用户名: 密码: 验证码:
海藻酸钠理化性质研究和特种品种制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻酸钠作为天然生物大分子,由于其立体结构的特殊性,表现出特殊的物理化学性质,具有可生物降解、良好的生物相容性、和生物黏附性等特性,从而广泛地应用于医药和生物技术等领域。本文用热力学、光谱学等方法对海藻酸钠凝胶机理进行了分析。并对海藻酸钠的结构组成和特种海藻酸钠品种的制备进行了探讨。
     用等温滴定量热法研究了钙锌离子与海藻酸钠相互作用的热力学过程。量热滴定拟合结果表明,Ca~(~(2+))与海藻酸钠相互作用时有两种结合位点,分别对应K_1=1.21E7(L·mol~(-1)) ,ΔS_1=141.84(J·mol~(-1)·K~(-1)) ,ΔH_1=1.89(kJ·mol~(-1)) ; K_2=2.90E4(L·mol~(-1)),ΔS_2=79.08(J·mol~(-1)·K~(-1)),ΔH_2=~(-1).84(kJ·mol~(-1))。锌与海藻酸钠相互作用时只有一种结合位点,结合常数K=9472(L·mol~(-1)) ,熵变ΔS=128.95(J·mol~(-1)·K~(-1)),焓变ΔH=15.8(kJ·mol~(-1))。钙与海藻酸钠的相互作用比锌与海藻酸钠的相互作用强。扫描电镜照片表明,海藻酸锌凝胶比海藻酸钙凝胶交联点多,空腔比较小,腔与腔之间的隔膜比较多。
     用圆二色谱对海藻酸钠与钙锌离子相互作用的稳态溶液-凝胶过程进行了研究,结果表明该过程分前后两个阶段,在临界点之前第一阶段内,海藻酸钠与阳离子生成的凝胶配合物结构在线性变化范围内是相同的,同时速度和机理也是一样的。对海藻酸钠与钙锌离子的选择识别和相互作用研究表明,钙离子与海藻酸钠的G、M单元相互作用差别很大,锌离子与G、M单元相互作用差别比较小。锌离子对G、M单元的识别作用不如钙离子。通过四个不同组成的海藻酸钠样品圆二色CD信号随温度变化的谱图,结合X-射线衍射、13C-NMR技术证明海藻酸钠中存在双螺旋结构的功能微区。G段形成的双螺旋功能微区结构,随温度发生有序-无序可逆转变。
     海藻酸钠与二价阳离子凝胶时会发生膨胀收缩现象。对Cu~(2+)、Ca~(2+)、Zn~(2+)离子来说,膨胀收缩程度的大小,与离子大小,成键电子轨道等离子性质有关。且膨胀和收缩是可逆的。
     在海藻酸钠与钙离子结合过程中,量热反应的第一类结合位点,对应于离子量对圆二色谱影响的第一阶段线性部分,钙镶嵌于已存在的螺旋蛋盒空腔中,相似于分子内交联,使粘度有稍微下降的趋势。半蛋盒结构以及二聚体聚集体形成过程,对应于量热反应的第二类结合位点,在圆二色CD谱图上,对应于第二阶段的斜率比值比第一阶段小。在这一过程中,以分子间交联为主,体系粘度急剧上升。Cu~(2+)、Ca~(2+)、Zn~(2+)与海藻酸钠相互作用时,体系的焓变、熵变符合等动力学关系,说明三种离子与海藻酸钠的相互作用都是静电离子相互作用。
     古罗糖醛酸裂解酶(G-lyase)降解poly-G-blocks所得七种寡糖的产率分别为39.5%、22.1%、21.3%、2.2%、2.4%、8.3%与1.2%。结构鉴定结果说明,产物中含有一种二聚糖ΔG(39.5%);二种三聚糖(ΔGG,22.1%;ΔMG,21.3%);产物中不含+ΔM,ΔMM或者ΔGM;产物中甘露糖醛酸的含量从9%增加到10.68%,M含量增加了18.7%。根据以上实验结果推测裂解位点位于两个古罗糖醛酸之间(-G-G-),使得一个古罗糖醛酸变成不饱和糖醛酸位于产物的非还原末端,而另一个古罗糖醛酸位于产物的还原末端。这些结果验证了G-lyase是古罗糖醛酸专一裂解酶。此外从产物含量可知,五聚糖只占3%,六聚糖几乎没有检测到,说明G-lyase酶所能识别的最长链段为五聚糖。用~(13)C-NMR结合马尔可夫(贝努利)统计理论对海藻酸钠LVCR的结构进行分析,结果表明LVCR中G单元含量为39.77%。
Sodium alginate,a natural biomolecule,shows special physicochemical properties due to steric structure characterity.Being biodegradable,biocompliance and bioadhesive,alginate has being widely used in the biological and pharmaceutical fields.For better application of alginate,it is necessary that we study its sol-gel mechanism with thermodynamic and spectral methods from the physicochemical properties.Simultaneously,alginate composition showed be determined and preparation of its special samples be studied.
     Thermodynamics of the interaction of calcium and zinc ions with sodium alginate has been studied by isothermal titration Calorimetry.The results showed that there are two sites when calcium ion complexates with alginate, with K_1=1.21E7(L·mol~(-1)) ,ΔS_1=141.84(J·mol~(-1)·K~(-1)) ,ΔH_1=1.89(kJ·mol~(-1)) ; K_2=2.90E4(L·mol~(-1)),ΔS_2=79.08(J·mol~(-1)·K~(-1)),ΔH_2=~(-1).84(kJ·mol~(-1)).There is only one site when zinc ion interacts with alginate,with the binding affinity K=9472(L·mol~(-1)),entropyΔS=128.95(J·mol~(-1)·K~(-1)),enthalpyΔH=15.8(kJ·mol~(-1)).The binding affinity of calcium ion complexating with alginate are greater than zinc ion.The scanning electron microscopy(SEM) micrograph showed that there are more linking points ,smaller cavities,and more septa between the cavities in Zn-alginate gel than in Ca-alginate gel.
     The steadystate interaction research of calcium and zinc ions with alginate during the sol-gel thransition by circular dichroism,show this process includes the former and latter two phases.During the first linear change scale, the structure of the gel-conjugate of alginate-metal ions is homological before the critical point.The rate and mechanism have the similar change.The research of selectivity,recognition and interactions of calcium and zinc ions with alginate, shows that the interactions of calcium ion with guluronic and mannuronic units are more different than that of zinc ion.The selectivity and recogonition of zinc ion for guluronic and mannuronic units are less than calcium ion.The circular dichroism spectra with temperature of four different composition alginate,combined with X-ray diffraction and 13C-NMR spectra technology,showed that there are functional microdomains in alginate. The functional microdomains formed by guluronate units (G),show order-disorder transitions with temperature.
     Swelling and shrinking,when alginate gels with divalent cations.For cupric,calcium and zinc ions,the swelling and shrinking degree are related to the cationic properties,such as the ionic radius and bond orbits.Furthermore,swelling and shrinking are reversible.
     The primary ITC binding sites for alginate interaction with calcium ion correspond to the first linear scale in the CD spectra of intensity variation with calcium-ion concentration.The calcium ions inlay in the“egg-box”cavities,similar with the intramolecular linkage,leading a little decrease for the viscosity.The formation process of the half-egg-box structure and dihelix aggrations ,correspond to the second ITC binding sites.The slope ratio for the second phase are smaller than the first.During this process,the intermolecular linkage are dominating,and the relative viscosity hoiks.Calcium,zinc,cupric ions interact with alginate,their enthalpies and ehtropies show isokinetic relationship,confirming that their interaction mechanisms are the same.
     Seven oligosaccharides were gained from poly-G-blocks hydrolyzed by guluronate lyase,with yields of 39.5%,22.1%,21.3%,2.2%,2.4%,8.3% and 1.2%,respectively.Structural elucidation showed that only one disaccharide(ΔG,39.5%) and two trisaccharides(ΔGG,22.1%;ΔMG,21.3%) were separated from the mixture.Based on the fact that noΔM,ΔMM orΔGM fractions were separated,we postulated that the hydrolysis mainly occurred between two guluronic acids(-G-G-) making one guluronic acid(G) residue on the reducing end and an unsaturated guluronic acid(Δ) in the nonreducing end.These results proved that the G-lyase was a guluronic acid specific lyase.Furthermore,a very low yield of pentasaccharide(3%) and no trace amount of hexasaccharide indicated that the minimal recognition oligosaccharides of G-lyase should be pentasaccharide.The structure composition of sodium alginate LVCR was analyzed by ~(13)C-NMR with Markov(Bernoullian) statistics,the result showed that the amount of G units in alginate LVCR is 39.77%.
引文
[1] A. Martinsen, I. Storr?, G. Skják-Br?k. Alginate as Immobilization Material:Ⅲ. Diffusional Propoerties. Biotechnology and Bioengineering, 1992, 39: 186~194
    [2] G. Skják-Br?k. Alginate:biosyntheses and some structure-function relationships relevant to biomedical and biotechnological applications. Biochemistry of Plant Polysaccharides, 1992, 20: 27~33
    [3] I. Donati, A. Gamini, G. Skják-Br?k etc.. Determination of the diadic composition of alginate by means of circular dichroism: a fast and accurate improved method. Carbohydrate Research, 2003, 338: 1139~1142            
    [4] H. Grasdalen, B. Larsen, O. Smidsr?d. 13C-NMR studies of monomeric composition and sequence in alginate. Carbohydr. Res., 1981, 89: 179~191
    [5] H. Grasdalen. High-field 1H-n.m.r. spectroscopy of alginate: sequential structure and linkage conformation. Carbohydr. Res., 1983, 118: 255~260
    [6] L. K. Jang, D. Nguyen, G. G. Geesey. Selectivity of Alginate Gel for Cu vs Co. Water Res., 1995, 29: 307~313
    [7] A. David Rees, E. Jane Welsh. Secondary and Tertiary Structure of Polysaccharides in Solutions and Gels. Angew.Chem. Int. Ed. Engl., 1977, 16: 214~224
    [8] R. Kohn. Ion binding on polyuronates-alginate and pectin. Pure Appl. Chem., 1975, 42: 371~397
    [9] H. Arne. Ion Exchange Properties of Alginate Fractions. Acta Chem. Scand., 1959, 13(6): 1250~1251
    [10] A. Haug, B. Larsen. Quantitative Determination of the Uronic Acid Composition of Alginates. Acta Chem. Scand. 1962, 16(8): 1908~1918
    [11] S. Cohen, E. Lobel, A. Trevgoda. A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. Journal of Controlled Release, 1997, 44: 201~208
    [12]马萍,孙淑英,刘东春等.海藻酸钠理化参数的测定.中国海洋药物,2000,19(3):54~56
    [13]黄来发,洪文生,黄恺.食品增稠剂,北京:中国轻工业出版社,2000,p.11~45
    [14]黄知清,严兴洪.海藻研究开发的发展概述.海洋技术,2002,21(3):22~25
    [15]李来好,陈培基,李利东等.海带膳食纤维的提取与功能性试验.青岛海洋大学学报,2003,33(5):687~694
    [16]王丽丽,唐学玺,王蒙等.褐藻酸降解菌在海带绿烂病发生中的作用.青岛海洋大学学报,2003,33(2):245~248
    [17]江晓路,刘岩,胡晓珂等.Vibrio sp. 510产褐藻胶裂合酶的底物专一性分析.中国海洋大学学报,2004,34(1):55~59
    [18] D. Mahaveer Kurkuri, G. Sangamesh Kumbar, M. Tejraj Aminabhavi. Synthesis and Characterization of Polyacrylamide-Grafted Sodium Alginate Copolymeric Membranes and Their Use in Prevaporation Separation of Water and Tetrahydrofuran Mixtures. Journal of Applied Polymer Science, 2002, 86: 272~281
    [19]杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望.青岛海洋大学学报,2003,33(1):053~057
    [20]姚勇,雷富.海洋高新技术产业化进程中产品标准的作用.海洋技术,2003,22(4):92~95
    [21]秦嗣仁.计量认证在海洋事业发展中的作用.海洋技术,2003,22(4):89~91,96
    [22]齐连明,徐伟,王连队.加速海洋技术产业化探讨.海洋技术,2003,22(1):87~89
    [23]姜山.近几年海洋药物的临床应用与研究.中国海洋药物,2001,20(1):42
    [24]施志仪.海带褐藻糖胶的药理活性.上海水产大学学报,2000,9(3):268
    [25]廖建民.海带多糖中不同组分降血脂及抗肿瘤作用的研究.中国药科大学学报,2002,33(1):55
    [26]詹林盛.海带多糖的免疫调节作用.中国生化药物杂志,2001,22(3):116
    [27] Zvyagintseva, N. Tatiana. Inhibition of complement activation by water-soluble polysaccharides of some fareastern brown seaweeds. Comp Biochem. Physiol, Part C: Toxical Pharmacol, 2000, 126(3): 209
    [28] X. J. Yan. Fucoxanthin as the Major Antioxidant in Hijikia fusiformis, a commen Edible Seaweed. Biosci. Biotechnol. Biochem., 1999, 63(3): 605
    [29]田晓华,丛建波.褐藻硫多糖清除活性氧自由基作用及动力学的ESR研究.营养学报, 1997, 19(1): 32
    [30]朱海波.硫酸多糖抗血管平滑肌细胞增殖作用机理的研究进展.中国海洋药物, 2001, 20(5): 35
    [31]朱海波.海洋硫酸多糖DPS对大鼠血管平滑肌细胞增殖的影响.中国海洋药物, 2000, 19(2): 18
    [32] Muto, Shigeaki. Polysaccharides from marine algae and antiviral drugs containing the same as active ingredient. Eur. Pat. Appl. EP295956, 21 Dec 1988
    [33]李凡.褐藻糖胶体外抗病毒作用研究.白求恩医科大学学报, 1995, 21(3): 255.
    [34]李德远.海带岩藻糖胶对小鼠的高胆固醇血症防治作用.食品科学, 1999, 20(1): 45
    [35]李福川.三种海带多糖的降糖作用.中国海洋药物, 2000, 19(5): 12
    [36]纪明侯.海藻化学,北京:科学出版社, 1997: p.208, p.296
    [37]邓槐春.海带多糖的药理作用.中草药, 1987, 18(2): 15
    [38]邓槐春.海带多糖的放射防护和毒理效果.中华放射医学与防护杂志,1987, 7(1): 49
    [39]彭波.褐藻多糖硫酸酯的抗凝和纤溶活性.中草药, 2001, 32(11): 1015
    [40]刘志峰.五种海藻多糖体外抗血小板聚集作用的观察.中国海洋药物, 2001, 20(2): 36
    [41]关美君,林文翰,丁源.海洋药物-二十一世纪中国药学研究的热点.中国海洋药物, 2001, 20(1): 1
    [42] H. Itoh, H. Noda. Antitumor activity and immunological properties of marine algae polysaccharides, especially fucoidan, prepared from Sargassumthunbergn of phaeophyceae. Anticancer Res., 1993, 13: 2045
    [43]吴金华.褐藻及褐藻胶的研究现状和进展.盐城工学院学报, 1999, 12(4): 52
    [44]杨为中.藻酸双酯钠对眼睑黄色瘤的疗效评价.临床眼科杂志, 1995, 3(3): 157
    [45]刘莉.藻酸双酯钠的临床新用途.天津医学, 1996, 8(4): 27
    [46] J. H. Choi. Effects of sea tangle (Laminaria japonica) and fucoidan components on the attacks of oxygen radicals in kidney. Journal of the Korean Fisheries Society, 1999, 32(6): 758
    [47] J. H. Choi. Effects of sea tangle (Laminaria japonica) extract and fucoidan drinks on oxygen radicals and their scavenger enzymes in stressed mouse. Journal of the Korean Fisheries Society, 1999, 32(6): 764
    [48] C. H. Xue. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. Journal of Applied Phycology, 2001, 13: 67
    [49]李兆杰.低分子量海带岩藻聚糖硫酸酯的清除活性氧自由基和体内抗氧化作用.水产学报, 2001, 25(1): 64.
    [50]大连雅威特生物工程有限公司,抗高血压低聚海藻酸盐技术,国际专利, PCT/CN99/00202,2004-07-14
    [51]季宇彬,李文举,谷春山.复方海藻多糖剂抗癌作用的实验研究.中国海洋药物, 1994, 13(3): 20~24
    [52] M. E. David, Stancioff, Dirnitri et al.. Effect of acid hdrolysis on the molecular weight of kappa carrageenan by GPC-LS. Carbohydr. Polym. 1996, 31(1/2): 83
    [53] S. I. Nishimura, H. Kai, K. Shibada et al.. Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates. Carbohydrate Research, 1998, 306: 427
    [54] R. Takano, S. Yoshikawa et al.. Sulfation of polysaccharides using monomethyl sulfate. J Carbohydrate Chem., 1996, 15(14): 449
    [55]郑俊民.药用高分子材料学,北京:中国医药科技出版社, 2000, p.132
    [56] S. M. Morgan, A. Aymen, Shamkhani et al. Alginates to therapeutic agents containing primary amine groups. International Journal of Pharmaceutics 1995, 122: 121~128
    [57] D. E. ChickeringⅢ, J.S. Jacob, T.A. Desai. Bioadhesive microspheres:Ⅲ, An in vivo transit and bioavailability study of drug-loaded alginate and poly(fumaric-co-sebacic anhydride) microspheres. Journal of Controlled Release, 1997, 48: 35~46
    [58] L. W. Chan, W. Paul, S. Heng. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterials 2002, 23: 1319~1326
    [59] M. Gonzalez, Ferreiro, L. Tillman et al.. Characterization of alginate/poly-L-lysine particles as antisense oligonucleotide carriers. International Journal of Pharmaceutics, 2002, 239: 47~59
    [60] T. Gilchrist, A. Martin. Wound treatment with Sorbsan?-an alginate wound dressing. Biomaterials 1994; 15: 317~320
    [61]陆彬.药物新剂型与新技术,北京:人民卫生出版社, 2002: p.260
    [62] V. R. Sinha, R. Kumria. Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics, 2001, 224: 19~38
    [63] L. Yang, J. S. Chu, J. A. Fix. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. International Journal of Pharmaceutics, 2002, 235: 1~15
    [64]张正全,陆彬.口服结肠定位给药系统.中国药物杂志, 2000, 35(1): 221~223
    [65] V. Pillay, R. Fassihi. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract,Ⅰ. Comparision of pH-responsive drug release and associated kinetics. Journal of Controlled Release, 1999, 59: 229~242
    [66] V. Pillay, R. Fassihi. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract,Ⅱ. Physicochemical characterization of calcium-alginate, calcium-pectinate and calcium-alginate-pectinate pellets. Journal of Controlled Release, 1999, 59: 243~256
    [67] A. Martinsen. Alginate as Immobilization Material:Ⅲ. Diffusional Properties. Biotechnology and Bioengineering, 1992, 39: 186~194
    [68] B. Thu, P. Bruheim, T. Espevik et al.. Alginate polycation microcapsules,Ⅰ. Interaction between alginate and polycation. Biomaterials, 1996, 17(10): 1031~1040
    [69] F. Edwards-Lévy, M. C. Lévy. Serum albumin-alginate coated beads: mechanical properties and stability. Biomaterials 1999, 20: 2069~2084
    [70] L.W. Chan, H.Y. Lee, P.W.S. Heng. Production of alginate microspheres by internal gelation using an emulsification method. International Journal of Pharmaceutics, 2002, 242: 274~282
    [71] L.W. Chan, Y.Lin, P.W.S. Heng. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. International Journal of Pharmaceutics, 2002, 242: 255~258
    [72] M. Carin, D. Barthes-Biesel, F. Edwards-Lêvy. Compression of Biocompatible Liquid-Filled HAS-Alginate Capsules: Determination of the Membrane Mechanical Properties. Biotechnology and Bioengineering, 2003, 82(2): 207~212
    [73] H. Zimmermann, M. Hillg?rtner, B. Manz. Fabrication of homogeneously cross-linked, functional alginate microcapsules validated by NMR-, CLSM- and AFM-imaging. Biomaterials 2003, 24: 2083~2096
    [74]陆彬.药物新剂型与新技术,北京:人民卫生出版社, 2002, p.171
    [75]陆彬.药物新剂型与新技术,北京:人民卫生出版社, 2002, p.514
    [76] S. De, D. Robinson. Polymer relationships during preparation of chitasan-alginate and poly-l-lysine-alginate nanosphrers. Journal of Controlled Release, 2003, 89: 101~112
    [77] A. Sch?n, M. M. Ingaramo, E. Fretre. The Binding of HIV-Ⅰprotease inhibitors to human serum proteins. Biophysical Chemistry, 2003, 105: 221~230
    [78] Y. S. Choi, S. R. Hong, Y. M. Lee. Study on gelatin-containing artificial skin:Ⅰ.Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999, 20: 409~417
    [79] D. Thacharodi, K. P. Rao. Rate-controlling biopolymer membranes as transdermal delivery systems for nifedipine: development and in vitro evaluations. Biomaterials, 1996, 17: 1307~1311
    [80]于传兴.低分子量藻酸盐及其制备方法和用途,中国专利,99114615.8.,2003-11-30
    [81] H. Zheng, H. Zhang, Q. Zhang. Salt effects on the cross-linking mechanism of cupric-induced sol-gel transition in alginate solutions. Carbohydrate Polymers, 1998, 35: 215~221
    [82] I. S. Braccini, R. P. Grasso, S. Perez. Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions: a molecular modeling investigation. Carbohydrate Research, 1999, 317: 119~130
    [83]柴之芳,祝汉民.微量元素化学概论,北京,原子能出版社,1994, 275
    [84] S.J.Lippard, J.M.Berg,席振峰.生物无机化学原理,北京:北京大学出版社, 2000: p.1
    [85] H.A.Schroeder;陈荣三,张祖喧译著.痕量元素与人.科学出版社,北京,1979,p.42
    [86] S.J.Lippard, J.M.Berg,席振峰.生物无机化学原理,北京:北京大学出版社, 2000: p.14
    [87] H. Zheng, Q. Zhang. Critical behavior of viscosity for alginate solutions near the gelation threshold induced by cupric ions. J.Chem.Phys., 1996, 105(17): 7746~7752
    [88] H. Zheng, K. Jiang. Solvent effects on sol-gel transition of alginate solutions by addition of cupric ions. Chemical Physics, 1996, 211: 507~513
    [89] J.B.Xu, J.P.Bartley. Preparation and characterization of alginate-carrageenan hydrogel films crosslinked using a water-soluble carbodiimide(WSC). Journal of Membrane Science, 2003, 218: 131~146
    [90] C. Hammann, A. Cooper, M. David et al.. Thermodynamics of Ion-Induced RNA Folding in the Hammerhead Ribozyme; An Isothermal Titration Calorimetric Study. Biochemistry, 2001, 40: 1423~1429
    [91] D. Thom, H. Gregor, T. Grant etc.. Characterisation of Cation Binding and Gelation of Poly-Uronates by Circular Dichroism. Carbohydrate Research, 1982, 100: 29~42
    [92] D. A. Rees. Polysaccharide Shapes and Their Interactions-Some Recent Advances. Pure & Appl. Chem., Vol.53, 1~14
    [93]鲁子贤,催涛,施庆洛.圆二色性和旋光色散在分子生物学中的应用,北京:科学出版社,1987,2
    [94]刘海洋,应晓,胡希明等.苯丙氨酸桥联金属双卟啉的诱导圆二色光谱研究.光谱学与光谱分析,2000, 20(4): 495~497
    [95]张汉威,蔡晴,贝建中等.包埋于PLGA膜中的BSA海藻酸钙微球的制备及其释放行为.高分子学报,2004,3:454~457
    [96]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装.天津:南开大学出版社,2003,p.598~603
    [97]项瑾,梁毅,陈楠.等温滴定量热法和荧光滴定法研究十二烷基硫酸钠与纤维素酶的结合.化学学报,2003, 61(12): 1949~1954
    [98]焦铭,梁毅,李洪涛等.脲和盐酸胍诱导过氧化氢酶去折叠的研究.化学学报,2003, 61(9): 1362~1368
    [99]赖兵,李颖,来鲁华.古细菌RNase HⅡ与金属离子结合的热力学研究.物理化学学报,2001, 17(10): 865~867
    [100] J. E. Ladbury, B. Z. Chowdhry. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chemistry&Biology, 1996, 3: 791~801
    [101]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装.天津:南开大学出版社,2003,p.501
    [102]张强,李莉,刘育.新型臂式氮杂冠醚的合成及其多价螯合的热力学特征.化学学报,2004, 62(5): 514~517
    [103] B. Amsden. Diffusion characteristics of calcium alginate gels. Biotechnol. Bioeng., 1999, 65: 605-610
    [104] K.S. Hairou, W. M. Gethami, R.M.Hassan. Kinetics and mechanism of sol-gel transformation between sodium alginate polyelectrolyte and some heavy divalent metal ions with formation of capillary structure polymembranes ionotropic gels. Journal of Membrane Science, 2002, 209: 445~456
    [105] J.E.Leffler. Kinetics of ion exchange on resin exchangers. J.Org.Chem., 1955, 20: 1202
    [106]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装.天津:南开大学出版社,2003,p.506
    [107]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装.天津:南开大学出版社,2003,p.564
    [108]纪明侯.海藻化学,北京:科学出版社,2004,p.264~265
    [109] E. R. Morris, D. A. Rees, D. Thom. Characterization of Polysaccharide Structure and Interactions by Circular Dichroism: Order-Disorder Transition in the Calcium Alginate System. Journal of the Chemical Society-Chemical Communication, 1973, (7): 245~6
    [110]鲁子贤,催涛,施庆洛.圆二色性和旋光色散在分子生物学中的应用.北京:科学出版社,1987,p.17
    [111] J.N.Liang, E.S.Stevens. Spectroscopic Origin of Conformation-Sensitive Contributions to Polysaccharide Optical Activity: Vacuum-Utraviolet Circular Dichroism of Agarose. Biopolymers, 1979, 18: 327~333
    [112]朱盈权,李俊义.实用分析化学,成都:四川人民出版社,1981,p.289
    [113] Z. Wang, Q. Zhang, M. Konno et al.. Sol-gel Transition of Alginate Solution by the Addition of Various Divalent Cations: 13C-NMR Spectroscopic Study. Biopolymers, 1993, 33: 703~711
    [114]纪明侯.海藻化学,北京:科学出版社,2004,p.241~242
    [115]纪明侯.海藻化学,北京:科学出版社,2004,p.261
    [116]纪明侯.海藻化学,北京:科学出版社,2004,p.250
    [117]何曼君,陈维孝.高分子物理,上海:复旦大学出版社,1990, p.129~132
    [118]何曼君,陈维孝.高分子物理,上海:复旦大学出版社,1990, p.178~179
    [119]何曼君,陈维孝.高分子物理,上海:复旦大学出版社,1990, p.123
    [120]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装.天津:南开大学出版社,2003,p.615~616
    [121] P.Aslani, R.A.Kennedy. Effect of gelation condition and dissolution media on the release of paracetamol from alginate gel beads. Int.J.Pharm., 1996, 79: 11-19
    [122] I.C.M. Dea, A. Morrisom. The interaction of some polysaccharides. Adv.Carbohydr.Chem.Biochem., 1975, 31: 241
    [123] J.N.Liang, E.S.Stevens. Spectroscopic origin of conformation-sensitive contributions to polysaccharide optical activity: Vacuum-ultraviolet circular dichroism of agarose. Biopolymers, 1979, 18: 327~333
    [124] U.Lin, M.T.Pillay. International Review of Science, Organic Chemistry Series 2, Vol.7, Carbohydrates, London: Butterworths, 1976: 283
    [125] S.Arnott, W.E.Scott, D.A.Rees. Characterization of sodium alginate and poly(vinyl alcohol) blend membranes. J.Mol.Biol., 1974, 90: 253~267
    [126] H. C. Wu, A.Sarko. Stoichiometric evidence of a specific dimerisation process in alginate gelation. Carbohyd. Res., 1978, 61: 27~40
    [127] E.D.T.Atkins, I.A.Nieduszynski. 13C-NMR Spectroscopic study of alginate solution. Biopolymers, 1973, 12: 1865~1879
    [128] W.Mackie. Molecular basis for some physical properties of alginates in the gel state. Biochem.J., 1978, 125: 89
    [129] T.A.Bryce, A.A.McKinnon, E.R.Morris. Chain conformations in the sol-gel transitions for polysaccharide systems,and their characterization by spectroscopic methods. Faraday Discuss. Chem.Soc., 1974, 57: 221
    [130]周祖康,顾惕人,马季铭.胶体化学基础,北京:北京大学出版社,1996, p.318~329
    [131]宋世谟,王正烈,李文斌.物理化学(下册),北京:高等教育出版社,1995, p.449~454
    [132] B. Thu, P. Bruheim, T. Espevik. Alginate polycation microcapsules. Biomaterials, 1996, 17(11): 1069~1079
    [133] J.D.Sherwood, F.Risso. Rates of transport through a capsule membrane to attain Donnan equilibrium. Journal of Colloid and Interface Science, 2003, 263, 202~212
    [134] J.D.Sherwood, B.Craster. Transport of Water and Ions Through a Clay Membrane. Journal of Colloid and Interface Science, 2000, 230, 349~358
    [135] L.K.Jang, G.G.Geesey. Sorption Equilibrium of Copper by Partially-Coagulated Calcium Alginate Gel. Chem.Eng.Comm., 1990, 94, 63~77
    [136] K. Nakamura, T. Hatakeyama. Formation of the Glassy State and Mesophase in the Water-Sodium Alginate System. Polymer Journal, 1991, 23(4): 253~258
    [137] O. Smidesrod, A. Haug. The effect of divalent metal on the properties of alginate solutionⅠcalcium ion. 1965, 19: 329~340
    [138] C. Xiao, S. Gao, L. Zhang. Blend films from konjac glucomannan and sodium alginate solutions and their preservative effect. J. Appl. Polym. Sci., 2000, 77: 617~626
    [139] Z. Zhang, G. Yu, H. Guan et al.. Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibro sp. 510. Carbohydrate Research, 2004, 339, 1475~1481
    [140] Y. Matsubara, K. Iwasaki, T. Muramatsu. Action of poly(alpha-L-guluronate)lyase from Corynebacterium sp. ALY-1 strain on saturated oligoguloronates. Biosci.Biotechnol.Biochem., 1998, 62, 1055~1060
    [141] J. Boyd, J. R. Turvey. Structure Studies of Alginic Acid, Using a Bacterial Poly-α-L-guluronate Lyase. Carbohydrate Research, 1978, 66, 187~194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700