用户名: 密码: 验证码:
黑河干流中游盆地地下水循环及更新性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水循环是陆地水循环的重要水文过程,决定着地下水系统的状态和径流特征;地下水更新速率是衡量地下水系统更新能力的重要指标,也是地下水资源评价的重要依据。因此,研究地下水循环及其更新性具有重要意义。
     地下水系统是一个复杂的、动态的、开放的系统,地下水系统与外界环境之间以及系统内部各级子系统之间不断进行物质和能量的交换,构成一个具有层次性的完整循环系统。气象、水文、地质、构造、水文地质条件和地表植被以及人类活动等诸多因素影响着地下水循环过程,而地下水水化学和同位素组分的变化蕴涵着丰富的水循环信息,为研究地下水循环和更新性提供了有效手段。
     本文研究目标是揭示西北内陆盆地地下水循环规律及其更新性,为实现地下水资源可持续利用和科学管理提供依据。为此,以黑河干流中游盆地为重点研究区,主要围绕三个方面的内容开展研究工作:(1)不同水体水化学和同位素特征;(2)地下水循环规律,包括地下水补给、径流和排泄机制;(3)地下水系统更新速率估算。
     本文以系统理论为指导,以同位素和水化学信息为线索,综合运用水文地质学、水文地球化学、同位素水文学以及相关的数学理论,采用定性判断和定量分析相结合的方法开展研究工作。首先,在总结前人成果的基础上,全面了解了研究区的区域背景,详细分析了盆地地下水系统的空间物理结构和水流特征;然后,详细分析地下水系统与相邻系统之间的输入输出关系,从而阐明地下水循环系统的补给和排泄机制;同时,利用同位素和水化学信息的示踪功能和放射性测年技术,识别出盆地地下水循环系统的径流特征;应用同位素模型,估算了盆地地下水的更新速率;最后根据盆地地下水循环规律及其更新性,提出了地下水合理利用建议。
     通过上述研究,得到以下成果:
     1.详细分析了源区水循环特征
     在中高山带冰雪融水和降水一部分形成地表径流,一部分沿裂隙渗入地下形成地下径流;在向下游径流的过程中,形成两种地下径流子系统:浅部的局部径流子系统和深部的区域径流子系统。局部径流子系统在局部补给区接受冰雪融水和降水补给,地下水中冰雪融水约占24%,降水占约76%,经过短暂的地下径流,就近向河流排泄:区域径流子系统在高山区接受冰雪融水和降水补给,在山前断裂带受阻上升至地表成泉;地表水形成于中高山带的冰雪融水和降水,在向下游径流途中不断接受不同地带的降水和地下水补给,根据同位素模型估算,出山地表水中深层地下水占5~7%,降水、冰雪融水和浅部地下水占93~95%。
     2.讨论了黑河干流中游盆地的边界特征
     中游盆地地下水系统在南部与祁连山区水系统主要通过出山河流发生水量交换;高台附近的隐伏基岩隆起构成张掖盆地与酒泉东盆地的天然分界,两地下水系统之间没有大规模的水量交换,高台隐伏隆起是张掖盆地地下水系统的集中排泄区。
     3.阐明了黑河干流中游盆地地下水补给、径流、排泄特征
     根据地下水化学和同位素信息以及地下水年龄特征,将盆地地下水径流系统划分为局部径流和区域径流两大子系统,根据区位特征又将局部径流子系统细分为两个次级子系统:山前戈壁带局部径流子系统和细土带局部径流子系统。区域径流子系统地下水以水平运动为主,局部径流子系统地下水以垂向交替为主。
     盆地地下水系统具有三种主要的补给机制:山前垂直入渗补给、细土带河流侧渗补给和灌溉入渗补给。山前垂直入渗补给主要发生在山前冲洪积扇,出山河水渗漏量占地下水补给的75~90%,当地降水入渗占10~25%,山前垂直入渗是山前戈壁带局部径流子系统和盆地区域地下水流系统的主要补给方式;河流侧渗和灌溉入渗补给主要发生在细土平原带和人工绿洲带,是细土带局部径流子系统的主要补给方式。
     盆地地下水排泄方式主要有:泉排泄、河床溢流排泄、蒸发蒸腾排泄和人工开采。泉排泄主要发生在溢出带附近,泉排量占地表径流量的20~40%;河床溢流排泄主要出现在盆地北部边缘的黑河河床附近,浅层地下水和深层地下水都有排泄,其中浅层地下水排泄量占地表径流的59%左右,深层地下水占19%左右;蒸发蒸腾和人工开采主要出现在细土平原绿洲带。
     4.揭示了黑河干流中游盆地地下水循环模式
     地下水系统在山前戈壁带接受降水和出山河水入渗补给;在向下游径流过程中逐渐分化为浅层局部地下水流和深层区域地下水流;区域地下水流继续向下游水平流动,在细土平原带通过越流、人工开采的形式排泄;由于受地形、岩性和构造控制,由山前到细土带,形成多个局部地下水径流子系统;山前局部地下水径流子系统在向下游径流的过程中不断接受河流的渗漏补给,在溢出带以泉的形式排泄;细土平原局部地下水流子系统,接受河流侧渗和农田灌溉入渗补给,地下水以垂向运动为主,通过河床溢流、开采、蒸发蒸腾等形式排泄。
     5.估算了黑河干流中游盆地地下水的更新速率
     张掖盆地浅层地下水的年更新速率在0.01~2.5%之间,由于不同地带地下水的循环条件不同,其更新速率差异较大。总体上山前戈壁带地下水更新能力好于细土带地下水;常年性河流补给的地下水更新能力好于季节性河流补给的地下水;沿河流两侧的地下水更新能力好于远离河流的地下水。
     在垂向上,随深度的增大,地下水的更新速率减小,40m以上的潜水,地下水更新能力最强,年均更新率大于2%;100m以下的深层承压水,更新能力最差,年均更新速率小于0.8%;40~100m之间的中层地下水,更新能力中等,且变化范围较大,年均更新速率在0.5~2.5%之间。
     6.提出了地下水合理利用分区建议
     本文从地下水系统自然规律出发,根据地下水的循环及其更新性能力的区位变化规律,将黑河干流中游盆地划分为4个地下水资源利用分区:民乐地下水资源利用区、张掖.临泽地下水资源利用区、高台地下水资源利用区和高台.正义峡地下水资源利用区。并根据不同地带地下水循环更能力,将民乐地下水资源利用区和张掖-临泽地下水资源利用区进一步划分为6个亚区:民乐山前地下水资源涵养亚区、下游地下水控制利用亚区、张掖-临泽洪积扇中上部地下水资源涵养亚区、洪积扇中下部地下水资源开发利用亚区、细土带地下水资源开发利用亚区和细土带地下水资源控制利用亚区。针对不同分区的地下水循环更新能力,提出了相应的地下水合理利用建议。
Groundwater circulation is not only an important part of continental hydrologic cycle, but also the main force to drive the groundwater system to carry out its functions. And groundwater circulation and renewability is essential for improving water resource management. So it is necessary to understand groundwater circulation and renewability.
     As an opening system, groundwater system is characterized by its complicacy and variability. Groundwater system contacts with its neighbor water systems by mass and energy transfer, which is influenced by many factors, such as the condition of weather, hydrology, geology, tectonics, hydrogeology and vegetation. So it is difficult to study groundwater circulation by using traditional hydrogeological methods, while the chemical and isotopic components in groundwater contain much information of hydrologic cycle, which provides an effective method to trace the process of groundwater circulation.
     The purpose of present work is to reveal groundwater circulation and renewability in the inland basins of Northwest China, Which is vital to groundwater sustainable development. Taken the basin of the middle reaches of Heihe River as the main study area, the present work focus on three problems: (1) the chemical and isotopic characters of different water bodies; (2) the process of groundwater circulation, which includes the patterns of groundwater recharge, groundwater flow and groundwater discharge; (3) estimation of groundwater renewal rate.
     Taken the system theory as guide and the chemical and isotopic component as information of hydrologic cycle, the present work carries out the research by using hydrogeology, geohydrochemistry, isotope hydrology and relevant mathematics methods. Firstly, based on understanding of the research background in study area, the present work analyzed the physical frame of groundwater system and the groundwater flow character。Secondly, the groundwater recharge, flow and discharge patterns are identified by analysis of the interaction of groundwater system and its neighbor environment. Thirdly, the groundwater renewal rate is estimated by using two isotopic models. At last, based on the understanding of groundwater circulation and renewability in study area, this paper gives a few advices on groundwater sustainable development.
     The following results are obtained from present study.
     1. Illustrated the characters of hydrologic cycle in mountain area of Heihe River.
     In the alpine zone, some precipitation and meltwater infiltrate in subsurface through fissures, and the remainder water forms the surface water flow. There are two kinds of groundwater flow patterns in mountain area: local groundwater flow and regional groundwater flow. The local groundwater flow system gets recharge from meltwater and precipitation at local spot with the proportion of 24% and 76% respectively. The local groundwater discharges to the near stream, with a short flow path. While the regional groundwater system gets recharge from meltwater and precipitation at the high elevation (>3600m) area and discharges to surface as springs at the interface of mountain area and basins, where the fracture belt exists. The surface water is composed of precipitation, meltwater and groundwater. The fractions of various waters in surface water are calculated by using three-component approach. The results show that the proportion of regional groundwater in the surface water is about 5~7%, and the proportion of precipitation, meltwater and local groundwater is about 93~95%.
     2. Validated the boundary condition of groundwater system in the basin of the Heihe River middle reaches.
     The water transfer presents between the groundwater system in basin and the water system in mountain area mainly by the river flow systems. The bedrock blowups at Gaotai is the natural boundary of the Zhangye basin and the Jiuquan basin and there is no water exchange between these two basins.
     3. Revealed the characters of groundwater recharge, flow and discharge in the basin of the Heihe River middle reaches.
     Based on the groundwater chemical and isotopic characters and groundwater age in basins, the subsurface flow system is classified into local groundwater subsystem and regional groundwater subsystem. And the local groundwater flow subsystem includes the piedmont local groundwater subsystem and the alluvial plain local groundwater subsystem. The local groundwater moves mainly in the vertical direction, while the regional groundwater moves in the horizontal direction.
     There are tree recharge mechanisms of groundwater system in the basin of the Heihe River middle reaches, namely, piedmont vertical infiltration, riverbed leakage and irrigative water infiltration. The vertical infiltration presents at the piedmont pluvial fan, where about 75~90% of groundwater recharged from river water infiltration and 10~25% of groundwater from precipitation infiltration. The vertical infiltration is the main recharge type of the piedmont groundwater subsystem and the regional groundwater subsystem in basin. The riverbed leakage and irrigative water infiltration exist mainly in the alluvial plan.
     The main discharge modes of groundwater in basin include springs, riparian seepage, evapotranspiration and groundwater pumping. The springs present at the edge of the piedmont pluvial fan, where about 20~40% of surface water from springs. The riparian seepage mainly takes place at the edge of basin, where about 19% of surface water from deep groundwater discharger and 59% from the shallow groundwater discharge. The evapotranspiration and groundwater pumping exist in the alluvial plan.
     4. Illuminated the groundwater circulation patterns of basin groundwater system in the middle reaches of Heihe River.
     At the piedmont pluvial fan, the basin groundwater gets recharge from precipitation and river. Along the path of groundwater flow, it forms two types of groundwater flow subsystem: local flow subsystem and regional flow subsystem. The regional groundwater moves toward the alluvial plan and discharges though upward leakage or pumping wells. Controlled by topography, lithology, and tectonics, the local groundwater subsystem in the piedmont pluvial fan discharges as springs at the edge of pluvial fan, and the local groundwater flow subsystem in the alluvial plan gets recharge from river and irrigative water infiltration and discharges by riverbed seepage, pumping wells and evapotranspiration.
     5. Estimated the mean annual rates of groundwater renewal in the basin at the middle reaches of Heihe River.
     The shallow groundwater renewal rates range from 0.01% to 2.5% of the aquifer volume. In different zones of the basin, the groundwater renewal rates are variable due to the different groundwater circulation condition. The groundwater renewal rates decrease from the piedmont to the north edge. And the groundwater renewability is better in the riparian zone than that in the zone far from river.
     In the vertical dimension, the groundwater renewal rates decrease with depth. In the unconfined aquifer with the buried depth not more than 40 meters, the mean annual rates of groundwater renewal is more than 2% of the aquifer volume, while in the deep confined aquifer buried more than 100 meters, the mean annual rates of groundwater is less than 0.8% of the aquifer volume. In the semi-confined aquifer that lies between the unconfined aquifer and the deep confined aquifer, the groundwater renewability is variable in a wide range with the mean annual renewal rates being of 0.5~2.5%.
     6. Discussed the groundwater sustainable development modes.
     Based on the understanding of groundwater circulation and the estimation of groundwater renewal rates, the groundwater system is divided into four subareas for groundwater development: the Minle subarea, the Zhangye-Linze subarea, the Gaotai subarea and the Gaotai-Zhengyixia subarea. Further more, the Minle subarea and Zhangye-Linze subarea are divided into six zones, namely, the groundwater conservational zone at the piedmont of Minle, the restricting development zone at the downstream of Minle, the groundwater conservational zone at the piedmont of Zhangye-Linze, the groundwater development zone at the piedmont of Zhangye-Linze, the groundwater development zone in the alluvial plan of Zhangye-Linze, and the restricting development zone in the alluvial plan of Zhangye-Linze. The present work gives the advices on groundwater development according to the groundwater renewability in different subareas and zones.
引文
1.陈梦熊.中国水文地质环境地质问题研究.北京:地震出版社,1998.
    2.陈梦熊,马凤山.中国地下水资源与环境,北京:地震出版社,2002.
    3.高前兆,李福兴.甘肃省黑河流域水资源合理开发利用.兰州:甘肃科学技术出版社,1991.
    4.籍传茂,王兆馨.地下水资源的可持续利用.北京:地质出版社,1999.
    5.李文鹏,周宏春,周仰效等.中国西北典型干旱区地下水流系统.北京:地震出版社,1995.
    6.沈照理主编.文地球化学基础.北京:地质出版社,1993.
    7.王恒纯.同位素水文地质概论.北京:地质出版社,1991.
    8.文冬光,沈照理,钟左燊等.水-岩相互作用的地球化学模拟理论及应用.武汉:中国地质大学出版社,1998.
    9.张人权等编译.同位素方法在水文地质学中的应用.北京:地质出版社,1983.
    10.张宗祜,沈照理,薛雨群等.华北平原地下水环境演化.北京:地质出版社,2000.
    11.赵运昌,中国西北地区地下水资源,北京:地震出版社,2002.
    12.Adar,E.M.,Rosenthal,E.,Issar,A.S.用环境同位素和混合单元模型定量评价阿拉伯干河谷南部的水流模式.国外干旱区地下水资源勘查评价方法现状与进展,地质矿产部地质环境管理司,1997,118-131.
    13.常炳炎.黑河水量调度的技术实践与效果.水利水电技术,2003,34(1):41-43.
    14.曹文炳,万力,周训等.黑河下游水环境变化对生态环境的影响.水文地质工程地质,2004,31(5):21-25.
    15.陈东景,徐中民.西北内陆河流域生态安全评价研究-以黑河流域中游张掖地区为例.干旱区地理,2002,25(3):219-224.
    16.陈仁升,康尔泗.河西地区近50 a来径流、降水和气温变化趋势分析.干旱区资源与环境,2001,15(3):51-56.
    17.陈仁升,康尔泗,杨建平等.黑河流域山前绿洲水量转化模拟研究.冰川冻土,2003,25(5):566-573.
    18.陈文雄.黑河流域水文特性.水文,2002,22(6):57-60.
    19.陈宗宇,张光辉,徐家明.华北地下水古环境意义及古气候变化对地下水形成的影响.地球学报,1998,19(4):338-345.
    20.陈宗宇,张光辉,聂振龙等.中国北方第四系地下水同位素分层及其指示意义.地球科学,2002,27(1):97-103.
    21.程汝楠.应用天然水氢氧同位素示踪水量转换.水量转换,北京:科学出版社,1998,33-50.
    22.程国栋等.河西走廊黑河流域山区水资源变化和山前水资源转化监测研究.中国科学院寒区旱区环境与工程研究所,2000.
    23.丁宏伟,高玉卓,何江海等.黑河过正义峡河川径流量减少的原因及对策分析.中国沙漠,2001,21(1):62-66.
    24.丁永建,叶佰生,周文娟.黑河流域过去40a来降水时空分布特征.冰川冻土,1999,21(1):42-48.
    25.范锡朋.河西走廊地下水与地表水的相互转化及水资源合理利用问题.水文地质工程地质.1981.(4):1-6.
    26.范锡朋.西北内陆平原水资源开发引起的区域水文效应及其对环境的影响.地理学报,1991,46(4):415-426.
    27.范锡朋等.甘肃省河西走廊地下水分布规律与合理开发利用研究.甘肃省地质矿产局地质科学研究所,1998.
    28.Geyh,M.A.,顾慰祖,刘涌等.阿拉善高原地下水的稳定同位素异常.水科学进展,1998,9(4):333-337.
    29.龚家栋,董光荣,李森等.黑河下游额济纳绿洲环境及综合治理.中国沙漠,1998,18(1):44-50.
    30.关秉钧等.用环境同位素氚、碳-14、碳-13探讨北京地区地下水运动规律.水文地质技术方法,第12辑.1985,1-6.
    31.关秉钧.我国大气降水中氚的数值推算.水文地质工程地质,1986,(4):1-6.
    32.胡春元,李玉保等.黑河下游生态环境变化及其与人类活动的关系.干旱区资源与环境,2000,14(增刊):10-14.
    33.蓝永超,康尔泗,张济世等.黑河流域水资源合理开发利用研究.兰州大学学报(自然科学版),2002,38(5):108-114.
    34.李吉鸿.张掖市水资源短缺原因分析及对策.甘肃农业,2004,(6):42-43.
    35.李万寿.黑河流域水资源可持续利用研究.西北水电,2002,(4):14-18.
    36.李文鹏,郝爱兵.中国西北内陆干旱盆地地下水形成演化模式及其意义.水文地质工程地质,1999,(4):28-32.8.
    37.刘存富.地下水14C年龄校正方法—以河北平原为例.水文地质工程地质,1990,(3):4-8.
    38.刘存富,王佩仪,周炼.河北平原第四系地下水36C1年龄初探.中国同位素水文地质学之进展(1988-1993),天津大学出版社,1993,114-118。
    39.刘存富,王佩仪,周炼,河北地下水氢、氧、碳、氯同位素组成的环境意义.地学前缘,1997,4(1-2):267-274.
    40.Lloyd,J.W.干旱与地下水问题研究.国外干旱区地下水资源勘查开发利用现状于趋势,地质矿产部地质环境管理司,1995,17-32.
    41.刘敏,甘枝茂.黑河流域水资源开发对额济纳绿洲的影响及对策.中国沙漠,2004,24(2):162-166.
    42.刘少玉,卢耀如.黑河中、下游盆地地下水系统与水资源开发的资源环境效应.地理学与国土研究,2002,18(4):90-96.
    43.刘少玉.西北内陆盆地水资源转化与开发模式及生态环境效应—以黑河为例.中国地质科学院,2003.
    44.刘兴春.民乐山前平原新构造运动及其对地下水埋藏的影响.甘肃地质学报,2000,9(1):74-79.
    45.潘世兵、王忠静,曹丽萍.西北内陆盆地地下水循环模式及其可持续利用,地理与地理信息科学,2003,19(1):51-54.
    46.齐善忠、王涛.黑河流域中下游地区土地沙漠化现状及其原因分析.水土保持学报,2003,17(4):98-101,109.
    47.沈永平,刘时银,甄丽丽等.祁连山北坡流域冰川物质平衡波动及其对河西水资源的影响.冰川冻土,2001,23(3):244-250.
    48.孙雪涛.黑河流中持续发展水资源若干问题的思考.科技导报,2002,(6):61-64.
    49.孙文新,曾群柱.黑河下游干旱地区环境变化研究.中国沙漠,1997,17(2):149-153.
    50.田存梅,周克仪.黑河下游断流现状及成因初步分析.甘肃水利水电技术,2002,38(3):197-198,200.
    51.王浩,常炳炎,秦大庸.黑河流域水资源调配研究.中国水利,2004,(9):18-21.
    52.汪集旸,同位素水文学与水资源、水环境.地球科学,2002,27(5)532-533.
    53.王可丽,程国栋,江灏等,祁连山.黑河流域水循环中的大气过程.水科学进展,2003,14(1):91-97.
    54.王文科。孔金玲,段磊等.黄河流域河水与地下水转化关系研究.中国科学E辑,2004,34(z1):23-33.
    55.文冬光,用环境同位素论区域地下水资源属性.地球科学,2002,27(2):141-147.
    56.温小虎,仵彦卿,常娟等.黑河流域水化学空间分异特征分析.干旱区研究,2004,21(1):1-6.
    57.武选民,史生胜,黎志恒等.西北黑河下游额济纳旗盆地地下水系统研究(上).水文地质工程地质,2002,29(1):16-20.
    58.武选民,史生胜,黎志恒等.西北黑河下游额济纳旗盆地地下水系统研究(下).水文地质工程地质,2002,29(2):30-33.
    59.仵颜卿,慕富强,贺益贤等.河西走廊黑河鼎新至哨马营段河水与地下水转化途径分析.冰川冻土, 2000,22(1):73-77.
    60.肖生春,肖洪浪.近百年来人类活动对黑河流域水环境的影响.干旱区资源与环境,2004,18(3):57-62.
    61.徐中民,程国栋.黑河流域中游水资源需求预测.冰川冻土,2000a,22(2):139-146.
    62.徐中民,程国栋.运用多目标决策分析技术研究黑河流域中游水资源承载力.兰州大学学报(自然科学版),2000b,36(2)122—132.
    63.叶爱中,夏军,王纲胜等.水文水资源模拟系统集成研究-黑河流域系统应用.中国农村水利水电,2004,(8):76-79.
    64.张光辉,费宇红,聂振龙等.全新世以来太行山前倾斜平原地下水演化规律.地球学报,2000,21(2):121-127。
    65.张光辉,聂振龙,陈宗宇等.全新世以来华北平原层圈间水循环过程与区域地下水演变周期性.地球学报,2001,22(4):293-297.
    66.张光辉,石迎新,聂振龙等.黑河流域生态环境的脆弱性及其对地下水的依赖性.安全与环境学报,2002,2(3):31~33.
    67.张光辉,刘少玉,张翠云等.黑河流域地下水循环演化规律研究.中国地质,2004,31(3):289-293.
    68.张光辉,刘少玉,张翠云等.黑河流域水循环演化与可持续利用对策.地理与地理信息科学,2004,20(1):63-66.
    69.张国盛等.甘蒙西部黑河中下游两水转化及水资源综合开发利用.甘肃地质矿产局第二水文地质工程地质队,1990.
    70.张红举,曹建廷,崔广柏.黑河流域地下水利用现状及对策.地下水,2002,24(2):80-81.
    71.张济世,康尔泗,蓝永超等.河西内陆和河地表水与地下水转化及水资源利用率研究.冰川冻土,2001,23(4):3756-382.
    72.张济世,康尔泗,蓝永超,黑河流域气候变化对水资源的影响.地理学报(英文版),2003,13(3):286-292.
    73.张济世,康尔泗,姚进忠等.黑河流域水资源生态环境安全问题研究.中国沙漠,2004,24(4):425-430.
    74.张杰,李栋梁.祁连山及黑河流域降雨量的分布特征分析.高原气象,2004,23(1):81-88.
    75.张军涛.黑河流域水土资源可持续利用研究.资源与产业,2004,6(2):28-31.
    76.张之淦等.河北平原第四系地下水年龄、水流系统及咸水成因初探—石家庄至渤海湾同位素水文地质剖面研究.水文地质工程地质,1987,(4):1-6.
    77.张志忠 武强.河水与地下水耦合模型的建立与应用.辽宁工程技术大学学报(自然科学版),2004,23(4):449-452.
    78.周长进,董锁成.黑河水资源特征及水环境保护.自然资源学报,2002,17(6):721-728.
    79.周炼,刘存富,王佩仪.河北平原第四系咸水同位素组成.水文地质工程地质,1998,(3)4-8.
    80 中华人民共和国地质矿产部,DZ/T 0064.1~0064.80-93,地下水质检验方法.北京:中国标准出版社,1994.
    81 国家技术监督局,GB/T 8538-1995,饮用天然矿泉水检验方法.北京:中国标准出版社,1996.
    82. Abbott M.D., Lini A., Bierman P.R., δ180, D and 3H measurements constrain groundwater recharge patterns in an upland fractured bedrock aquifer, Vermont, USA, Journal of Hydrology, 2000, 228: 101-112.
    83. Aravena, R., Schiff, S.L., Trumbore, S.E., et al. Evaluating dissolved inorganic carbon cycling in a forested lake watershed using carbon isotopes. Radiocarbon, 1992, 34:1-10.
    84. Arnold, J.G, P.M. Allen, and GT. Bernhardt, A ComprehensiveSurface-Groundwater Flow Model. Journal of Hydrology, 1993, 142:47-69.
    85. Boussinesq, J., Essa sur latheories des eaux courantes, Mem. presentes par divers savants a l'Academic des Sciences de l'Institut National de France, 23(1), 1877.
    86. Brown, R. M. Hydrology of tritium in the Ottawa Valley. Geochimica et Cosmochimica Acta, 1961, 21: 199- 216.
    
    87. Buttle, J.M. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Progress in Physical Geography, 1994, 18:16-41.
    
    88. Cerling, T.E., Solomon, D.K., Quade, J., et al. On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta, 1991, 55:3403-3405.
    
    89. Chen Zongyu, Zhang Guanghui, Nie Zhenlong et. al. Isotopic stratification and its implication in groundwater of Northern China, Journal of China University of Geosciences, 2001, 12(3): 249-257.
    
    90. Clark, I.D., Fritz, P., Environmental Isotopes in Hydrogeology, CRC Press LLC, 1997.
    
    91. Craig, H. Isotopic variations in meteoric water. Science, 1961,133: 1702-1702.
    
    92. Crandall, C.A., Katz B.G., Hirten, J.J. Hydrochemical evidence for mixing of river water and ground water during high-flow conditions, lower Suwannee River basin, Florida, USA, Hydrogeology Journal, 1999, 7:454-467.
    
    93. Dansgaard, W. Stable isotopes in precipitation. Tellus, 1964, 16:436-468.
    
    94. Dincer T., Al-Mugrin A. and Zimmermann U., Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermonuclear tritium. Journal of Hydrology, 1974, 23:259-274.
    
    95. Ehhalt, D.H. Vertical profile and transport of HTO in the troposphere. J. Geophys. Res., 1971, 76:75-84.
    
    96. Eriksson, E. Major pulses of tritium in the atmosphere. Tellus, 1966, 17:118-130.
    
    97. Ferronsky, V.I. and Polyakoc. Environmental isotopes in the hydrosphere. Ney York: Wiley and stone, 1982.
    
    98. Fontes, J.-Ch., Garnier, J.M. Determination of intial 14C activity of total dissolved C: a review of the existing models and a new approach. Water Resources Research, 1979,12:399-413.
    
    99. Fontes, J.-Ch. Dating of groundwater. In: Guidebook on Nuclear Techniques in Hydrology, Technical Reports Series No.91, IAEA, Vienna, 1983,285-317.
    
    100. Fritz, P., Cherry, J., Weyer, K.U. and Sklash, M. Storm runoff analyses using environmental isotopes and major ions. In: Interpretation of environmental Isotope and Hydrochemical Data in Groundwater Hydrology 1975, Workshop Proceedings, IAEA, Vienna, 1976,111-130.
    
    101. Geyh. Groundwater saturated and unsaturated zone. In: UNESCO/IAEA Series on Environmental Isotopes in the Hydrological Cycle, Principles and Applications, Edited by W.G. Mook,. Volume IV. 2000,49-118.
    
    102. Gonfiantini, R. Carbon isotope exchange in Katst groundwater. In: Karst hydrogeology and karst environment protection., proceedings. IAHS-AISH Publication. 1988, 176:832-837.
    
    103. Harvey, J.W., Krupa, S.L., Gefvert, C.J., et al. Interaction between ground water and surface water in the Northern Everglades and relation to water budgets and mercury cycling: study methods and appendixes. USGS Open-File Report 00-168, Reston, Virginia, 2000a.
    
    104. Harvey, J.W., Jackson, J.M., Mooney, R.H., et al. Interaction between ground water and surface water in Taylor Slough and Vicinity, Everglades National Park, South Florida: study methods and appendixes. USGS Open-File Report 00-483, Reston, Virginia, 2000b.
    
    105. Hoehn E. and Santschi P.H.,Interpretation of tracer displacement during infiltration of river water to groundwater. Water Resources Research, 1987, 23:633-640.
    
    106. Hoehn E. and Gunten H.R., Radon in groundwater: a tool to assess infiltration from surface waters to aquifers. Water Resources Research, 1989, 28:1795-1803.
    
    107. IAEA, Manual on mathematical models in isotope hydrogeology, IAEA-TECDOC-910, 1996, Austria.
    
    108. IAEA, Isotope Techniques in Water Resources Development and Management. IAEA-CSP2/C, Vienna, 1999.
    
    109. IAEA, Isotope techniques in water resource investigations in arid and semi-arid regions, IAEA-TECDOC- 1207, 2001a, Austria.
    110. IAEA, Isotope based assessment of groundwater renewal in water scarce regions, IAEA-TECDOC-1246, 2001b, Austria.
    111. IAEA, Use of isotopes for analyses of flow and transport dynamics in groundwater systems, IAEA, 2002a, Ausria.
    112. IAEA, The application of isotope techniques to the assessment of aquifer systems in major urban areas, IAEA- TECDOC-1298, 2002b, Austria.
    113. James E.R., Manga M., Rose T.P., Hudson G.B.,The use of temperature and the isotopes of I, H,C, and noble gases to determine the pattern and spatial extent of groundwater flow, Journal of Hydrology, 2000, 237:100-112.
    114. Katz, B.G, Lee, T.M., Plummer, L.N., and Busenberg, E., Chemical evolution of Groundwater near a sinkhole lake, northern Horida: 1. Flow patterns, age of groundwater, and influence of lake water leakage. Water Resource Research, 1995, 31(6): 1549-1564.
    115. Katz, B.G., Coplen, T.B., Bullen, T.D. and Dawis, T.H., Use of chemical and isotopic tracers and geochemical modeling to characterize the interactiongs between ground water and surface water in mantled karst. Ground Water, 1997, 35(6): 1014-1028.
    116. Katz, B.G., Catches, J.S. Bullen, T.D. and Michel, R.C., Changes in the isotopic and chemical composition of ground water reshlting from a recharge pulse from a singking stream. Journal of Hydrology, 1998, 211:178-207.
    117. Kaufman, S. and Libby, W.F. The natural distribution of tritium. Physical Review, 1954, 93:1337-1344.
    118. Kendall C, McDonnell J.J. Isotope tracer in catchment hydrology, Amsterdam: Elsevier Science BV, 1998, 839.
    119. Leduc, C., Favreau, G., Marlin, C., Drag, M. Comparison of recharge estimates for the two largest aquifers in Niger, based on hydrodynamic and isotopic data, IAHS Publ. 2000,262:391-399.
    120. Leduc, C. Taupin, J.-D., Le Gal La Sall, C., Estimation de la recharge de la nappe phreatique du Continental Terminal (Niamey, Niger) a partir des teneurs en tritium. C. R. Sci. Paris 1996, 323: 599-605.
    121. Le Gal La Salle, C., Marlin, C., Leduc, C., et. al., Renewal rate estimation of groundwater based on radioactive tracers (3H,14C) in an unconfined aquifer in a semi-arid area, Iullemeden Basin, Niger. Journal of Hydrology, 2001, 254:145-156.
    122. Leontiadis, I.L., and Nikolaou, E., Environmental isotopes in determining groundwater flow systems, northern part of Epirus, Greece. Hydrogeology Journal, 1999, 7:219-226
    123. Levin, I., Graul, R. and Trivett, N.B.A. Long term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus, 1995, 47B.23-34.
    124. Maloszewski, P. and Zuber, A. Determining the turnover time of groundwater systems with the aid of environmental tracers, I. Models and their applicability. J. Hydrol., 1982, 57:207-331.
    125. Maloszewski, P. and Zuber, A. Lumped parameter models for the interpretation of environmental tracer data. In: Manual on Mathematical Models in Isotope Hydrogeology, IAEA-TECDOD -910, IAEA, Vienna, 1996, 9-58.
    126. Mook, W.G. On the reconstruction of the initial 14C content of ground water from chemical and isotopic com- position, In: Proceedings of the VII International Conference on 14C. Lower Hutt, New Zealand, 1972, 18-25.
    127. Mook, W.G., Bommerson, J.C. and Staverman, W.H. Carbon isotope fraction between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 1974, 22:169-176.
    128. Mook, K.G., The dissolution-exchange model for dating groundwater with C-14. In: Interpretation of Environmental and Hydrchemical Data in Groundwater Hydrology. IAEA,Vienna, 1976, 212-225.
    129. Mook, W.G., Environmental isotopes in the hydrological cycle principles and applications. UNESCO/IAEA Series, 2000a, Vienna/Paris.
    
    130. Munnich, K.O. Messungen des 14C-gehaltes von hartem Groundwasser. Naturwisenschaften, 1957,44:32-33.
    
    131. Pearson, F.J. Use of C-13/C-12 ratios to correct radiocarbon ages of material initially diluted by limestone. In: Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating, Pulman, Washington, 1965, 375.
    
    132. Perkings, S.P., Koussis, A.D., Stream-aquifer interaction model with diffusive wave routing. Journal of Hydrology Engineering, American Society of Civil Engineers, 1996,122(4):210-218.
    
    133. Perkings, S.P., Sophocleous, M.A., Development of a comprehensive watershed model applied to study stream yield under drought conditions. Ground Water, 1999, 37(3):418-216.
    
    134. Phillips F M, Peeters L A, Tansey M K, and Davis S N, Paleoclimatic inferences from an isotopic investigation of groundwater in the Central San Juan Basin, New Mexico. Quaternary Research, 1986, 26:179-193.
    
    135. Phillips, F.M., and J.L. Wilson, An approach to estimating hydraulic conductivity spatial correlation scales using geological characteristics. Water Resources Research, 1989, 25:141-143.
    
    136. Phillips, F.M., The use of isotopes and environmental tracers in subsurface hydrology. Rev. Geophys. Supp., 1995, 1029-1033.
    
    137. Ramireddygari S.R., Sophocleous M.A., Koelliker J.K., et. al., Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: the case of Wet Walnut Creek Watershed, Kansas, USA. Journal of Hydrology, 2000, 236: 223-246.
    
    138. Rank, D., Rahner, V., Nussbaumer, W., Papech W., et. al. Study of the interrelationship between groundwater and lake water at Neusiedler see, Austria. Isotope Hydrology 1983. International Atomic Energy Agency, Vienna, 1984: 67-81
    
    139. Rodhe A., Groundwater contribution to stream flow in Swedish forested till soil as estimated by wxygen-18. Isotope Hydrology 1983, IAEA symposium 270, Vienna:55-66.
    
    140. Rozanski, K., Araguas- Araguas, L. and Gonfiantini, R. Isotopic patterns in modern global precipitation. In: Continental Isotope Indicators of Climate, American Geophysical Union Monograph, 1993.
    
    141. Sanford, W.E. and Buapeng, S., Assessment of groundwater flow model of the Bangkok basin, Thailand, using carbon-14-based ages and paleohydrology. Hydrogeology Journal, 1996, 4:26-40.
    
    142. Sophocleous, M.A., and Perry, C.A., Experimental studies in natural groundwater recharge dynamics: the analysis of observed recharge events. Journal of Hydrology, 1985, 81(3-4): 297- 332.
    
    143. Sophocleous MA, Townsend MA, Vogler LD, et. al., Experimental studies in stream-aquifer interaction along the Arkansas River in central Kansas: field testing and analysis. Journal of Hydrology, 1988, 98(3/4): 249-273.
    
    144. Sophocleous, M.A., Combining the soil-water balance and water-level fluctuation methods to estimate natural groundwater recharge:practical aspects. Journal of Hydrology, 1991, 124(304):229-241.
    
    145. Sophocleous, M.A., Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics. Journal of Hydrology, 1992, 137(1-4): 113 -140.
    
    146. Sophocleous, M.A., A comparative review of groundwater recharge estimates for the Great Bend Prairie of central Kansas. Kansas Geology Survey, Bull. 1993, 235:41-54.
    
    147. Sophocleous MA, Managing water resources systems: why safe yield is not sustainable. Ground Water, 1997, V.35(4):561.
    
    148. Sophocleous MA, Perspectives on sustainable development water resources in Kansas. Bull 239, Kansas Geological Survey, Lawrence, Kansas, 1998.
    
    149. Sophocleous MA, From safe yield to sustainable development of water resources—the Kansas experience. Journal of Hydrology, 2000a, 235: 27-34.
    
    150. Sophocleous MA,, Perkins SP, Methodology and application of watershed and groundwater models in Kansas, Journal of Hydrology, 2000b, 236: 185-201.
    
    151. Sophocleous MA, The origin and evolution of safe yield policies in the Kansas Groundwater Management Districts. Nat Resour Res, 2000c, 9(2):99-l 10.
    
    152. Sophocleous MA, Interactions between groundwater and surface water:the state of the science. Hydrogeology Journal, 2002, 10:52-67.
    
    153. Stowart, M. Stable isotope fractionation due to evaporation and isotopic exchange of falling water drops: application to atmospheric processes and evaporation of lakes. J. Geophys. Res., 197580:1138-1146.
    
    154. Stuiver, M., Braziunas, T.F., Becker, B., Kromer, B. Climatic, solar oceanic and geomagnetic influences on the late-glacial and Holocene atmospheric ~(14)C/~(12)C change. Quat. Res., 1991, 35:1-24.
    
    155. Suess, H. Climatic changes and the atmospheric radiocarbon. Palaeogeogr. Paleoclimatol. Plaeoecol. 1971, 10: 199-202.
    
    156. Tamers, M.A. Validity of radiocarbon dates on groundwater. Geophys. Surv, 1975, 2:217-239.
    
    157. Vogel, J.C. Carbon-14 dating of groundwater. In: Isotope Hydrology, IAEA, Vienna, 1970, 225-239.
    
    158. Vogel, J.C. 1993. Variability of carbon isotope fractionation during photosynthesis. In: J.R. Ehleringer, A.E. Hall and G.D. Farquhar (Eds.) Stable Isotopes and Plant Carbon-Water Relations, Academic Press, San Diego, CA: 29-38.
    
    159. Wang Y, Ma T, Luo Z., Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China. 2001, Journal of Hydrology, 246:223-234.
    
    160. Ward, A.D., Wells, L.G., and Phillips. R.E., Infiltration Through Reconstructed Surface Mines Spoils and Soils. Transactions of the ASAE, 1983, 26(3):821-832.
    
    161. Winter, T. C, Harvey, J. W., Franke, O.L., Alley, W. M. Ground Water and Surface Water: A Single Resource. U.S. Geological Survey Circular 1139, Denver, Clolrado, 1998.
    
    162. Zuber, A. On calibration and validation of mathematical models for interpretation of environmental tracer data. In: Mathematical Models and Their Applications to Isotope Studies in Groundwater Hydrology, IAEA-TECDOD -77, IAEA, Vienna, 1994, 11-41.
    
    163. Zuber, A. On the interpretation of tracer data in variable flow systems. J. Hydrol. 1986, 86:45-57.
    
    164. 国际水文计划信息(2000年特刊), http://www.hhu.edu.cn/ihp/cnc-ihp.html.
    
    165. 甘肃省水文水资源勘测局公报数据, http://WW.gsmwr.com.cn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700