用户名: 密码: 验证码:
岩藻聚糖硫酸酯酶产生菌的筛选、酶学性质研究及酶解产物抗氧化活性预测系统的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海带是我国重要的经济藻类,因其营养价值高,具有多种生理活性,受到人们的喜爱。目前,我国海带产量居世界第一位,但海带的工业利用率仅有30%,并且整体加工水平较低,导致海带产业始终无法发展壮大。因此,对海带的生理活性成分进行深入研究,进而实现海带的高值化利用,是发展海带产业的重要途径。本文围绕海带中的活性物质岩藻聚糖硫酸酯(HDFuc)及其降解产物展开研究,鉴于低分子量HDFuc在活性应用以及结构研究方面的优势,对HDFuc进行降解进而获取低分子量的HDFuc成为重要的课题。酶法降解是最理想的方式,但是由于相应商品酶制剂的缺乏,目前无法实现对HDFuc的酶法降解。
     本文首先进行产酶微生物的筛选。以HDFuc为唯一碳源,从荣成海域海带中筛选出一株产酶细菌RC2,经过生理生化和16s rDNA鉴定,判断RC2为黄杆菌科的一个新成员。RC2能够稳定产生岩藻聚糖硫酸酯酶(FUCenzyme),该酶属于胞内酶。经过高效凝胶排阻色谱及薄层色谱的方法确认了RC2的产酶能力,并证实该酶能够将HDFuc降解为低分子量产物。
     为了提高RC2的产酶能力,对其发酵培养基及产酶条件进行优化。确定RC2产酶最优培养基配方为0.2%HDFuc、0.4%牛肉膏、用过膜海水配制;最优培养条件为25℃、pH值自然、摇床转速150rpm、250mL三角瓶装液量20%、接种量10%。在上述条件下,菌株RC2培养72h后产酶活力可达178U/mL,该酶活力高于所有已报道的有可比性的细菌。并在此基础上,对RC2进行了5L发酵罐扩大发酵试验,在25℃,搅拌速度200rpm,通气量2.0L/min的条件下,经过96h的培养后收集菌体并进行细胞破碎,可获得总酶活力110530U。
     随后,对FUCenzyme进行了分离纯化与酶学性质研究。胞内酶经过硫酸铵沉淀和Q-Sepharose Fast Flow离子交换层析纯化,可得到单一酶活性组分,对该组分进行SDS-PAGE检测,结果为单一条带,证明得到了纯化酶。通过分子量标准曲线计算其分子量为41.0KDa。纯化过程总的酶活力回收率为11.3%,纯化倍数为11.8倍。经酶学性质分析表明,该酶最适反应温度为50℃;热稳定性较差,仅在20℃和30℃稳定,但在4℃稳定性很好,酶活力保持一个月无显著性下降。酶的最适反应pH值为8.0;在pH8.0最稳定,其次为pH7.0。该酶必须在NaCl存在下才能够显示酶活力,最适NaCl浓度为0.4mol/L或0.6mol/L。Zn~(2+)、K~+、 Ca~(2+)对该酶有激活作用,其中Zn~(2+)激活作用最强;Cu~(2+)、Hg~(2+)、Ag+对该酶有较大抑制作用,其中Cu~(2+)的抑制作用最强。另外,NaF和EDTA-2Na对该酶有较强的抑制作用。另外,还监测了该酶催化过程还原糖含量的变化,发现反应12h内还原糖明显上升,12h后变化较小,说明酶催化反应速率在12h以后减慢。
     利用纯化酶对HDFuc进行酶解,首次建立了酶解产物抗氧化活性可视化预测系统。利用三个BP网络模型分别实现了对酶解过程产物的DPPH˙清除率、˙OH清除率和O2˙-清除率的预测。经验证,三个BP网络模型的最大误差均小于10%,完全能够满足应用要求,并在Matlab平台建立了抗氧化活性可视化预测系统。进一步应用遗传算法对BP网络模型进行寻优,确定最佳酶解条件为25.2℃,酶解6.4h,加酶量22.0U/(mg HDFuc),此时酶解产物的DPPH˙、˙OH和O2˙-清除率分别为39.85±1.00%、82.08±5.74%、27.67±3.45%,还原能力为0.2348±0.0044,金属离子螯合能力达到35.64±3.01%。
     对HDFuc及其酶解产物进行体内抗氧化活性研究。在最优酶解条件下对HDFuc进行酶解,获得酶解产物。通过建立D-半乳糖诱导的小鼠亚急性衰老模型,评估了二者的体内抗氧化活性。结果表明二者均具有显著的抗氧化活性,酶解产物在保护小鼠血清抗氧化酶活性方面的作用要优于HDFuc。
     综上所述,本文成功筛选到FUCenzyme产酶细菌,并对该酶进行了分离纯化。利用该酶获得低分子量的酶解产物,首次建立了HDFuc酶解产物抗氧化活性可视化预测系统,并实现了联合遗传算法进行寻优,获得了具有最高抗氧化活性的产物。经动物实验证实,该酶解产物具有显著的抗氧化活性。本文的结果为海带岩藻聚糖硫酸酯的开发应用奠定了基础,有望促进海带的高值化利用及海带产业的发展。
Kelp is a kind of important economic alga in China, and it is popular for its highnutritional value and various biological activities. At present, the output of kelp inChina ranks first in the world. However, the kelp industry is unable to grow vigorousdue to the current low-level processing and low utilization rate, which is just30%.Therefore, in order to realize development of kelp industry, an important way is torealize value-added utilization through further research on biological activities of kelp.This paper conducts research on the HDFuc in kelp, and its degrading products.Because of the great advantages of lower molecular weight HDFuc in activityapplication and structure study, it is essential to degrade HDFuc and to obtain lowermolecular weight components. Enzymic hydrolysis is the best way for fucoidandegrading, but it cannot be achieved due to the lack of Fucoidan degrading enzyme(FUCenzyme) in the market.
     In this thesis, the first step of research is to screen FUCenzyme-producing microbe.Using HDFuc as the sole carbon source, a FUCenzyme-producing bacterium namedRC2is obtained from Laminaria japonica in the sea area of Rongcheng. It isidentified to be a new member of Flavobacteriacea by its physiology andbiochemistry characteristic and its16s rDNA analysis. FUCenzyme, a kind ofendoenzyme, can be produced stably by RC2. According to tests of HPSEC and TLC,RC2is confirmed to produce FUCenzyme and generate lower molecular weighthydrolyzate.
     To increase the FUCenzyme-producing ability of RC2, fermentation medium andenzyme-producing conditions are optimized. The optimal medium is0.2%Fucoidanand0.4%beef extract, prepared with filtered seawater. FUCenzyme activity reachesto178U/mL after72h-cultivating by RC2under the optimal fermentation conditions: 25℃, natural pH,150rpm of shaking speed,20%of the liquid loading size in250mLflask,10%of inoculation size. On this base, the expanding fermentation test in5Lfermentation tank is done and110530U enzyme activity in total is obtained after96h-cultivating by RC2under the conditions:25℃,200rpm of stirring speed and1.0L/min of air flow.
     Thereafter, the FUCenzyme is purified and its characteristics are analyzed. CrudeFUCenzyme is separated by ammonium sulfate precipitation and QFF ion exchange,and then a single component with enzymic activity is obtained. The single componentis proved to be a purified FUCenzyme by the evidence of a single band in SDS-PAGE.Its molecular weight is41.0KDa according to standard molecular weight marker. Inthe whole process of purification, FUCenzyme is purified up to11.8times and therecovery of enzymic activity is11.3%. Enzymic property research shows that theoptimal conditions are50℃, pH8.0. The FUCenzyme, stable only at20℃and30℃,is with poor thermal stability. But it is with good stability when stored at4℃. It isstable at pH8.0, then at pH7.0. And the enzyme can show its activity only in thesituation with NaCl, and the optimal NaCl concertration is0.4mol/L or0.6mol/L.Zn~(2+), K~+and Ca~(2+)have function of activation to the enzyme, and among them, thefunction of Zn~(2+)is greatest. While, Cu~(2+), Hg~(2+)and Ag+have function of inhibition,and among them, the function of Cu~(2+)is greatest. In addition, NaF and EDTA-2Nainhibit the FUCenzyme strongly. Change of reducing sugars content is monitoredduring the catalyzing process, and the results show that the content of reducing sugarsincreases markedly in the early12hours, and is with little change after12hours. It isproved that the rate of catalyzing declines clearly after12hours.
     For the first time, a visual antioxidant activity prediction system is established,which realizes the prediction of antioxidant activity of the hydrolyzate catalyzed byFUCenzyme. Three BP network models are established to predict respectively thescavenging ratio of DPPH˙,˙OH and O2-. The three models are verified to be suitablefor use, with the maximum error lower than10%. On the basis of BP netwo rk models,a visual antioxidant activity prediction system is established under the platform ofMatlab, making the visual antioxidant activity prediction of hydrolyzate comes true. Further, GA is used for seeking optimal value of BP network models. The resultsshow that when adding FUCenzyme22.0U to1mg HDFuc and hydrolyzing at25.2℃for6.4hours, the hydrolyzate is generated with highest antioxidant activity (DPPH˙scavenging ratio39.85±1.00%,˙OH scavenging ratio82.08±5.74%, O2-scavengingratio27.67±3.45%, reducing power0.2348±0.0044, iron-chelation activity35.64±3.01%).
     Then the in vivo antioxidant study of HDFuc and enzymic hydrolyzate is done.Hydrolyzate is obtained when catalyzing HDFuc under the optimal conditionsmentioned above. It shows significant antioxidant activity in mice of HDFuc and itshydrolyzate when using D-galactose induced subacute aging model. Furthermore, thehydrolyzate is better than HDFuc in the aspect of protecting the mice antioxidantenzyme activity.
     In conclusion, a FUCenzyme producing bacterium is successfully obtained and thepurification of the FUCenzyme is conducted. Lower molecular weight enzymatichydrolyzate is obtained taking advantage of the enzyme, and a visual antioxidantactivity prediction system of hydrolyzate is established for the first time. Using GAfor optimizing, highest activity enzymatic hydrolyzate is got. And the enzymatichydrolyzate is proved to be with good antioxidant activity by animal experiments. Theachievement in this thesis lays a foundation for development and application ofHDFuc, which will promote the high-value utilization of kelp and development ofkelp industry.
引文
[1]胡炳民.吃海带好处多.中国保健营养,2005(4):45
    [2]李德远,徐现波,熊亮,等.海带的保健功效及海带生理活性多糖研究现状.食品科学,2002,23(7):151~154
    [3]许运江.海带的功效与食用.济南:山东画报出版社,1994.3~10
    [4]蔡跃飘.海带岩藻聚糖硫酸酯的结构研究:[博士学位论文].青岛:中国海洋大学,2004
    [5]游克仁.海带饮料.福建农业,1995(4):14
    [6]刘英汉.海带蛋糕的加工研究.食品科学,1995,16(10):41~46
    [7]薛长湖,林洪,曾名勇,等.我国水产品加工的现状和未来.科学养鱼,2002(2):6
    [8]张英.海带面包的研制.食品科学,1993(12):41~45
    [9] Mustafa M G, Nakagawa H. A review: dietary benefits of agars as an additive in fish feed.The Israeli Journal of Aquaculture,1995,47:155~162
    [10]赵华,赵树欣,李颖宪,等.海带酒的研制.酿酒,1998(3):55~56
    [11]龙志芳.海带营养面包制作的研究.食品研究与开发,2012,33(12):101~103
    [12]樊文乐.海带的综合利用研究:[硕士学位论文].天津:天津科技大学,2006
    [13]赵雪.海带岩藻聚糖硫酸酯的化学组成及活性的研究:[博士学位论文].青岛:中国海洋大学,2004
    [14]董诗竹.海带低分子量岩藻聚糖硫酸酯的制备及其抗血栓活性研究:[硕士学位论文].青岛:中国海洋大学,2011
    [15] Van Netten C, Hoption Cann S A, Morley D R, et al. Elemental and radioactive analysis ofcommercially available seaweed. Science of the Total Environment,2000,255(1-3):169~175
    [16]李芳.不同分子量海带岩藻聚糖硫酸酯消化吸收、免疫及抗病毒活性的比较研究:[硕士学位论文].青岛:中国海洋大学,2012
    [17]孙玉善.海洋天然有机物资源化学.海洋药物,1985(4):36
    [18]姜作真,初丽琴.食用海藻粉的加工技术.食品科学,1998,19(4):61~62
    [19]金嫘,王宏,郭雪松.海带的营养与保健.中国食物与营养,2001(1):41~42
    [20]王芙蓉,佟建明,张晓鸣,等.海带功能成分的研究进展.广东饲料,2009,18(5):38~40
    [21]曹玉杰.营养保健话海带.中国检验检疫,2006(8):64
    [22]杨海涛,姚兰,王传芬,等.海带中活性成分的提取和研究.食品工业,2007(3):9~10
    [23]邓长江,朱希强,郭学平.海带多糖药理作用的研究进展.食品与药品,2006,8(4):30~32
    [24]胡晓珂.褐藻胶裂合酶工程化研究与应用:[博士学位论文].青岛:中国海洋大学,2004
    [25]王洪侠.海带多糖的药理研究进展.赤峰学院学报(自然科学版),2011,27(2):90~92
    [26]窦勇.褐藻胶寡糖生物活性的研究进展.广西轻工业,2009(10):12~13
    [27]许凤清,吴皓.海带多糖的研究进展.中国中医药信息杂志,2005(6):106~108
    [28]陈利梅,李德茂,赵玉山,等.海带不同部位褐藻胶含量及其凝胶性能研究.中国食品添加剂,2010(2):124~126
    [29]包华芳,刘璘,丁玉庭.酶解制备褐藻胶寡糖及其抗氧化活性研究.中国酿造,2010(4):82~84
    [30]侯保兵,刘书来,张建友,等.褐藻胶裂解酶产生菌的发酵优化研究:[博士学位论文].青岛:中国海洋大学,2009
    [31]刘远平,邵仁东,韩硕.褐藻胶低聚糖生物活性研究进展.饲料与畜牧,2012(4):37~39
    [32]包华芳,刘璘,丁玉庭.酶解制备褐藻胶寡糖及其抗氧化活性研究.中国酿造,2010(4):82~84
    [33] Zvyagintseva T N, Shevchenko N M, Chizhov A O, et al. Water-soluble polysaccharides ofsome far-eastern brown seaweeds. Distribution, structure, and their dependence on thedevelopmental conditions. Journal of Experimental Marine Biology and Ecology,2003,294(1):1~13
    [34]刘海光.海带多糖的分离纯化及活性研究:[硕士学位论文].济南:山东大学,2007
    [35]谌素华,王维民.褐藻岩藻聚糖硫酸酯生物活性研究进展.食品工业科技,2009,30(6):371~374
    [36]赵建强,李飞箭,高国瑞,等.海带岩藻聚糖硫酸酯的研究进展.安徽农业科学,2009,37(3):932~934
    [37] Nishino T, Aizu Y, Nagumo T. The influence of sulfate content and molecular weight of afucan sulfate from the brown seaweed Ecklonia kurome on its antithrombin activity.Thrombosis Research,1991,64(6):723~731
    [38]张全斌,于鹏展,周革非,等.海带褐藻多糖硫酸酯的抗氧化活性研究.中草药,2003,34(9):824~826
    [39] Chang M. Effects of seatangle (Laminaria japonica) extract and fucoidan components onlipid metabolism of stressed mouse. Journal of the Korean Fisheries Society,2000,32(2):124~128
    [40]程忠玲.海带中褐藻糖胶研究进展.食品研究与开发,2010,31(4):181~184
    [41] Ribeiro A C, Vieira R P, Mour o A S, et al. A sulfated α-L-fucan from sea cucumber.Carbohydrate Research,1994,255(4):225~240
    [42] Mulloy B, Ribeiro A C, Alves A P, et al. Sulfated fucans from echinoderms have a regulartetrasaccharide repeating unit defined by specific patterns of sulfation at the0-2and0-4positions. The Journal of Biological Chemistry,1994,269(35):22113~22123
    [43] Valente A P, Vacquier V D, Vilela-Silva E S, et al. Structure of the sulfated alpha-L-fucanfrom the egg jelly coat of the sea urchin Strongylocentrotus franciscanus: patterns ofpreferential2-O-and4-O-sulfation determine sperm cell recognition. Glycobiology,1999,9(9):927~933
    [44] Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, andbiological properties of sulfated fucans and an overview of enzymes active toward this classof polysaccharide. Glycobiology,2003,13(6):29R~40R
    [45]常耀光.海参岩藻聚糖硫酸酯及其酶解产物的制备、结构与活性研究:[硕士学位论文].青岛:中国海洋大学,2008
    [46]赵雪.海带岩藻聚糖硫酸酯的化学组成及活性的研究:[博士学位论文].青岛:中国海洋大学,2004
    [47] Iioagland D R, Lieb L L. The complex carohydrates and forms of sulphur in marine algaeof the pasific coast. The Journal of Biological Chemistry,1915(23):287~297
    [48] Percival E G V, Ross A G.145. Fucoidin. Part I. The isolation and purification of fucoidinfrom brown seaweeds. The Marine Biological Association of the United Kingdom,1950:717~720
    [49] Marais M F, Joseleau J P. A fucoidan fraction from Ascophyllum nodosum. CarbohydrateResearch,2001,336(2):155~159
    [50] Chizhov A O, Dell A, Morris H R, et al. A study of fucoidan from the brown seaweedChorda filum. Carbohydrate Research,1999,320(1-2):108~119
    [51] Richard G S. Methanolysis of fucoidan. II. The presence of sugars other than L-fucose. TheJournal of Organic Chemistry,1962,27(12):4270~4272
    [52] Nishide E, Anza H, Uchida N, et al. Sugar constituents of fucose-containingpolysaccharides from various Japanese brown algae. Hydrobiologia,1990,1(204-205):573~576
    [53] Conchie J, Percival E G V.167. Fucoidin. Part II. The hydrolysis of a methylated fucoidinprepared from Fucus vesiculosus. Journal of the Chemical Society(Resumed),1950:827~832
    [54] Percival E, McDowell R. Chemistry and enzymology of marine algal polysaccharides.London: Academic Press,1967.157~164
    [55] Patankar M S, Oehninger S, Barnett T, et al. A revised structure for fucoidan may explainsome of its biological activities. The Journal of Biological Chemistry,1993,268(29):21770~21776
    [56] Chizhov A O, Dell A, Morris H R, et al. A study of fucoidan from the brown seaweedChorda filum. Carbohydrate Reasch,1999,320(1-2):108~119
    [57] Chevolot L, Foucault A, Chaubet F, et al. Further data on the structure of brown seaweedfucans: relationships with anticoagulant activity. Carbohydrate Research,1999,319(1-4):154~165
    [58] Chevolot L, Mulloy B, Ratiskolb J, et al. A disaccharide repeat unit is the major structure infucoidans from two species of brown algae. Carbohydrate Research,2001,330(4):529~535
    [59] Bilan M I, Grachev A A, Ustuzhanina N E, et al. A highly regular fraction of a fucoidanfrom the brown seaweed Fucus distichus L. Carbohydrate Research,2004,339(3):511~517
    [60] Wang J, Zhang Q B, Zhang Z S. Structural studies on a novel fucogalactan sulfate extractedfrom the brown seaweed Laminaria japonica. International Journal of BiologicalMacromololecules,2010,47(2):126~131
    [61] Saka T, Kimura H, Kato I. A marine strain of flavobacteriaceae utilizes brown seaweedfucoidan. Marine Biotechnology,2002,4(4):399~405
    [62] Sakai T, Kimura H, Kojima K, et al. Marine bacterial sulfated fucoglucuronomannan(SFGM) lyase digests brown algal SFGM into trisaccharides. Marine Biotechnology,2003,5(1):70~78
    [63] Pereira M S, Mulloy B, Mourao P A. Structure and anticoagulant activity of sulfated fucans.Comparison between the regular, repetitive, and linear fucans from echinoderms with themore heterogeneous and branched polymers from brown algae. The Journal of BiologicalChemistry,1999,273(12):7656~7667
    [64] Logeart D, Prigent-Richard S, Jozefonvicz J, et al. Fucans, sulfated polysaccharidesextracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. I.Comparison with heparin for antiproliferative activity, binding and internalization.European Journal of Cell Biology,1997,74(4):376~384
    [65] Alves A P, Mulloy B, Diniz J A. Sulfated polysaccharides from the egg jelly layer arespecies-specific inducers of acrosomal reaction in sperms of sea urchins. Journal ofBiological Chemistry,1997,272(11):6965~6971
    [66] Georg F S, Harold A W, George M, et al. Isolation of anticoagulant fractions from crudefucoidin. Experimental Biology and Medicine,1957,94(2):404~409
    [67] Bernardi G, Springer G F. Properties of highly purified fucan. The Journal of BiologicalChemistry,1962,237:75~80
    [68] Mauray S, Sternberg C, Theveniaux J, et al. Veonus antithrombotic and anticoagulantactivities of a fucoidan fraction. Thrombosis and Haemostasis,1995,74(5):1280~1285
    [69] Colliec S, Boisson C, Durand P, et al. Anticoagulant properties of a fucoidan fraction.Thrombosis Research,1991,64(2):143~154
    [70] Haroun B F, Ellouali M, Sinquin C, et al. Relationship between sulfate groups andbiological activities of fucans. Thrombosis Research,2000,100(5):453~459
    [71] Nardella A, Chaubet F, Boisson Vidal C, et al. Anticoagulant low molecular weight fucansproduced by radical process and ion exchange chromatography of high molecular weightfucans extracted from the brown seaweed Ascophyllum nodosum. Carbohydrate Research,1996,289(19):201~208
    [72] Millet J, Jouault C S, Mauray S, et al. Antithrombotic and anticoagulant activities of a lowmolecular weight fucoidan by the subcutaneous route. Thrombosis and Haemostasis,1999,81(3):391~395
    [73] Dürig J, Bruhn T, Zurborn K H, et al. Anticoagulant fucoidan fractions from Fucusvesiculosus induce platelet activation in vitro. Thrombosis Research,1997,85(6):479~491
    [74] Soeda S, Sakaguchi S, Shimeno H, et al. Fibrinolytic and anticoagulant activities of highlysulfated fucoidan. MedSci entry for biochemical pharmacology,1992,43(8):1853~1858
    [75] Yamamoto I, Nagumo T, Yagi K, et al. Antitumor effect of seaweeds. I. Antitumor effect ofextracts from Sargassum and Laminaria. The Japanese Journal of Experimental Medicine,1974,44(6):543~546
    [76] Yamamoto I, Nagumo T, Fujihara M, et al. Antitumor effect of seaweeds. II. Fractionationand partial characterization of the polysaccharide with antitumor activity from Sargassumfulvellum. The Japanese journal of experimental medicine,1977,47(3):133~140
    [77] Yamamoto L, Takahashi M, Tamura E, et al. Antitumor activity of crude extracts fromedible marine algae against L-1210leukemia. Botanica Marina,1982,25(9):455~457
    [78] Yamamoto I, Takahashi M, Suzuki T, et al. Antitumor effect of seaweeds. IV.Enhancement of antitumor activity by sulfation of a crude fucoidan fraction fromSargassum kjellmanianum. The Japanese Journal of Experimental Medicine,1984,54(4):143~151
    [79]王庭欣,秦淑贞,赵文,等.海带多糖对环磷酞胺诱小鼠骨位细胞微核率的抑制作用.癌变·畸变·突变,1999,11(2):106~107
    [80] Zhuang C, Itoh H, Mizuno T, et al. Antitumor active fucoidan from the brown seaweed,umitoranoo (Sargassum thunbergii). Bioscience, Biotechnology, and Biochemistry,1995,59(4):563~567
    [81] Itoh H, Noda H, Amnao H. Antitumor activity and immunological properties of marinealgal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii ofPhaeophyceae. Anticancer Research,13(6A):2045~2052
    [82]宋剑秋,徐誉泰,张华坤,等.海带硫酸多糖对小鼠腹腔巨噬细胞的免疫调节作用.中国免疫学杂志,2000,16(2):70
    [83] Koyanagi S, Tanigawa N, Nakagawa H, et al. Oversulfation of fucoidan enhances itsanti-angiogenic and antitumor activities. Biochemical Pharmacology,2003,65(2):173~179
    [84]史大华,刘玮炜,刘永江,等.低分子量海带岩藻多糖的制备及其抗肿瘤活性研究.时珍国医国药,2012,23(1):53~55
    [85] Hoshino T, Hayashi T, Hayashi K, et al. An antivirally active sulfated polysaccharide fromSargassum horneri (TURNER) C. AGARDH. Biological Pharmaceutical Bulletin,1998,21(7):730~740
    [86] Preeprame S, Hayashi K, Lee J B, et al. A novel antivirally active fucan sulfate derivedfrom an edible brown alga, Sargassum horneri. Chemical and Pharmaceutical Bulletin(Tokyo),2001,49(4):484~485
    [87] Feldman S C, Reynaldi S, Stortz C A, et al. Antiviral properties of fucoidan fractions fromLeathesia dioffrmis. Phytomedicine,1999,6(5):335~340
    [88] Ponce N M, Pujol C A, Damonte E B, et al. Fucoidans from the brown seaweedAdenocystis utricularis: extraction methods, antiviral activity and structural studies.Carbohydrate Research,2003,338(2):153~165
    [89] Hayashi K, Nakano T, Hashimoto M, et al. Defensive effects of a fucoidan from brown algaUndaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol,2008,8(1):109~116
    [90] Mandal P, Mateu C G, Chattopadhyay K, et al. Structural features and antiviral activity ofsulphated fucans from the brown seaweed Cystoseira indica. Antiviral Chemistry andChemotherapy,2007,18(3):153~162
    [91] Hemmingson J A, Falshaw R, Furneaux R H, et al. Structure and antiviral activity of thegalactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). Journal of AppliedPhycology,2006,18(2):185~193
    [92] Bagasra O, Whittle P, Heins B, et al. Anti-human immunodeficiency virus type1activity ofsulfated monosaccharides: comparison with sulfated polysaccharides and other polyions.Journal of Infectious Diseases,1991,164(6):1082~1090
    [93] Mcclure M O, Whitby D, Patience C, et al. Dextrin sulphate and fucoidan are potentinhibitors of HIV infection in vitro. Antiviral chemistry&chemotherapy,1991,2(3):149~156
    [94] Doh Ura K, Kuge T, Uomoto M, et al. Prophylactic effect of dietary seaweed fucoidanagainst enteral prion infection. Antimicrob Agents Chemother,2007,51(6):2274~2277
    [95] Xu R Y, Zhou Y Z, Sheng X B. Effects of fucoidan extracted from brown seaweed on lipidperoxidation in mice. Acta Nutrimenta Sinica,2002,24(4):389~392
    [96] Zhang Q B, Yu P Z, Zhou G F. Studies on antioxidant activities of fucoidan fromLaminaria japonica. Chinese Traditional and Herbal Drugs,2003,34(9):824~826
    [97] Athukorala Y, Lee K W, Song C. Potential antioxidant activity of marine red algaGrateloupia filicina extracts. Journal of Food Lipids,2003,10(4):313~327
    [98] Rupérez P, Ahrazem O, Leal J A. Potential antioxidant capacity of sulfated polysaccharidesfrom the edible marine brown seaweed Fucus vesiculosus. Journal of Agricultural and FoodChemistry,2002,50(4):840~845
    [99] Xue C, Fang Y, Lin H. Chemical characters and antioxidative properties of sulfatedpolysaccharides from Laminaria japonica. Journal of Applied Phycology,2001,13(1):67~70
    [100]李兆杰,薛长湖,陈磊.低分子量海带岩藻多糖硫酸醋的清除活性氧自由基和体内抗氧化作用.水产学报,2001,25(1):64~65
    [101] Wang J, Zhang Q, Zhang Z, et al. Antioxidant activity of sulfated polysaccharide fractionsextracted from Laminaria japonica. International Journal of Biological Macromolecules,2008,42(2):127~132
    [102] Xue C H, Zhao X, Cai Y P, et al. The study of antioxidant activities of fucoidan fromLaminaria japonica. High Technology Letters,2005,11(1):91~94
    [103] Okai Y, Higashi O K, Ishizaka S, et al. Possible immunodulating activities in an extract ofedible brown alga, Hijikia fusiforme (Hijiki). Journal of the Science of Food andAgriculture,1998,76(1):56~62
    [104]杨晓林,孙菊云,许汉年,等.褐藻糖胶的免疫调节作用.中国海洋药物,1995(3):9~13
    [105] Wang W T, Zhou J H, Xing S T, et al. Immunomodulating action of marine algae sulfatedPolysaccharideson normal and immunosuppressed mice. Chinese Journal of Pharmacologyand Toxicology,1994(3):199~202
    [106] Wu X M, Yang M L, Huang X L. Effect of fucoidan on splenic lymphocyte apoptosisinduced by radiation. Chinese Journal of Radiation Mediation and Protection,2003,23(6):430~432
    [107] Li Z J, Xue C H, Lin H, et al. The hypolipidemic effects and antioxidative activity ofsulfatedfucan on the experimental hyperlipidemia in rats. Acta Nutrimenta Sinica,1999,21(3):280~283
    [108]王素贞,毕爱芳.褐藻糖胶治疗动脉粥样硬化临床观察.康复与疗养杂志,1994,9(4):173~174
    [109] Ren D, Noda H, Amano H, et al. Antihypertensive and antihyperlipidemic effects of funoran.Fisheris Science,1994,60(4):423~427
    [110]付雪艳,薛长湖,宁岩,等.岩藻聚糖硫酸酯低聚糖降压作用的初步研究.中国海洋大学学报(自然科学版),2004,34(4):560~564
    [111] Shibata H, Iimuro M, Uchiya N, et al. Preventive effects of Cladosiphon fucoidan againstHelicobacter pylori infection in Mongolian gerbils. Helicobacter,2003,8(1):59~65
    [112]徐祖洪,李智恩,毕爱芳,等.治疗慢性肾衰的海洋新药FPS的研究.中国海洋药物,1998(4):41~45
    [113] Cumashi A, Ushakova N A, Preobrazhenskaya M E, et al. A comparative study of theanti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of ninedifferent fucoidans from brown seaweeds. Glycobiology,2007,17(5):541~552
    [114] Osselaer N V, Rampart M, Herman A G. Differential inhibition of polymorphonuclearleukoeyte recruitment in vivo by dextran sulPhate and fucoidan. Mediators of Inflammation,1996,5(5):346~357
    [115] Maruyama H, Tamauchi H, Hashimoto M, et al. Suppression of Th2immune responses byMekabu fucoidan from Undaria pinnatifida Sporophylls. International Archives of Allergyand Immunology,2005,137(4):289~294
    [116] Blondin C, Fisher E, Kazatchkine M D, et al. Inhibition of complement activation by naturalsulphated polysaccharides (fucans) from brown seaweed. Molecular Immunology,1994,31(4):247~253
    [117] Zvyagintseva T, Shevshenko N, Nazarova I, et al. Inhibition of complement activation bywater-soluble polysaccharides of some far-eastern brown seaweeds. ComparativeBiochemistry,2000,126(3):209~215
    [118] Saito A, Yoneda M, Yokohama S. Fucoidan prevents concanavalin A-induced liver injurythrough induction of endogenous IL-10in mice. HepatologyResearch,2006,35(3):190~198
    [119] Hayashi S, Itoh A, Isoda K. Fucoidan partly prevents CCl4-induced liver fibrosis. EuropeanJournal of Pharmacology,2008,580(3):380~384
    [120]李德远,徐战,王海滨,等.海带岩藻糖胶及褐藻胶抗辐射效应研究.武汉食品工业学院学报,1999(2):18~22
    [121]马爽.海洋镰孢霉岩藻多糖酶的制备、酶学性质及表征:[硕士学位论文].合肥:安徽农业大学,2007
    [122]张惟杰.糖复合物生化研究技术.杭州:浙江大学出版社,1994.50~80
    [123]董平,薛长湖,李兆杰,等.岩藻聚糖硫酸酯低聚糖的制备及其抗氧化活性研究.中国海洋大学学报(自然科学版),2006,36(s1):59~62
    [124]单瑞芬,吴茜茜,蔡敬民.岩藻多糖降解酶的研究进展.安徽农业科学,2012,40(19):9996~9997
    [125] Berteau O, McCort I, GoasdouéN, et al. Characterization of a new alpha-L-fucosidaseisolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis ofalpha-L-fucose from algal fucoidan (Ascophyllum nodosum). Glycobiology,2002,12(4):273~282
    [126] Yasui T, Kitamura K, Matsuo M, et al. Enzymic degradation of fucoidan by fucoidanasefrom the hepatopancreas of Patinopecten yessoensis. Bioscience, Biotechnology, andBiochemistry,1992,56(3):490~494
    [127] Daniel R, Berteau O, Jozefonvicz J, et al. Degradation of algal (Ascophyllum nodosum)fucoidan by an enzymatic activity contained in digestive glands of the marine molluskPecten maximus. Carbohydrate Research,1999,322(3-4):291~297
    [128] Chang Y, Xue C, Tang Q, et al. Isolation and characterization of a sea cucumberfucoidan-utilizing marine bacterium. Letters in Applied Microbiology,2010,50(3):301~307
    [129] Kim W J, Kim S M, Lee Y H, et al. Isolation and characterization of marine bacterial straindegrading fucoidan from Korean Undaria pinnatifida Sporophylls. Journal of Microbiologyand Biotechnology,2008,18(4):616~623
    [130] Descamps V, Colin S, Lahaye M, et al. Isolation and culture of a marine bacteriumdegrading the sulfated fucans from marine brown algae. Marine Biotechnology,2006,8(1):27~39
    [131] Sakai T, Kawai T, Kato I. Isolation and characterization of a fucoidan-degrading marinebacterial strain and its fucoidanase. Marine Biotechnology,2004,6(4):335~346
    [132] Sakai T, Ishizuka K, Kato I. Isolation and characterization of a fucoidan-degrading marinebacterium. Marine biotechnology,2003,5(5):409~416
    [133] Furukawa S, Fujikawa T, Koga D, et al. Production of fucoidan-degradingenzymes,fucoidanase,and fucoidan sulfatase by Vibrio sp.N-5. Nippon Suisan Gakkaishi,1992,58(8):1499~1503
    [134] Furukawa S, Fujikawa T, Koga D, et al. Purification and some properties of exo-typefucoidanases from Vibrio sp. N-5. Japan Society for Bioscience, Biotechnology,andAgrochemistry,1992,56(11):1829~1834
    [135] Bakunina I Y, Nedashkovskaya O I, Ivanova E P, et al. Degradation of fucoidan by themarine proteobacterium Pseudoalteromonas citrea. Microbiology,2002,71(1):41~47
    [136] Yaphe W, Morgan K. Enzymic hydrolysis of fucoidin by Pseudomonas atlantica andPseudomonas carrageenovora. Nature,1959,183(4663):761~762
    [137]蔡敬民,吴茜茜,吴克,等.海洋真菌Fusarium sp. LD8岩藻多糖酶的液态发酵条件研究.菌物学报,2006,25(1):77~82
    [138] Wu Q Q, Zhang M, Wu K, et al. Purification and characteristics of fucoidanase obtainedfrom Dendryphiella arenaria TM94. Journal of Applied Phycology,2011,23(2):197~203
    [139]蔡敬民,王鹏,秦松,等.海洋细菌Bacillus sp. H-TP2岩藻多糖酶的生产和酶学性质.食品与发酵工业,2004,30(3):47~51
    [140]蔡敬民,张袁,吴茜茜,等.岩藻多糖酶产生菌的筛选、鉴定及发酵条件初探.包装与食品机械,2010,28(3):32~35
    [141]康静.岩藻多糖酶产生菌的筛选及其酶学特性研究:[硕士学位论文].郑州:河南农业大学,2007
    [142] Sakai T, Kimura H, Kato I. Purification of sulfated fucoglucuronomannan lyase frombacterial strain of fucobacter marina and study of appropriate conditions for its enzymedigestion. Marine Biotechnology,2003,5(4):380~387
    [143] Ivanova P E, Sawabe T, Hayashi K, et al. Pseudoalteromonas issachenkonii sp. nov., abacterium that degrades the thallus of the brown alga fucus evanescens. InternationalJournal of Systematic and Evolutionary Microbiology,2002,52(1):229~234
    [144] Alexeeva Y V, Ivanova E P, Bakunina I Y. Optimization of glycosidases production byPseudoalteromonas issachenkonii KMM3549T. Letters in Applied Microbiology,2002,35(4):343~346
    [145]蔡敬民,吴茜茜,吴克,等.海洋真菌岩藻多糖酶的固态发酵条件研究.菌物系统,2003,22(3):441~444
    [146]蔡敬民,吴克,刘斌,等.海洋真菌Dendryphiella Arenaria TM94产岩藻多糖酶发酵及酶学性质.生物学杂志,2003,20(2):14~16
    [147] Kusaykin M I, Burtseva Y V, Svetasheva T G, et al. Distribution of O-Glycosylhydrolasesin marine invertebrates. Enzymes of the marine mollusk Littorina kurila that catalyzefucoidan transformation. Biochemistry(Moscow),2003,3(68):317~324
    [148] Kusaykin M I, Chizhov A O, Nedashkovskaya O I, et al. A comparative study of specificityof fucoidanases from marine microorganisms and invertebrates. Journal of AppliedPhycology,2006,18(3-5):369~373
    [149] Thanassi N M, Nakada H I. Enzymic degradation of fucoidan by enzymes from thehepatopancreas of abalone, Haliotus species. Archives of Biochemistry and Biophysics,1967,118(1):172~177
    [150] Somogyi M. Notes on sugar determination. Journal of Biological Chemistry,1951:19~23
    [151] Norton N. A photometric adaptation of the Somogyi method for the determination ofglucose. Journal of biological chemistry,1944,153:375~380
    [152]王静雪.Alteromonas sp.nov. SY37-12菌株产生的琼胶酶酶学性质及酶解产物的分析:
    [博士学位论文].青岛:中国海洋大学,2004
    [153] Soedjak H S. Colorimetric determination of carrageenans and other anionic hydrocolloidswith methylene blue. Analytical chemistry,1994,66(24):4514~4518
    [154]刘红英,薛长湖,李兆杰,等.海带岩藻聚糖硫酸酯测定方法的研究.青岛海洋大学学报(自然科学版),2002,32(2):236~240
    [155]宋亮,曹龙奎,刁静静,等.玉米ACE抑制肽水解酶的筛选及酶解条件的优化.食品工业科技,2012,33(16):204~212
    [156]王共明,张健,王茂剑,等.仿刺参卵酶解工艺条件优化.食品科学,2012,33(23):193~198
    [157]杨青丹,胡婷春.稻草秸秆酶解工艺优化研究.食品与发酵科技,2010,46(5):24~27
    [158]苗建银,吉宏武,邵海艳,等.响应面法优化近江牡蛎肉酶解工艺参数.食品工业科技,2009,30(5):158~161
    [159]吕传萍,李学英,杨宪时,等.南极磷虾酶解工艺优化及模型建立.食品科学,2011,32(18):142~147
    [160]王晓玲,马美湖,蔡朝霞,等.二次正交旋转组合设计法优化咸蛋清酶解条件.食品工业科技,2010,31(1):227~230
    [161]李琳.鳙鱼蛋白控制酶解及酶解物抗氧化研究:[博士学位论文].广州:华南理工大学,2006
    [162]侯清娥.基于神经网络的牡蛎呈味肽制备及呈味特性研究:[硕士学位论文].湛江:广东海洋大学,2011
    [163]马锐.人工神经网络原理.北京:机械工业出版社,2010.1~10
    [164]王莹,栾天奇,朴美子.基于神经网络和遗传算法的醋酸发酵培养基优化.中国食品学报,2012,12(5):88~94
    [165] Garrido L, Gomez S. Analytical interpretation of feed-forward nets outputs after training.International Journal of Neural Systems,1996,7(1):19~27
    [166] Hornik K, Stichcombe M, White H. Multilayer feedforward networks are universalapproximators. Neural networks,1989,5(2):359~366
    [167]付强.基于神经网络的洋葱伯克霍尔德菌脂肪酶发酵过程建模:[硕士学位论文].武汉:华中科技大学,2009
    [168]史仲平,潘丰.发酵过程解析、控制与检测技术.北京:化学工业出版社,2005.103~134
    [169] Holland J H. Genetic algorithms and machine learning. Machine Learning,1962,2-3(3):95~99
    [170]李续武,雷英杰,张善文.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005.146~207
    [171] Sugeno M, Yasukawa T. A fuzzy-logic-based approach to qualitative modeling. IeeeTransactions on Fuzzy Systems,1993,1(1):7~31
    [172]刘勇,康立山,陈毓屏.非数值并行算法——遗传算法.北京:科学出版社,1997.1~30
    [173]吴瑞.基于遗传算法的模糊神经网络控制器的优化以及MATLAB与VC数据交换的研究:[硕士学位论文].西安:西安理工大学,2007
    [174]飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计.北京:电子工业出版社,2003.
    [175]丛爽.面向MATLAB工具箱的神经网络理论与应用.安徽合肥:中国科技技术大学出版社,1998.142~169
    [176]蔡妙英,东秀珠.常见细菌鉴定系统手册.北京:科学出版社,2001.66~127
    [177] Dubois M, Gilles K A, Hamilton J K. Colorimetric method for determination of sugars andrelated substances. Analytical Chemistry,1956,28(3):350~356
    [178] Bernardet J F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxaof the family Flavobacteriaceae and emended description of the family. InternationalJournal of Systematic and Evolutionary Microbiology,2002,52(3):1049~1070
    [179] Goodfellow M, O'Donnell A G. Handbook of New Bacterial Systematics. London:Academic Press,1993.3~54
    [180]李建涛.产氨基酰化酶菌株的选育及发酵条件的优化:[硕士学位论文].无锡:江南大学,2006
    [181] Bollag D M, Rozycki M D, Edelstein S J. Protein Methods (2nd Edition). New York:Wiley-Liss,1996.107~139
    [182] Linhardt R J. Analysis of glycosaminoglycans with polysaccharide lyases. Current Protocolsin Molecular Biology,2001, Chapter17: t13~t17
    [183] Alencar R B, Biondi M M, Paiva P M G, et al. Alkaline proteases from the digestive tract offour tropical fishes. Brazilian Journal Food Technology,2003,6(2):279~284
    [184] Ali H N E, Hmidet N, Bougatef A, et al. A laundry detergent-stable alkaline trypsin fromstriped seabream (Lithognathus mormyrus) viscera: purification and characterization.Jounal of Agricultural and Food Chemistry,2009,57(22):10943~10950
    [185]任俊凤,任婷婷,朱蓓薇.河豚鱼皮胶原蛋白肽的提取及其抗氧化活性的研究.中国食品学报,2009,9(1):77~83
    [186]许雅娟,赵艳景,胡虹.邻苯三酚自氧化法测定超氧化物歧化酶活性的研究.西南民族大学学报(自然科学版),2006,32(6):1207~1212
    [187] Cotelle N, Bernier J L, Catteau J P. Antioxidant properties of hydroxyl-flavones. FreeRadical Biobgy and Medicine,1996,20(1):35~43
    [188] Ali B, Mohamed H, Rafik B, et al. Antioxidant and free radical-scavenging activities ofsmooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinalproteases. Food Chemistry,2009,114(4):1198~1205
    [189]肖军霞,黄国清,仇宏伟,等.红树莓花色苷的提取及抗氧化活性研究.食品科学,2011,32(8):15~18
    [190] Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcinemyofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry,2003,51(12):3661~3667
    [191] Qi H M, Zhao T T, Zhang Q B, et al. Antioxidant activity of different molecular weightsulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of AppliedPhycology,2005,17(6):527~534
    [192]王钦德,杨坚.食品试验设计与统计分析.北京:中国农业大学出版社,2003.330~375
    [193]李艳红.鹰嘴豆蛋白酶解物的制备及其抗氧化肽的研究:[博士学位论文].无锡:江南大学,2008
    [194]邓淑芳,白敏冬,白希晓,等.羟自由基特性及其化学反应.大连海事大学学报,2004,30(3):62~64
    [195]王莉娟.大豆肽的制备及其体内外抗氧化活性研究:[硕士学位论文].无锡:江南大学,2008
    [196]王懋存.中华真地鳖抗氧化活性肽的分离及鉴定:[硕士学位论文].青岛:青岛农业大学,2012
    [197]林琳.鱼皮胶原蛋白的制备及胶原蛋白多肽活性的研究:[博士学位论文].青岛:中国海洋大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700