用户名: 密码: 验证码:
二氧化碳羽流地热系统运行机制及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以二氧化碳为主的温室气体的大量排放引发了全球变暖现象,进而造成了严重的环境问题。针对CO2减排目标,国际上提出许多削减CO2排放量的新方法和新技术。二氧化碳地质储存(Carbon dioxide geologic sequestration,简称CGS)是目前国际社会公认的应对全球气候变化的重要对策及显著减少温室气体排放的有效技术手段之一。但已有的研究表明,单一的CO2地质储存(CGS)在大规模工程应用中费用昂贵,如能在CO2地质储存的同时,利用其作为工作流体进行深部地热能的开发利用,实现其资源化,会提高CGS的经济可行性,极大推动我国CO2地质储存事业的发展。因此,越来越多的研究聚焦于如何在进行CO2地质储存的同时,进一步实现CO2的资源化利用。地热能是一种可再生的清洁能源,近年来国外学者的研究表明:利用CO2提取深部储层孔隙介质中的地热能是增强CO2地质储存经济性和可行性的良好途径。
     CO2羽流地热系统(CO2-plume geothermal system,简称CPGS),是利用注入到沉积盆地天然孔隙储层的CO2提取地热能的一种工程技术手段。虽然CPGS系统有着巨大的应用前景,但也面临一系列重大科学问题,如CPGS运行中低温超临界CO2由井筒注入深部咸水层后,伴随着对深部地热的提取将在储层和井筒中发生复杂流态下的多相流流动、传热和地球化学作用,使系统的运行和热能提取过程产生不稳定性,这是CPGS工程实施中的关键科学问题。
     本文进一步研究了CO2羽流地热系统,以我国典型沉积盆地——松辽盆地泉头组的地质构造及热储条件为背景,考虑井筒流对CO2作为载热工质的地热系统的影响,建立井筒流和储层流的耦合模型,采用室内实验、数值模拟和理论分析相结合的方法,研究注-采温压条件下井筒和储层中多相流动力学-热力学变化过程,以及流场-温度场的时空演变规律,揭示CO2羽流地热系统的多相流流动及传热机理;分析水-岩-气相互作用对地层流场和传热过程的影响;确定系统稳定条件,进行CPGS的优化开采设计;系统全面进行CO2与水工质的对比研究,客观评价各自的优缺点,确定适宜以CO2为载热工质的系统条件,为我国典型沉积盆地CO2地质储存中的地热资源开采提供基础理论依据和技术支撑。
The problems of environment and energy are the two topics to the human society.In recent years, the excess emission of carbon dioxide is one of the main factorscausing global warming and serious environmental problems. CO2geologicalsequestration (CGS) is an effective technology recognized by the internationalcommunity to reduce the greenhouse gas emission and cope with the climate change.The study on large-scale engineering application indicates that single CGS is tooexpensive if there are no other ancillary benefits. Therefore, the research on how touse natural and stored CO2reservoirs to extract the deep geothermal resource isnecessary. In this paper, a concept of CO2plume geothermal system (CPGS) whichinvolves pumping CO2into deep, naturally porous and permeable geologicalformation where CO2displaces native formation fluid is presented. It can be apractical way to improve the efficiency and economics of CGS, and to realize thereasonable development of clean energy and CO2recycling.
     This paper is supported by Ministry of science and technology project863(No.2012AA052801) and the Natural Science Foundation of China (NSFC)“TheFundamental Theoretical Research on Carbon dioxide Plume Geothermal (CPG)System in Sedimentary Basin”(No.41272254). It developed the study of themechanism and optimization of CPGS in the Songliao basin, China. The goal ofproject is to (1) explore the flow and heat transmission mechanism of CO2in wellboreand deep reservoir;(2) identify the influence of water-rock-gas interaction on flowfield;(3) determine the condition of stable operation and influence factors forQuantou formation, and optimize the scheme;(4) evaluate the performance of CO2orwater as the heat medium under complex geological conditions.
     In the theory of flow and heat transmission of CO2, according to the conservationof mass and energy, the wellbore model that coupled flow and heat transmission wasdeveloped on the basis of drift flux model (DFM). Based on the Darcy’s law areservoir model was set up. We coupled the wellbore with the reservoir flow anddeveloped a complete system of underground heat extraction cycle model. The model is helpful to precisely describe the flow and heat transmission process of CO2indifferent stages and phases in the sandstone reservoir. The results show that the energytransmission and transformation of CO2in wellbore are completed in the form ofconvection and diffusion. Pressure and temperature increase during the injectionprocess. It is note-worthy that when CO2breakthrough in production well, thepressure, temperature and density profile will plunge sharp.
     With the comprehensive function of gravity, buoyancy and the circulatedpressure, CO2distributes as a plume shape during migrating in the reservoir. Threedistinct zones appear,(1) the central zone where fluid is a single supercritical CO2phase;(2) a two-phase water-CO2mixture in surrounding intermediate zone; and (3) a singleaqueous phase with dissolved CO2in peripheral zone. Three zones in the reservoir transformand evolve with time. The distribution of temperature also shows a significant plumeprofile. After being fully heated, CO2flows into production wellhole. In the initialperiod, what we get from the production well is water. The pressure of productionwellhole decreases rapidly after CO2breakthrough. Due to CO2expansion, the lowerthe production wellhead pressure is, the more drastically temperature drops frombottom to wellhead. The velocity and kinetic energy of CO2increase in the process ofextracting from the production wellhole to the surface, whereas the density andtemperature decrease. Because of CO2breakthrough, water mass flow of productionwell and net heat extraction rate decline dramatically. When the mass flow of twophases gets nearly the same, the net heat extraction rate reachess the lowest level. Andthen, as the displacement going on, the effect of two phases gets weak, the net heatextraction gets to stabilize at10MW.
     Based on the target of reservoir of Quantou formation in the Bongliao basin, theexperiment and the numerical simulation were employed to reveal the change ofminerals in the heat reservoir due to the water-rock-gas interaction, supplementedXRD and SEM observation method. The significance of effect of differenttemperature, pressure and salinity to water-rock-gas interaction was analyzed throughthe experiment and numerical calculation. Results show that abundances of quartz,illite and kaolinite increase to a certain extent. The amounts of feldspar decreases, andcalcite disappears completely in the reaction. The dissolved minerals are mainly feldspar and calcite, the precipitation minerals are mainly quartz, clay minerals. Theexperimental process is more sensitive to temperature change, and less affected bypressure. The numerical simulation of the target reservoir results show that calcite isthe mainly mineral for fixing carbon. Feldspar dissolves, witch is agreement with theexperimental results. Porosity and permeability of the whole region decreasegradually from the injection well to the outside. The total production flow rate ischanged weakly by the influence of change of flow field; the average heat extractionrate will decrease by4.1%in40years.
     Identify the optimization goal, based on3-D “five-spot” coupledreservoir-wellbore model, multiple sets of analysis model are established for eachfactors such as production mass flow, production pressure, injection pressure,injection temperature, parameters of wellbore properties of reservoir and well pattern.We analyzed the influence of each factor on production capability and changes oftemperature and pressure, identified the range of stable operation for each factor, andthen made optimization. It shows that: production mass flow rate, pressure differenceand injection temperature should be within a certain range in order to guarantee thestable and efficient operation. The circulation pressure difference could even benegative at a given mining range; innate buoyancy of CO2also can enable theautomatic closed circle by a thermosiphon. Appropriate diameter of wellbore (0.2m)and relative small roughness is favorable for operation. Relative low-permeability isconductive to be sufficient to heat the transmission fluid and the stable operation forCPGS. High temperature of reservoir is helpful to improve net heat extraction rate.Different wellbore distribution pattern has an effect on distribution of two-phase fluidand CO2breakthrough time. Comparing with the five-spot wellbore pattern, theproduction fluids of two-spot and three-spot contain amount of water during therunning period. This phenomenon could make the heat extraction rate higher, butmake the drying process for later more difficult.
     As a novel heat transmission fluid, the thermophysical property of CO2is quitedifferent from that of water. It has many advantages, such as larger mobility andbuoyancy resulted from the lower density and viscosity. This could reduce theconsumption of driving pressure of the circulation, and save the energy consumption of external equipment. The cycle even could be achieved by thermosiphon under thenegative circulating pressure difference. However, there are still some disadvantagesfor CO2as heat transmission fluid, such as small heat capacity, whitch leads tocarrying less heat at the same mass flow rate. At the same time, if temperature andpressure change, it will cause a more complex thermodynamic processe during heattransmission because of the lager expansion and compression coefficient for CO2.Lager compressibility makes it possible to get high temperature at the bottom of theinjection well, while lager expansion coefficient makes the temperature drops rapidlyduring the extraction process. Here, a classically idealized “five-spot” model coupledwellbore is set up according to the geological and geothermal conditions andparameters of the central depression of Quantou formation of Songliao basin. Ourpurpose is to compare the heat extraction efficiency of CO2with that of water, andevaluate the advantages and disadvantages using CO2. Simulation results show that:the net heat extraction rate of water is higher than that of CO2at the same flow rate;but the pressure drop of underground cycle for water is more than that for CO2and itwill become greater with the increase of flow rate; and CO2can achieve the automaticcircle by a thermosiphon and the negative pressure difference can be greater with thetiny flow rate; CO2is more suitable than water to the geothermal system of a tinycirculation pressure difference and low injection temperature; and CO2is moresuitable than water as the working medium of heat transfer in the low temperatureheat and low permeability reservoir.
引文
[1] Holloway, S.. Storage of fossil fuel-derived carbon dioxide beneath the surface ofthe Earth [J]. Annual Review Energy Environment,2001,26:145-166.
    [2] West, J.M., Pearce, J., Bentham, M., Maul, P.. Issue profile: environmental issuesand the geological storage of CO2[J]. European Environment,2005,15:250-259.
    [3]孙枢. CO2地下封存的地质学问题及其对减缓气候变化的意义[J].中国基础科学,2006,3:17-22.
    [4]张二勇,李旭,何锦,张福存.地下咸水层封存CO2的关键技术研究[J].地下水,2009,31(3):15-19.
    [5] Albritton DL, Meira Filho L G. Climate Change2001: The Scientific Basis,Contribution of Working Group I to the Third Assessment Report of theIntergovernmental Panel on edgeof Earthas a System [M]. New York: CambridgeUniversity Press,2001:291-296.
    [6] IPCC. Third Assessment Report[R]. Cambridge: Cambridge University Press,2001.
    [7] Gentzis, T.. Subsurface sequestration of carbon dioxide-an overview from anAlberta (Canada) perspective [J]. International Journal of Coal Geology,2000,43:287-305, DOI:10.1016/S0166-5162(99)00064-6.
    [8] Gough, C.. State of the art in carbon dioxide capture and storage in the UK: anexperts’ review [J]. International Journal of Greenhouse Gas Control,2008,2:155-168, DOI:10.1016/S1750-5836(07)00073-4.
    [9] Holloway, S.. Underground sequestration of carbon dioxide-a viable greenhousegas mitigation option [J]. Energy,2005,30:2318-2333, DOI:10.1016/j. energy.2003.10.023.
    [10]Goldberg P., Chen Z. Y., and O’Connor W.. CO2mineral sequestration studies inUS [J]. Journal of Energy and Environmental Research,2001,1:117-126.
    [11]Lackner K.S.. A guide to CO2sequestration [J]. Science,2003,300:1677-1678.
    [12]Wang Fudong, Zh Xiaoqing, etal. Preliminary discussion on comprehensiveutilization of tailings [J]. Acta Mineralogica Sinica,2013, S3:97-98.
    [13]Mao Xumei, TIAN Xike, and YU Chengyong. Capturing and storage of CO2bymicron-nano minerals: Evidence from the nature [J]. Chinese Journal ofGeochemistry,2011,4:569-575.
    [14]Bruant R GJr, Guswa A J, Celia M A, et al.. Safe storage of CO2in deep salineaquifers[J]. Environ. Sci. Technol.,2002,36:240-245.
    [15]李琦,魏亚妮,刘桂臻.中国沉积盆地深部CO2地质封存联合咸水开采容量评估[J].南水北调与水利科技,2013,11(4):93-96.
    [16]Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA, editors. Contribution ofworking group III to the fourth assessment report of the intergovernmental panelon climate change[R]. Cambridge: Cambridge University Press,2007.
    [17]石岩,姜云涛.我国深层地热资源利用现况分析[J].吉林建筑工程学院学报,2011,2(28):37-39.
    [18]Randolpha, J., and M. Saar. Coupling carbon dioxide sequestration withgeothermal energy capture in naturally permeable, porous geologic formations:Implications for CO2sequestration [J]. Energy Procedia,2011,4:2206-2213.
    [19]Gunter, W.D., Perkins, E.H., Hutcheon, I.. Aquifer disposal of acid gases:modeling of water-rock reactions for trapping of acid wastes [J]. AppliedGeochemistry,2000,15:1085-1095, DOI:10.1016/S0883-2927(99)00111-0.
    [20]Hitchon, B., Gunter, W.D., Gentzis, T., Bailey, R.T.. Sedimentary basins andgreenhouse gases: a serendipitous association [J]. Energy Conversion andManagement,1999,40:825-843, DOI:10.1016/S0196-8904(98)00146-0.
    [21]Izgec, O., Demiral, B., Bertin, H., Akin, S.. CO2injection into saline carbonatesaquifer formation. I. laboratory investigation [J]. Transport in Porous Media,2008,2:1-24, DOI:10.1007/s11242-007-9132-5.
    [22]王琦.沉积盆地型地热田定量评价体系研究[D].大庆:大庆石油学院,2010,3:5.
    [23]张洪涛,文冬光,李义连等.中国CO2地质埋存条件分析与有关建议[J].地质通报,2005,24(12):1107-1110.
    [24]强薇,李义连,文冬光,吴登定,许天福.温室性气体地质处置研究进展及其问题[J].地质科技情报,2006,25(2):83-88.
    [25]MIT.. The future of geothermal energy impact of enhanced geothermal systems(EGS) on the United States in the21st century [R]. Cambridge: MassachusettsInstitute of Technology,2006.
    [26]Brown, D. The US Hot Dry Rock Program-20Years of Experience in ReservoirTesting[C]. Florence: World Geothermal Congress,1995:2607-2611.
    [27]许天福,张延军,曾昭发,鲍新华.增强型地热系统干热岩开发技术进展[J].科技导报,2012,30(32):42-45.
    [28]麻省理工学院.地热能的未来-21世纪增强型地热系统对美国的影响[R].波士顿:麻省理工学院,2007.
    [29]Kitano K, Hori Y, Kaieda H. Outline of the Ogachi HDR project and character ofthe reservoirs [C]. Japan: Proceedings World Geothermal CongressKyushu-Tohoku,2000:3773-3778.
    [30]Stober I. Depth-and pressure-dependent permeability in the upper continentalcrust: Data from the Urach3geothermal borehole, southwest Germany [J].Hydrogeology Journal, Germany,2011,19(3):685-699.
    [31]Hunt S P, Morelli C. Cooper basin HDR hazard evaluation: predictive modelingof local stress changes due to HFR geothermal energy operations in SouthAustralia[R]. Australia: University of Adelaide,2006. http://www.iea-gia.org/documents/InducedSeismicityReportSHuntDraftOctober.
    [32]Glanz J.. Deep in bedrock, clean energy and quake fears[R]. New York: NewYork Times,2009.
    [33]Evans KF, Moriya H, Niitsuma H, Jones RH, Phillips WS, Genter A, etal.Microseismicity and permeability enhancement of hydrogeologic structuresduring massive fluid injections into granite at3km depth at the Soultz HDR site[J]. Geophys. J. Int.2005,160:388-412.
    [34]Buscheck T.A., Sun Y., Hao Y., Chen M., Court B., Celia M.A., and Wolery T. J.Geothermal energy production from actively-managed CO2storage in salineformations[C]. San Diego: Proceedings for the Geothermal Resources Council35th Annual Meeting,2011.
    [35]T. A. Buscheck, M. Chen, Y. Sun, Y. Hao, T. R. Elliot. Two-stage, integrated,geothermal-CO2storage reservoirs: an approach for sustainable energyproduction, CO2-sequestration security, and reduced environmental risk [R].Berkeley: LLNL-TR-526952,2012.
    [36]Socolow, R.H. and Pacala, S.W.. A plan to keep carbon in check [J]. ScientificAmerican,2006,295(3):50-57.
    [37] Yu Chao Zeng, Zheng Su, NengYou Wu. Numerical simulation of heatproduction potential from hot dry rock by water circulating through twohorizontal wells at Desert Peak geothermal field[J]. Energy,2013,56:92-107.
    [38]Brown D. A hot dry rock geothermal energy concept utilizing supercritical CO2instead of water [C]. Stanford: Proceedings of the Twenty-Fifth Workshop onGeothermal Reservoir Engineering,2000,233-238.
    [39]Vargaftik, N.B. Tables on the Thermo physical Properties of Liquids andGases[M], New York: Hemisphere Publishing Corporation,1975.
    [40]Pruess K. Enhanced geothermal systems (EGS) using CO2as working fluid-anovel approach for generating renewable energy with simultaneous sequestrationof carbon [J]. Geothermics,2006,35:351-367.
    [41]Pruess, K.. On production behavior of enhanced geothermal systems with CO2asworking fluid [J]. Energy Conversion and Management,2008,49(6):1446-1454.
    [42]Wolf, K. H.A.A., Willemsen, A., Bakker, T.W., Wever, A.K.T., Gilding, D.T.. Thedevelopment of a multi-purpose geothermal site in urban area[C]. Rome:Proceedings of the SPE-70th EAGE Conference and Exhibition,2008,2:1018-1102.
    [43]A.-K. Singh, N. Boettcher, W. Wang, C.-H. Park, U.-J. Goerke, O. Kolditz.Non-isothermal effects on two-phase flow in porous medium: CO2disposal into asaline aquifer [J]. Energy Procedia,2011,4:3889–3895.
    [44]Spycher, N., Pruess, K., Ennis-King, J. CO2-H2O mixtures in the geologicalsequestration of CO2. I. assessment and calculation of mutual solubilities from12to100℃and up to600bar [J]. Geochimica Et Cosmo-chimica Acta,2003,67:3015-3031.
    [45]Spycher, N., Pruess, K.. A phase-partitioning model for CO2-brine mixtures atelevated temperatures and pressures: application to CO2-enhanced geothermalsystems[J]. Transport Porous Media,2010,82:173-196.
    [46]Atrens, A.D., Gurgenci, H. and Rudolph, V.. CO2thermosiphon for competitivegeothermal power generation [J]. Energy&Fuels,2009,23:553-557.
    [47]Atrens A D, Gurgenci H, Rudolph V. Electricity generation using acarbon-dioxide thermosiphon[J]. Geothermics,2010,39(2):161-169.
    [48]张炜,许天福,吕鹏,王淑玲.二氧化碳增强型地热系统的研究进展[J].地质科技情报,2013,3:177-182.
    [49]Lehua Pan, Stephen W. Webb Curtis, M. Oldenburg. Analytical solution fortwo-phase flow in a wellbore using the drift-flux model [J]. Advances in WaterResources,2011,34:1656-1665.
    [50]Lehua Pan, Curtis M. Oldenburg, Yu-Shu Wu, and Karsten Pruess. Wellbore flowmodel for carbon dioxide and brine [J]. Energy Procedia,2009,1:71-78.
    [51]Feng Luo, Rui Na Xu, Pei Xue Jiang. Numerical investigation of fluid flow andheat transfer in a doublet enhanced geothermal system with CO2as the workingfluid (CO2-EGS)[J]. Energy Procedia,2014,64:307-302.
    [52]王焰新,沈照理.水-岩相互作用研究的回顾与展望[J].地球科学:中国地质大学学报,2002,27(2):127-133.
    [53]沈照理.应该继续重视与开展水-岩相互作用的研究[J].水文地质工程地质,1997,24(4):16-20.
    [54]Durst A. C. LEE P. A.. Microwave conductivity due to scattering from extendedlinear defects in d-wave superconductors [J]. Physical Review-series B,2002:65.
    [55]Xu, T, Apps, J.A., Pruess, K.. Numerical simulation to study mineral trapping forCO2disposal in deep aquifers [J]. Appl. Geochem.,2004,19:917-936.
    [56]Rabenanna, S. Violette, G. De Marsily, H. Robain, B. Deffontaines, P. Andrieux,M. Bensimon, A. Parriaux. Origin of the high variability of water mineral contentin the bedrock aquifers of Southern Madagascar [J]. A Journal ofHydrology-Amsterdam,2005,310(1):143-156.
    [57]Yanagisawa Norio Matsunaga Isao Sugita Hajime Sato Masatake OkabeKABETAKASHI. Temperature-dependent scale precipitation in the Hijiori Hot DryRock system [J]. Geothermics,2008,37(1):1-18.
    [58]Pruess K. Role of fluid pressure in the production behavior of enhancedgeothermal systems with CO2as working fluid [J/OL]. GRC Transactions,2008-5-27, http://escholarship.org/uc/item/7rr249rc.
    [59]Xu, T, Apps, A.J., and Pruess, K.. Numerical studies of fluid-rock interactions inEnhanced Geothermal Systems (EGS) with CO2as working fluid [C]. California:In proceedings of33th Workshop on Geothermal Reservoir Engineering,2008.
    [60]Ueda, A., Kato, K., Ohsumi, T., Yajima, T., Ito, H., Kaieda, H., Meycalf, R., Takase, H.. Experimental studies of CO2-rock interaction at elevated temperatures under hydrothermal conditions [J]. Geochem. J.,2005,39:417-425.
    [61]上田晃, Y.Kuroda,K.Sugiyama,A.Ozawa,Y.Odashima.等.水热系统中碳酸盐固定CO2的室内及现场试验-地反应器,日本男鹿干热岩区案例研究[C].科北京市:地质出版社,学开发中国地热资源-科学开发中国地热资源高层研讨会论文集,2008.
    [62]Tianfu Xu, Eric Sonnenthal, Nicolas Spycher, Karsten Pruess. TOUGHREACT-Asimulation program for non-isothermal multiphase reactive geochemical transportin variably saturated geologic media: Applications to geothermal injectivity andCO2geological sequestration[J]. Computers&Geosciences,2006,32,145-165.
    [63]Wan YuYu. Impact of Fluid-Rock Interactions on Enhanced Geothermal Systemswith CO2as Heat Transmission Fluid[J]. Thirty-Sixth Workshop on GeothermalReservoir Engineering Stanford University, Stanford, California,2011.
    [64]Tianfu Xu, Guanhong Feng, Yan Shi. On Fluid-Rock Chemical Interaction inCO2-based Geothermal Systems [J]. Journal of Geochemical Exploration,2014,1.
    [65]王钧.黄尚瑶,黄歌山等.中国地温分布的基本特征[M].北京:地质出版社,1990.
    [66]陈墨香.新编中国温泉分布图及其说明[J].地质科学,1992(增刊),322-332.
    [67]中国科学院地质研究所地热组.矿山地热概论[M].煤炭工业出版社,1981.
    [68]廖志杰.中国的火山、温泉和地热能[M].北京:中国国际广播出版社,2012,28-29.
    [69]陈墨香等.冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J].地质科学,1982,3:239-252.
    [70]熊亮萍.漳州热田地下热水的循环深度[J].地质科学,1990,4:377-384.
    [71]郭占谦,王先彬.松辽盆地非生物成因气的探讨[J].中国科学(B辑),1994,24(3):303-309.
    [72]翟志伟,施尚明,朱焕来.油田产出水型地热资源利用探讨-以大庆油田为例[J].自然资源学报.2011,26(3):382-387.
    [73]邢顺洤,姜洪启.松辽盆地砂岩储层的成岩模式与孔隙演化[J].石油与天然气地质,1990,11(4):351-360.
    [74]中国地质调查局.松嫩平原地下水资源及其环境问题调查评价[M].北京:地质出版社,2009.
    [75]杨国强,苏小四,杜尚海,:徐威,孟婧莹,高东燕.松辽盆地CO2地质储存适宜性评价[J].地球学报,2011,32(5):570-580.
    [76]吴河勇,梁晓东,向才富等.松辽盆地向斜油藏特征及成藏机理探讨[J].中国科学(D辑),2007,37(2):185-191.
    [77]侯启军,冯志强,冯子辉.松辽盆地陆相石油地质学[M].北京:石油工业出版社,2009,277-283.
    [78]吉林油田石油地质志编写组.中国石油地质志(卷二)-大庆、吉林油田[M].北京:石油工业出版社,1993,454-600.
    [79]赵国泉.松辽盆地深层储层岩石学特征及次生孔隙形成热力学机制[D].北京:中国地质大学,2005:7-8.
    [80]修洪文.松辽盆地北部泉三四段成岩研究与储层评价[D].大庆:大庆石油学院,2008,3:8-11.
    [81]BodriL. Geothermal model of the Earth5crust in the Pannonian Basin[J].TeetonoPhysies,1981,72(l-2):61-73.
    [82]汪集旸,汪缉安,王永玲等.下辽河盆地大地热流[J].地质科学,1986(l):16-29.
    [83]汪集旸,汪缉安.辽河裂谷盆地地慢热流[J].地球物理学报,1986(5):450-459.
    [84]汪集旸,汪缉安.辽河裂谷盆地地壳上地慢热结构[J].中国科学,1986(8):856-866.
    [85]柳成志,赵荣,赵利华.地球科学概论[M].北京市:石油工业出版社,2006.
    [86]Artemieva I M. The continental lithosphere: reconeiling thermal, seismic, andpetrologic data [J]. Lithos,2009,109(l-2):23-46.
    [87]刘时彬.地热资源及其开发利用和保护[M].北京市:化学工业出版社,2004.
    [88]李思田,解习农,王华,等.沉积盆地分析基础与应用[M].北京市:高等教育出版社,2004,
    [89]Heier KS. Radioaetive Elements in the Continental Crust [J]. Nature,1965,208:479-480.
    [90]RybachL. Amount and significance of radioaetive heat sources in sediments:thermal modeling in sedimentary basins[C]. Careans, France: Editions TeehniP,1986.
    [91]邱楠生.沉积盆地热体制理论与应用[M].北京市:石油工业出版社,2004.
    [92]朱焕来.松辽盆地北部沉积盆地型地热资源研究[D].大庆市:东北石油大学,2011:5-21.
    [93]郭婷婷.云南腾冲热海地热田特征及成因研究[D].昆明:昆明理工大学,2013:8-11.
    [94]侯启军,冯志强,冯子辉.松辽盆地陆相石油地质学[M],北京:石油工业出版社,2009.3:277-283.
    [95]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997(1):246-255.
    [96]楼章华,蔡希源,高瑞祺.松辽盆地流体历史与油气藏分析[M].贵阳:贵州科学技术出版社,1998,69-90.
    [97]迟元林,云金表,蒙启安,殷进垠,门广田等.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002.6:236-23.
    [98]杨继良.大庆油田的油藏特征及松辽盆地气聚集规律[J].石油与天然气地质,1983,4(2).
    [99]张顺,崔坤宁,张晨晨,金明玉.松辽盆地泉头组三、四段河流相储层岩性油藏控制因素及分布规律[J].石油与天然气地质,2011,32(3):411-419.
    [100]张顺,付秀丽.松辽盆地泉头组及青山口组沉积演化与成藏响应[J].石油天然气学报(江汉石油学院学报),2011,33(1):6-10.
    [101]楼章华,谢鸿森.松辽盆地扶杨油层(K1q3+4)沉积环境[J].石油实验地质,1997,19(1):71-75.
    [102]吴乾蕃,谢毅真.松辽盆地大地热流[J].地震地质,1985(2):59-64.
    [103]施龙.松辽盆地构造热演化及地热资源定量评价研究-以杜蒙地区为例[D].广州:中国科学院研究生院(广州地球化学研究所),2003:10-20.
    [104]任战利,萧德铭,迟元林.松辽盆地古地温恢复[J].大庆石油地质与开发,2001(1):13-14.
    [105]谭世燕,石义强,赵育捷.松辽盆地地热资源的形成与远景评价[J].世界地质,2001(2):155-160.
    [106]周庆华,冯子辉,门广田.松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J].中国科学(D辑:地球科学,2007(S2):177-188.
    [107] Zuber, N., and J.A. Findlay. Average volumetric concentration in two-phaseflow systems[J]. J. Heat Transfer ASME,1965,87(4):453-468.
    [108] Wallis. One-Dimension Two Phase Flow [M]. New York [etc]:[s.n.],1969:10-54.
    [109] Ramey Jr, H.J.. Wellbore heat transmission [J]. Journal of PetroleumTechnology,1962,225:427-435.
    [110] Brennen, C. E.. Fundamentals of multiphase flows [M]. Cambridge: CambridgeUniversity Press,2009:34-35.
    [111] Shi, H., J.A. Holmes, L.J. Durlofsky, K. Aziz, L.R. Diaz, B. Alkaya, and G.Oddie, Drift-flux modeling of two-phase flow in wellbores[J]. Soc. Pet. Eng. J.,2005,10(1):24-33.
    [112] G.Oddie, H.Shi, L.J.Durofsky, K.Aziz, B.Pfeffer, J.A.Holmes. Experimentalstudy of two and three phase flows in large diameter inclined pipes [J].International Journal of Multiphase Flow,2003,29(4):527-558.
    [113] Pruess, K., Oldenburg, C., and Moridis, G.. TOUGH2user’s guide, Version2.0[R]. Berkeley, California: Lawrence Berkeley Laboratory Report LBL-43134,1999:144-147.
    [114] Tianfu Xu, Nicolas Spycher, Eric Sonnenthal, Guoxiang Zhang,Liange Zheng, Karsten Pruess Xu T., Spycher N. etal. TOUGHREACT Version2.0: A simulator for subsurface reactive transport under non-isothe rmalmultiphase flow conditions [J], Computers&Geosciences,2011,37:763–774.
    [115] Narasimhan, T.N. and P.A. Witherspoon. An Integrated Finite DifferenceMethod for Analyzing Fluid Flow in Porous Media [J]. Water Resour. Res.,1976,12(1):57-64.
    [116] Moridis, G. and K. Pruess. T2SOLV: An Enhanced Package of Solvers for theTOUGH2Family of Reservoir Simulation Codes [J]. Geothermics,1998,27(4):415-444.
    [117] Yeh, G. T., and Tripathi, V. S.. A model for simulating transport of reactivemultispecies components: model development and demonstration [J]. WaterResour. Res.,1991,27:3075-3094.
    [118] Engesgaard, P., and Kipp, K. L.. A geochemical transport model forredox-controlled movement of mineral fronts in groundwater flow systems, Acase of nitrate removal by oxidation of pyrite [J]. Water Resour. Res.,1992,28:2829-2843.
    [119] Simunek, J., and Suares, D. L.. Two-dimensional transport model for variablysaturated porous media with major ion chemistry [J]. Water Resour. Res.,1994,30:1115-1133.
    [120] Walter A. L., Frind E. O., Blowes D. W., Ptacek C. J., and Molson J. W..Modeling of multicomponent reactive transport in groundwater:1Modeldevelopment and evaluation [J]. Water Resour. Res.,1994,30:3137-3148.
    [121] Lichtner, P. C., The quasi-stationary state approximation to coupled masstransport and fluid-rock interaction in a porous medium [J]. Geochim.Cosmochim. Acta,1988,52:143-165.
    [122] Steefel, C. I., and Lasaga, A. C.. A coupled model for transport of multiplechemical species and kinetic precipitation/dissolution reactions with applicationsto reactive flow in single phase hydrothermal system [J]. Am. J. Sci.,1994,294:529-592.
    [123] Xu, T., Samper, J., Ayora, C., Manzano, M., and Custodio, E.. Modeling ofnon-isothermal multi-component reactive transport in field-scale porous mediaflow system [J]. Hydrol,1999,214:144-164.
    [124] L.A.Richards. Capillary Conduction of Liquids through Porous Mediums [J].Physics,1931,4, DOI:10.1063/1.1745010.
    [125] Xu T., White S. P., Pruess K., Brimhall G. H., and Apps, J.. Modeling of pyriteoxidation in saturated and unsaturated subsurface flow systems [J]. Transport inPorous Media,2000,39:25-56.
    [126] White S. P.. Multiphase non-isothermal transport of systems of reactingchemicals [J]. Water Resour. Res.,1995,31:1761-1772.
    [127] Sanyal S. K. and S. J. Butler. An analysis of power generation prospects fromenhanced geothermal systems [C]. Antalya, Turkey: World Geothermal Congress,2005:24-29.
    [128] Vinsome K W, Westerveld J. A simple method for predicting cap and base rockheat losses in thermal reservoir simulators [J]. Journal of Canadian PetroleumTechnology,1980,19(3):87-90.
    [129] Van Genuchten, M.Th. A closed-form equation for predicting the hydraulicconductivity of unsaturated soils [J]. Soil Sci. Soc.,1980,44:892-898.
    [130] Aleks D. Atrens, Hal Gurgenci, and Victor Rudolph. Economic optimization ofa CO2-based EGS power plant [J]. Energy Fuels,2011,25:3765–3775.
    [131]曲希玉,刘立,胡大千,马瑞,尤丽. CO2流体对含片钠铝石砂岩改造作用的实验研究[J].吉林大学学报(地球科学版),2007,37(4):690-697.
    [132] Lihui Liu, Yuko Suto, Greg Bignall et al.. CO2injection to granite and sandstonein experimental rock/hot water systems [J]. Energy Conversion and Management,2003,44:1399-1410.
    [133] Gunter, W.D., Perkins, E.H., Hutcheon, I.. Aquifer disposal of acid gases:modelling of water-rock reactions for trapping of acid wastes [J]. Appl.Geochem.,2000,15:1085-1095.
    [134] SuzanneJ.T. Hangx, Christopher J. Spiers, Reaction of plagioclase feldsparswith CO2under hydrothermal conditions [J]. Chemical Geology,2009,265:88-98.
    [135] SuzanneJ.T. Hangx, Christopher J. Spiers, Coastal spreading of olivine tocontrol atmospheric CO2concentrations: a critical analysis of viability [J].International Journal of Greenhouse GasControl,2009,3:757-767.
    [136]王喜安,刘雯等.国内外天然气管道绝对当量粗糙度的设计取值[J].油气储运,2000,19(10):8-10.
    [137]安家荣等.热油管道停输与再启动过程模拟计算软件[J].油气储运,1998,17(3):12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700