the geological strength mechanical index(GSI)and their applicability to stability of slopes[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(6):743-760
    [150]SONMEZ H, GOKCEOGLU C, ULUSAY R. Indirect determination of the modulus of deformation of rock masses based on the GS1 system[J]. International Sciences,2004,41(5):849-857
    [151]Bieniawski ZT. Engineering rock mass classifications[M]. John Wiley and Sons, 1989.
    [152]铁四院地质路基设计研究处.宜万线长大岩溶隧道专项地质勘察报告[R].铁道第四勘察设计院,2004
    [153]宜万线建设指挥部.宜万线岩溶隧道地质排查情况报告[R].铁道部工程管理中心,2009
    [154]黄明利.高压富水充填型大型岩溶区的隧道修建技术研究(分报告六)[R].北京:北京交通大学,2009
    [155]黄鸿健,张民庆.宜万铁路隧道工程岩溶及岩溶水分析与应对[J].现代隧道技术,2009,02:22-34
    [156]王建秀,杨立中,何静.大型地下工程岩溶涌(突)水模式的水文地质分析及其工程应用[J].水文地质工程地质,2009(1):49-52
    [157]王秀英.高压富水充填型大型岩溶区的隧道修建技术研究(分报告四)[R].北京:北京交通大学,2009
    [158]郭伟.侧部水压充填型岩溶隧道施工力学特性研究[J].湖南交通科技,2008,34(2):131-135
    [159]宋战平,党宏斌,李宁.既有溶洞对隧道围岩位移特征影响的数值试验[J].长江科学院院报,2008,25(5):79-83
    [160]李晓昭,张国永,罗国煜.地下工程中由控稳到控水的断裂屏障机制[J].岩土力学,2003,24(2):220-224
    [161]杨天洪,唐春安,朱万成,等.岩石破裂过程渗流与应力祸合分析[J].岩土工程学报,2001,23(4):489-493
    [162]王思敬.中国岩石力学与工程世纪成就[M].南京:河海大学出版社,2004
    [163]谭忠胜.高压富水充填型大型岩溶区的隧道修建技术研究(分报告七)[R].北京:北京交通大学,2009
    [164]段向丽.岩溶地区深埋隧道突水、突泥机理探讨[J].科技创新导报,2008(12):117-118
    [165]张均峰,张华玲,孟达,等.采动影响下强充水型隐伏岩溶陷落柱围岩变形与渗流场数值模拟[J].岩石力学与工程学报,2009,28(1):2824-2829
    [166]杨天鸿,唐春安,谭志宏,等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277
    [167]冯梅梅,茅献彪,白海波,等.承压水上开采煤层底板隔水层裂隙演化规律的试验研究[J].岩石力学与工程学报,2009,28(2):336-341
    [168]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学,2000,21(1):64-67
    [169]孙玉科,古迅.赤平极射投影在岩体工程地质力学中的应用[M].北京:科学出版社,1980
    [170]ITASCA Consulting Group Inc. Universal Distinct Element Code. Version 4.0 User's Manual[Z]. Minnesota USA:ITASCA Consulting Group, Minneapolis, 2004
    [171]张炜.某隧道岩溶发育特征与涌水量初步预计[J].安徽建筑工业学院学报(自然科学版),2010,18(2):17-20
    [172]杜毓超,韩行瑞,李兆林.基于AHP的岩溶隧道涌水专家评判系统及其应用[J].中国岩溶,2009,28(3):281-287
    [173]刘湛省.岩溶地区铁路工程地质勘察浅探[J].西部探矿工程,2010,22(7):104-106
    [174]杨耀,羊春华,曾国.探地雷达在隧道岩溶普查中的应用[J].物探与化探,2010,34(3):410-414
    [175]周斌,师学明,杨杰,等.地震映像法在齐岳山隧道岩溶勘察中的应用研究[J].工程地质物理学报,2010,7(2):173-176
    [176]张梅.突水突泥高风险隧道施工技术与管理[J].世界轨道交通,2010,04:18-20
    [177]申志军.宜万铁路岩溶隧道施工地质技术[J].中国工程科学,2009,11(12):47-52
    [178]王作举.龙麟宫隧道溶腔处理施工技术[J].铁道建筑技术,2010,05:31-35
    [179]宋战平,李宁,邓良胜.岩溶隧道岩层跨塌机理及隧道底板最小厚度分析[C]//袁驷编.第15届全国结构工程学术会议论文集.北京:工程力学杂志出版社,2006:336-339
    [180]YAN Chang-bin, XU Guo-yuan, ZUO Yun-jun. Destabilization analysis of overlapping underground chambers induced by blasting vibration with catastrophe theory[J]. Transaction of Nonferrous Metals Society of china,2006,16(3): 735-740
    [181]乔春生.高压富水充填型大型岩溶区的隧道修建技术研究(分报告二)[R].北京:北京交通大学,2009
    [182]铁道部宜万铁路建设指挥部.宜万铁路岩溶隧道修建技术[R].恩施:铁道部宜万铁路建设指挥部,2009
    [183]CHIN-BING LING. On the stresses in a plate containing two circular holes[J]. Journal of applied physics,1948,19:77-82
    [184]DHAR B B, VERMA B S, RAT AN S. Fracture growth around opening in rock models and their effect on the design of stable openings[J]. Rock mechanics and ground control divisions(India),1980,4:99-104
    [185]潘家铮.相邻水工隧洞的原理分析[J].地下工程,1979,01:2-12
    [186]刘新宇,侯学渊.平行圆形隧洞的应力分析[J].同济大学学报,1985,03:15-26
    [187]UKADGAONKER V G. Stress analysis of a plate containing two circular holes having tangential stresses[J]. Journal of AIAA,1982:125-128
    [188]ZIMMERMAN R W. Second-order approximation for the compression of an elastic plate containing a pair of circular holes[J]. ZAMM Z. angew. Math. Mech, 1998,68:11
    [189]ZIMMERMAN R W. Stress singularity around two nearby holes[J]. Mechanics research communication,1985,15(2):87-90
    [190]ZHANG LUQING, LU AIZHONG, YANG ZHIFA. An analytic algorithm of stresses for any double hole problem in plane elastostatics[J]. Journal of applied mechanics, Transaction of ASME,2001,68:350-353
    [191]Mikhlin S.G.. Method of successive approximation in solution to biharmonic equation[M]. Trudy, Seisomological institute, USSR,1994:39
    [192]I.S. Soboldff. Schwarz algorithm in the theory of elasticity[R]. Reports from academy of science, USSR,Ⅳ,1936
    [193]吕爱钟,张路青.地下隧洞力学分析的复变函数方法[M].北京:科学出版社,2007
    [194]ZHANG Lu-qing, YANG Zhi-fa, LV Aizhong. Analytic study on the problem of two holes having arbitrary shapes and arrangements in plane elastostatics[J]. Science in China,2001,44(2):146-158
    [195]刘之葵,梁金城,朱寿增,等.岩溶区含溶洞岩石地基稳定性分析[J].岩土工程学报,2003,25(3):629-633.
    [196]刘铁雄.岩溶顶板与桩基作用机理分析与模拟试验研究[D].长沙:湖南大学,2004
    [197]曹茜.岩溶隧道与溶洞的安全距离研究[D].北京:北京交通大学,2010
    [198]李贺,尹光志等.岩石断裂力学[M].重庆:重庆出版社,1987
    [199]刘水胜.海底隧道钴爆开挖围岩稳定性研究[D].北京:北京交通大学,2009
    [200]Kemeny J M. A model for nonlinear rock deformation under compression due to subcritical crack growth[J]. International Journal of Rock Mechanics and Mining Sciences,1991,28:459-462006,43(2):203-215
    [201]Kemeny J M, Cook N G W. Crack models for the failure of rocks in compression, Constitutive laws for engineering materials:Theory and applications[M]. New York:Elsevier,1987:879-887.
    [202]Wang xiuying, Wang mengshu. Analysis of the mechanism of water inrush in karst tunnels. Underground construction and ground movement, Geotechnical special publication No.155, Proceeding of sessions of geoshanghai(ASCE), 2006:67-72
    [203]蔡美峰.岩石力学与工程[M].北京:科学出版社,2006
    [204]铁道部宜万铁路建设指挥部.宜万铁路岩溶隧道专项地质勘察技术与地勘监理[R].湖北:恩施,2009
    [205]张梅,张民庆,朱鹏飞,等.高压富水充填溶腔释能降压技术[J].中国工程科学,2009,11(12):13-19
    [206]冯庆波.静水压力作用下厚矩形板的弯曲问题及其工程应用[D].秦皇岛:燕山大学,2007
    [207]杨耀乾.平板理论[M].北京:中国铁道出版社,1984
    [208]黄克智.板壳理论[M].北京:清华大学出版社,1987
    [209]HAB J B, LIEW K M. Analysis of annular Reissner Mindlin plates using differential quadrature method [J]. International Journal of Mechanical Sciences, 1998,40(7):651-661
    [210]高庆.工程断裂力学[M].重庆:重庆大学出版社,1985
    [211]王桂尧,孙宗颀,徐纪成.岩石Ⅱ型断裂韧度的实验方法[J].中国有色金属,1999,9(1):175-179
    [212]李宗利,任青文,王亚红.岩石与混凝土水力劈裂缝内水压力分布的计算[J].水利学报,2005,36(6):656-661
    [213]仵彦卿.岩土水力学[M].北京:科学出版社,2009
    [214]李桂林,张立国,勒天堂,等.云雾山隧道“526”溶腔释能降压施工技术[R].恩施:中铁一局宜万铁路工程指挥部,2009
    [215]张梅.宜万铁路高压富水充填溶腔释能降压技术研究[R].北京:铁道部工程管理中心,2009
    [216]Criss E.M., Criss R.E., Osburn G..R.. Effect of stress on cave passage shape in karst terranes[J]. Rock Mechanics and Rock Engineering,2008,41(3):499-505.
    [217]司海宝,杨为民,吴文金,等.煤层底板突水的断裂力学模型[J].北京工业职业技术学院学报,2005,4(3):48-50
    [218]尹尚先.煤矿区突(涌)水系统分析模拟及应用[D].北京:中国矿业大学(北京校区),2005
    [219]魏悦广.用摄动法计算椭圆形巷道的弹塑性问题[J].工程力学,1990,7(5):93-102
    [220]Unlu T., Gercek H.. Effect of Poisson's ratio on the normalized radial displacements occurring around the face of a circular tunnel[J]. Tunneling and Underground Space Technology,2003,18 (5):547-553
    [221]Carranza-Torres,C., Fairhurst,C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunneling Underground Space Technology,2000,15 (2):187-213.
    [222]吴张中,徐光黎,吴立,等.超大断面侧向扩挖施工围岩力学特征研究[J].岩土工程学报,2009,31(2):172-177
    [223]安永林.结合邻近结构物变形控制的隧道施工风险评估研究[D].长沙:中南大学,2009
    [224]朱鹏飞.宜万线隧道工程施工地质超前预测预报策划与应用效果初步评价[J].现代隧道技术,2005,42(5):52-58
    [225]朱鹏飞.宜万铁路岩溶隧道地质综合超前预报技术的研究[R].恩施:铁道部宜万铁路建设指挥部,2007
    [226]铁道第四勘察设计院.新建铁路宜昌至万州段长大复杂隧道施工地质汇报材料[R].武汉,2004
    [227]宜万铁路建设总指挥部.宜万线复杂隧道施工地质实施细则(试行)[S].恩施:2004
    [228]王永红.高压富水充填型大型岩溶区的隧道修建技术研究(分报告一)[R].北京:北京交通大学,20092009
    [229]6铁道部宜万铁路建设指挥部.宜万铁路岩溶隧道修建技术[R].恩施:铁道部宜万铁路建设指挥部,2009
    [230]张民庆,黄鸿健.宜万线隧道工程岩溶治理技术与工程实例[J].铁道工程学报,2008,01:26-36,52
    [231]朱鹏飞.宜万铁路岩溶隧道风险管理[J].中国工程科学,2009,11(12):20-25
    [232]毛邦燕.现代深部岩溶形成机理及其对越岭隧道工程控制作用评价[D].成都:成都理工大学,2008
    [233]刘招伟,张民庆,王树仁.岩溶隧道灾变预测与处治技术[M].北京:科学出版社,2007
    [234]李庚许.宜万铁路大支坪隧道岩溶地质灾害综合防治技术[D].北京:中国地质大学(北京),2009
    [235]张民庆,张梅.高压富水断层“外堵内固注浆法”设计新理念与工程实践[J].中国工程科学,2009,11(12):26-34
    [236]朱鹏飞.宜万铁路别岩槽隧道岩溶及岩溶水治理技术[J].铁道标准设计2008,03:102-107
    [237]张民庆,彭峰.地下工程注浆技术[M].北京:地质出版社,2008
    [238]中铁西南科学研究院.宜万铁路岩溶地区隧道灾害预测预报技术与结构设计研究(分题二)[R].成都:2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700