用户名: 密码: 验证码:
甜菊苷的酶促糖基化和水解反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菊糖是从甜叶菊中提取的系列高倍低热值甜味剂,同时兼具多种生物活性,是最理想的蔗糖替代品。甜菊苷(St)是甜叶菊提取物中含量最高的组分,但它的后苦涩味限制了它在食品、饮料等领域中的应用。本文以甜菊苷的脱苦及其高附加值衍生物开发为目的,分别利用多种糖基转移酶和水解酶催化转化甜菊苷,发掘糖酶的新催化性能,通过研究其差向催化行为和过程动力学,首先获得脱除了后苦涩味的甜菊苷葡萄糖基化合物,其次分别通过选择性水解甜菊苷中的三个葡萄糖基,得到多种自然界存在的稀少甜菊苷衍生物。同时初步考查了连续微波辐射在甜菊苷的转苷和水解反应中的应用。
     在糖基化反应中,环糊精葡萄糖基转移酶(CGTase)在实验所用糖基转移酶中的转苷活性最高。用来源于Paenibacillus macerans JFB05-01的α-CGTase催化St的转苷反应,得到6种以上转苷产物。利用聚丙烯酰胺凝胶柱和硅胶层析柱分离出转苷产物中味质最佳的转苷产物,即接枝一个葡萄基产物产物(St-Glu1)。优化了转苷反应条件:水为反应介质,底物比为m (淀粉水解液)∶m (St)=1.5∶1,加酶量15U/g St,60oC下反应3h可达平衡,St最高底物浓度高达150mg/mL,St的转化率为59.2%,St-Glu1的产率为32.4%。转苷产物经淀粉糖化酶水解0.75h后,转苷产物中St-Glu1含量提高1.6倍,St上连接3个以上葡萄糖基的转苷产物仅占1.1%。转苷产物甜度略微降低,但后苦涩味明显改善,并且在水中的溶解度提高60倍以上。但产物的热稳定性不如甜菊苷和莱鲍迪苷A,120oC下开始分解。
     在糖基水解酶选择性催化甜菊苷的水解反应中,来源于Aspergillus sp.的β-半乳糖苷酶能够高选择性催化水解St的C13位槐糖基的β-1,2葡萄糖苷键得到悬钩子苷。该酶还表现出较弱的转苷活性,但即使在高浓度糖基供体的存在下,反应体系仍选择水解反应为主反应。该β-半乳糖苷酶具有较强的底物特异性,对莱鲍迪苷A、莱鲍迪苷C等St类似物的催化活性较弱,但能催化水解甜菊双糖苷制备甜菊单糖苷。水解最优条件为:60oC下,以水为介质,St的浓度为80mg/mL,加酶量为0.8KU/gSt时,反应72h,St的转化率为98.3%,Ru的产率为91.4%。Ca~(2+)、Co~(2+)、Mn~(2+)和Mg~(2+)能够提高酶的催化活性。水解反应的K_m和V_(max)分别为0.344mol/L和4315.1mol/L·min。制得的悬钩子苷性能优于市售从甜茶中提取的产品。与St相比,悬钩子苷甜度略微降低但溶解度大大提高;并且悬钩子苷对St具有增溶作用,3mg/mL的悬钩子苷溶液中,St的溶解度提高6.25倍。
     此外,来源于Kluyveromyces lactis的β-半乳糖苷酶可以选择性水解St中C19位糖酯键,得到甜菊双糖苷。37.5oC,底物浓度为25mg/mL,加酶量为16000NLU/g St,12h时St的转化率为99.5%。而来源于Sulfolobus sp.的β-半乳糖苷酶能够水解St所有三个糖苷键,得到甜菊醇。75oC,底物浓度为20mg/mL,加酶量为625U/g St,pH4.6下,反应6h后St最终转化率为99.0%,并有望实现反应耦合分离。
     初步考查了连续微波辐射对糖苷酶催化St转苷或水解反应的影响。仅来源于Paenibacillusmacerans JFB05-01的α-CGTase催化St转苷反应在微波辐射模式下表现出较高的催化活性。相同条件下,微波辐射比常规加热时催化效率提高了21.7倍,反应1min St的转化率可达32.6%。优化了连续微波辐射模式下反应条件:20W,1min,55oC,m (淀粉水解液)∶m (St)=1∶1,以水为溶剂,St初始底物浓度最高可达200mg/mL,加酶量为10U/g St时,转化率为52.5%,St-Glu1的含量为21.5%,当加酶量为1000U/g,反应1min St的转化率高达71.6%,St-Glu1的含量为23.7%。与常规加热下的催化反应相比,连续微波辐射下达到相同转化率的反应时间大大缩短,但连续微波辐射下更能促进高接枝产物的生成。
     除了甜度和溶解度外,实验比较了甜菊醇、异甜菊醇、悬钩子苷和甜菊双糖苷以及甜菊苷、莱鲍迪苷A和莱鲍迪苷C的羟基自由基清除能力,发现甜菊醇衍生物的糖基数量与羟基自由基清除能力相关。
Steviol glycosides are widely used as low-calorie intensive sweeteners obtained from Steviarebaudiana. They are the most ideal sucrose substitutes in nature and possess many bioactivities. Stevioside(St) is one of the main components in the extract; however, its bitterness aftertaste affects its application infood and beverage. The aim of this dissertation is to elimite the bitterness aftertaste of St and develop highvalue-added St derivatives. In this experiment, several glycosyltransferases and glycosyl hydrolases havebeen utilized to catalyze the conversion of St, and novel catalysis activities were found. Based on studies onthe catalysis behavior and process kinetics, transglycosylation products were obtained with improvedsweetness and no more bitterness aftertaste. Subsquntly, some rare St derivatives existed in nature wereprepared through regioselective hydrolysis of the three glycosidic linkages in St, respectivly. In addition,microwave irradiated transglycosylation and hydrolysis were investigated.
     The cyclodextrin glucosyltransferase (CGTase) showed the best transglycosylation activity among ofall assayed enzymes. In the transglycosylation catalyzed by α-CGTase from Paenibacillus maceransJFB05-01, more than6transglycosylation products were produced, and the mono-glucosyl stevioside(St-Glu1) presented the best taste. The optimized transglycosylation conditions were: the mass ratio ofstarch hydrolysate to St was1.5:1,150mg/mL St in DI water with15U/g St of the enzyme, the Stconversion and St-Glu1yield reached59.2%and32.4%in3h at60oC, respectively. The hydrolysis oftransglycosylated products with glucoamylase increased St-Glu1content1.6folds, and left the tri-glucosylstevioside and higher grafted St in a content less than1.1%.
     Enzymatic hydrolysis of St was studied using some glycosyl hydrolases. A natural sweetenerrubusosidewas prepared from the specific hydrolysis of β-1,2glucosidic linkage of St with β-galactosidasefrom Aspergillus sp. This β-galactosidase showed lower transglycosylation activity accompanying with thehydrolysis of St, even in the presence of additional donors. The β-galactosidase also possesses substratespecificity in hydrolysis. Analogues of St, such as rebaudioside A, rebaudioside C, etc. can’t be hydrolyzedusing the β-galactosidase. However, steviolmonoside was produced from hydrolysis of steviolbioside withthis enzyme. Optimal hydrolysis conditions were:60oC in DI water with a substrate concentration of80mg/mL, St conversion and rubusoside yield reached98.3%and91.4%in6h, respectively. The activity ofenzyme can be improved by Ca~(2+), Co~(2+), Mn~(2+)and Mg~(2+). The synthetic rubusoside tastes better than thecommercial rubusoside extracted from Rubus Suavissimus. rubusoside has a higher solubility than St, andcan improve the solubility of St. In a solution of3mg/mL rubusoside, the St solubility increased6.25folds.
     Subsequently, the ester linkage at C19of St was hydrolyzed selectively using the β-galactosidase fromKluyveromyces lactis with steviolbioside as the only hydrolysis product. St conversion reached99.5%at12h under37.5oC,25mg St/mL and16000NLU/g St. Besides of aforementioned transglycoslyationactivity, the β-galactosidase from Sulfolobus sp. can cleavage all three glycosides of St to release steviolThe conversion of St reached99.0%using20mg/mL of St and625U/g St of enzyme at pH4.6,75oC, in6h. The in-situ purification in the reaction could be realized because of the big difference between thesolubilities of products and materials.
     Microwave irradiation assisted transglycosylation and hydrolysis of St were investigated. Onlyα-CGTase from Paenibacillus macerans JFB05-01showed higher activity under irradiation comparing tothat with conventional heating, the catalytic efficiency under irradiation increased21.7folds under thesame conditions. The optimized transglycosylation conditions were:20W,55oC,1000U/g St of enzyme,the mass ratio of starch hydrolysate to St was1:1,200mg/mL of St, St conversion reached71.6%with23.7%of St-Glu1yield in1min. Microwave irradiation was more efficient than conventional heating for shortentime, but which does not favor to yield St-Glu1.
     Besides of sweetness and solubility, antiradical activity of steviol glycosides, steviol, isosteviol,rubusoside, steviolbioside, stevioside, rebaudioside A and rebaudioside C was compared. The amount ofglucose of steviol glycosides and antiradical activity was related.
引文
[1] Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, etc. Stevia rebaudiana Bertoni, source of ahigh-potency natural sweetener: A comprehensive review on the biochemical, nutritional andfunctional aspects[J]. Food Chemistry,2012,132(3):1121-1132
    [2] Mishra P K, Singh R, Kumar U, etc. Stevia rebaudiana-a magical sweetener[J]. Global Journal ofBiotechnology&Biochemistry,2010,5(1):62-74
    [3] Geeraert B, Crombe F, Hulsmans M, etc. Stevioside inhibits atherosclerosis by improving insulinsignaling and antioxidant defense in obese insulin-resistant mice[J]. International Journal ofObesity,2010,34(3):569-577
    [4] Jeppesen P B, Gregersen S, Rolfsen S E D, etc. Antihyperglycemic and blood pressure-reducingeffects of stevioside in the diabetic Goto-Kakizaki rat[J]. Metabolism-Clinical and Experimental,2003,52(3):372-378
    [5] Chen T H, Chen S C, Chan P, etc. Mechanism of the hypoglycemic effect of stevioside, a glycosideof Stevia rebaudiana[J]. Planta Medica,2005,71(2):108-113
    [6] Ferreira E B, Neves F D R, da Costa M A D, etc. Comparative effects of Stevia rebaudiana leavesand stevioside on glycaemia and hepatic gluconeogenesis[J]. Planta Medica,2006,72(8):691-696
    [7] Brahmachari G, Mandal L C, Roy R, etc. Stevioside and related compounds-molecules ofpharmaceutical promise: a critical overview[J]. Archiv Der Pharmazie,2011,344(1):5-19
    [8] Boonkaewwan C, Ao M, Toskulkao C, etc. Specific immunomodulatory and secretory activities ofstevioside and steviol in intestinal cells[J]. Journal of Agricultural and Food Chemistry,2008,56(10):3777-3784
    [9] Atteh J O, Onagbesan O M, Tona K, etc. Evaluation of supplementary stevia (Stevia rebaudiana,bertoni) leaves and stevioside in broiler diets: effects on feed intake, nutrient metabolism, bloodparameters and growth performance[J]. Journal of Animal Physiology and Animal Nutrition,2008,92(6):640-649
    [10] Takasaki M, Konoshima T, Kozuka M, etc. Cancer preventive agents. Part8: Chemopreventiveeffects of stevioside and related compounds[J]. Bioorganic&Medicinal Chemistry,2009,17(2):600-605
    [11] Sharipova R R, Strobykina I Y, Mordovskoi G G, etc. Antituberculosis activity of glycosides fromStevia rebaudiana and hybrid compounds of steviolbioside and pyridinecarboxylic acidhydrazides[J]. Chemistry of Natural Compounds,2011,46(6):902-905
    [12] Carakostas M C, Curry L L, Boilea A C, etc. Overview: The history, technical function and safetyof rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages[J]. Foodand Chemical Toxicology,2008,46(7): S1-S10
    [13] Boileau A, Fry J C, Murray R. A new calorie-free sugar substitute from the leaf of the stevia plantarrives in the UK[J]. Nutrition Bulletin,2012,37(1):47-50
    [14] Ray D P. Non-caloric sugar from stevia plant bringing new hope to the diabetics[J]. Everyman'sScience,2008,43(2):115-122
    [15] Randhir R, Shetty K. Biotechnology of nonnutritive sweeteners[B].2006:333-335
    [16] Xu Z W, Li Y Q, Wang Y H, etc. Production of-fructofuranosidase by Arthrobacter sp. and itsapplication in the modification of stevioside and rebaudioside A[J]. Food Technology andBiotechnology,2009,47(2):137-143
    [17]王德骥.再论甜菊糖苷的甜度、甜味和苦涩后味的成因机理[J].食品工业科技,2010,(05):417-420
    [18]岳跃冲,范燕萍.植物萜类合成酶及其代谢调控的研究进展[J].园艺学报,2011,(02):379-388
    [19]李军玲,罗晓东,赵沛基, etc.植物萜类生物合成中的后修饰酶[J].云南植物研究,2009,(05):461-468
    [20] Totté N, Charon L, Rohmer M, etc. Biosynthesis of the diterpenoid steviol, an ent-kaurenederivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway[J].Tetrahedron Letters,2000,41(33):6407-6410
    [21] Totte N, Van den Ende W, Van Damme E J M, etc. Cloning and heterologous expression of earlygenes in gibberellin and steviol biosynthesis via the methylerythritol phosphate pathway in Steviarebaudiana[J]. Canadian Journal of Botany-Revue Canadienne De Botanique,2003,81(5):517-522
    [22] Richman A S, Gijzen M, Starratt A N, etc. Diterpene synthesis in Stevia rebaudiana: recruitmentand up-regulation of key enzymes from the gibberellin biosynthetic pathway[J]. The Plant Journal,1999,19(4):411-421
    [23] Gardana C, Simonetti P, Canzi E, etc. Metabolism of stevioside and Rebaudioside A from Steviarebaudiana extracts by human microflora[J]. Journal of Agricultural and Food Chemistry,2003,51(22):6618-6622
    [24] Renwick A G, Tarka S M. Microbial hydrolysis of steviol glycosides[J]. Food and ChemicalToxicology,2008,46(7S): S70-S74
    [25] Geuns J, Augustijns P, Mols R, etc. Metabolism of stevioside in pigs and intestinal absorptioncharacteristics of stevioside, rebaudioside A and steviol[J]. Food and Chemical Toxicology,2003,41(11):1599-1607
    [26] Koyama E, Kitazawa K, Ohori Y, etc. In vitro metabolism of the glycosidic sweeteners, steviamixture and enzymatically modified stevia in human intestinal microflora[J]. Food and ChemicalToxicology,2003,41(3):359-374
    [27] Geuns J M C, Buyse J, Vankeirsbilck A, etc. Metabolism of stevioside by healthy subjects[J].Experimental Biology and Medicine,2007,232(1):164-173
    [28] Cardoso V N, Barbosa M F, Muramoto E, etc. Pharmacokinetic studies of131I-Stevioside and itsmetabolites[J]. Nuclear Medicine and Biology,1996,23(1):97-100
    [29] Roberts A, Renwick A G. Comparative toxicokinetics and metabolism of rebaudioside A,stevioside, and steviol in rats[J]. Food and Chemical Toxicology,2008,46(7): S31-S39
    [30] Geuns J M C, Buyse J, Vankeirsbilck A, etc. Identification of steviol glucuronide in human urine[J].Journal of Agricultural and Food Chemistry,2006,54(7):2794-2798
    [31] Geuns J M C. Steviol glucuronide as excretion product of stevioside in human volunteers: lack ofcarcinogenic properties of steviol glycosides and steviol[J]. Acs Symposium Series,2008,979(Sweetness and Sweeteners):573-595
    [32] Wheeler A, Boileau A C, Winkler P C, etc. Pharmacokinetics of rebaudioside A and stevioside aftersingle oral doses in healthy men[J]. Food and Chemical Toxicology,2008,46(7): S54-S60
    [33] Xili L, Chengjiany B, Eryi X, etc. Chronic oral toxicity and carcinogenicity study of stevioside inrats[J]. Food and Chemical Toxicology,1992,30(11):957-965
    [34] Toskulkao C, Chaturat L, Temcharoen P, etc. Acute toxicity of stevioside, a natural sweetener, andits metabolite, steviol, in several animal species[J]. Drug and Chemical Toxicology,1997,20(1-2):31-44
    [35] Yamada A, Ohgaki S, Noda T, etc. Chronic toxicity study of dietary Stevia extracts in F344rats[J].Shokuhin Eiseigaku Zasshi,1985,26(2):169-183
    [36] Hsieh M H, Chan P, Sue Y M, etc. Efficacy and tolerability of oral stevioside in patients with mildessential hypertension: A two-year, randomized, placebo-controlled study[J]. Clinical Therapeutics,2003,25(11):2797-2808
    [37] Barriocanal L A, Palacios M, Benitez G, etc. Apparent lack of pharmacological effect of steviolglycosides used as sweeteners in humans. A pilot study of repeated exposures in somenormotensive and hypotensive individuals and in Type1and Type2diabetics[J]. RegulatoryToxicology and Pharmacology,2008,51(1):37-41
    [38] Curry L L, Roberts A. Subchronic toxicity of rebaudioside A[J]. Food and Chemical Toxicology,2008,46(7): S11-S20
    [39] Nikiforov A I, Eapen A K. A90-day oral (dietary) toxicity study of rebaudioside A inSprague-Dawley rats[J]. International journal of toxicology,2008,27(1):65-80
    [40] Aze Y, Toyoda K, Imaida K, etc. Subchronic oral toxicity study of stevioside in F344rats[J]. EiseiShikenjo hōkoku. Bulletin of National Institute of Hygienic Sciences,1991,(109):48-54
    [41] Yodyingyuad V, Bunyawong S. Effect of stevioside on growth and reproduction[J]. HumanReproduction,1991,6(1):158-165
    [42] Chatsudthipong V, Muanprasat C. Stevioside and related compounds: Therapeutic benefits beyondsweetness[J]. Pharmacology&Therapeutics,2009,121(1):41-54
    [43] Geuns J M C, Bruggeman V, Buyse J G. Effect of stevioside and steviol on the developing broilerembryos[J]. Journal of Agricultural and Food Chemistry,2003,51(17):5162-5167
    [44] Geuns J M C, Malheiros R D, Moraes V M B, etc. Metabolism of stevioside by chickens[J].Journal of Agricultural and Food Chemistry,2003,51(4):1095-1101
    [45] Klongpanichpak S, Temcharoen P, Toskulkao C, etc. Lack of mutagenicity of stevioside and steviolin Salmonella typhimurium TA98and TA100[J]. Journal of The Medical Association of Thailand,1997,80(SUPPL.1): S121-S128
    [46] Brusick D J. A critical review of the genetic toxicity of steviol and steviol glycosides[J]. Food andChemical Toxicology,2008,46(7S): S83-S91
    [47] Williams L D, Burdock G A. Genotoxicity studies on a high-purity rebaudioside A preparation[J].Food and Chemical Toxicology,2009,47(8):1831-1836
    [48] Temcharoen P, Suwannatrai M, Klongpanichpak S, etc. Evaluation of the effect of steviol onchromosomal damage using micronucleus test in three laboratory animal species[J]. Journal of TheMedical Association of Thailand=Chotmaihet Thangphaet,2000,83Suppl1: S101-108
    [49] Matsui M, Sofuni T, Nohmi T. Regionally-targeted mutagenesis by metabolically-activated steviol:DNA sequence analysis of steviol-induced mutants of guanine phosphoribosyltransferase (gpt)gene of Salmonella typhimurium TM677[J]. Mutagenesis,1996,11(6):565-572
    [50] Yasukawa K, Kitanaka S, Seo S. Inhibitory effect of stevioside on tumor promotion by12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin[J]. Biological&Pharmaceutical Bulletin,2002,25(11):1488-1490
    [51] Toyoda K, Matsui H, Shoda T, etc. Assessment of the carcinogenicity of stevioside in F344rats[J].Food and Chemical Toxicology,1997,35(6):597-603
    [52] Tirapelli C R, Ambrosio S R, de Oliveira A M, etc. Hypotensive action of naturally occurringditerpenes: A therapeutic promise for the treatment of hypertension[J]. Fitoterapia,2010,81(7):690-702
    [53] Melis M S. chronic administration of aqueous extract of stevia-rebaudiana in rats-renal effects[J].Journal of Ethnopharmacology,1995,47(3):129-134
    [54] Melis M S, Sainati A R. Participation of prostaglandins in the effect of stevioside on rat renalfunction and arterial pressure[J]. Brazilian journal of medical and biological research,1991,24(12):1269-1276
    [55] Chan P, Tomlinson B, Chen Y-J, etc. A double-blind placebo-controlled study of the effectivenessand tolerability of oral stevioside in human hypertension[J]. British Journal of ClinicalPharmacology,2000,50(3):215-220
    [56] Kinghorn A D, Soejarto D D. Discovery of terpenoid and phenolic sweeteners from plants[J]. Pureand Applied Chemistry,2002,74(7):1169-1179
    [57]曹芳,冯文静,陈明, etc.甜菊糖苷降血糖作用研究[J].中国药物与临床,2009,9(02):127-127
    [58] Toskulkao C, Sutheerawattananon M, Piyachaturawat P. Inhibitory effect of steviol, a metabolite ofstevioside, on glucose-absorption in everted hamster intestine in-vitro[J]. Toxicology Letters,1995,80(1-3):153-159
    [59] Toskulkao C, Sutheerawatananon M, Wanichanon C, etc. Effects of stevioside and steviol onintestinal glucose absorption in hamsters[J]. Journal of nutritional science and vitaminology,1995,41(1):105-113
    [60] Nordentoft I, Jeppesen P B, Hong J, etc. Isosteviol increases insulin sensitivity and changes geneexpression of key insulin regulatory genes and transcription factors in islets of the diabetic KKAymouse[J]. Diabetes Obesity&Metabolism,2008,10(10):939-949
    [61] Lailerd N, Saengsirisuwan V, Sloniger J A, etc. Effects of stevioside on glucose transport activityin insulin-sensitive and insulin-resistant rat skeletal muscle[J]. Metabolism-Clinical andExperimental,2004,53(1):101-107
    [62] Yang P S, Lee J J, Tsao C W, etc. Stimulatory effect of stevioside on peripheral mu opioidreceptors in animals[J]. Neuroscience Letters,2009,454(1):72-75
    [63] Abudula R, Jeppesen P B, Rolfsen S E D, etc. Rebaudioside A potently stimulates insulin secretionfrom isolated mouse islets: Studies on the dose-, glucose-, and calcium-dependency[J].Metabolism-Clinical and Experimental,2004,53(10):1378-1381
    [64] Dyrskog S E U, Jeppesen P B, Chen J, etc. The diterpene glycoside, rebaudioside A, does notimprove glycemic control or affect blood pressure after eight weeks treatment in theGoto-Kakizaki rat[J]. Rev Diabet Stud,2005,2(2):84-91
    [65] Maki K C, Curry L L, Reeves M S, etc. Chronic consumption of rebaudioside A, a steviolglycoside, in men and women with type2diabetes mellitus[J]. Food and Chemical Toxicology,2008,46(7): S47-S53
    [66] Jeppesen P B, Gregersen S, Poulsen C R, etc. Stevioside acts directly on pancreatic β cells tosecrete insulin: Actions independent of cyclic adenosine monophosphate and adenosinetriphosphate-sensitivie K+-channel activity[J]. Metabolism-Clinical and Experimental,2000,49(2):208-214
    [67] Tomita T, Sato N, Arai T, etc. Bactericidal activity of a fermented hot-water extract from Steviarebaudiana Bertoni towards enterohemorrhagic Escherichia coli O157: H7and other foodbornepathogenic bacteria[J]. Microbiology and Immunology,1997,41(12):1005-1009
    [68] Pariwat P, Homvisasevongsa S, Muanprasat C, etc. A natural plant-derived dihydroisosteviolprevents cholera toxin-induced intestinal fluid secretion[J]. Journal of Pharmacology andExperimental Therapeutics,2008,324(2):798-805
    [69] Boonkaewwan C, Toskulkao C, Vongsakul M. Anti-inflammatory and immunomodulatoryactivities of stevioside and its metabolite steviol on THP-1cells[J]. Journal of Agricultural andFood Chemistry,2006,54(3):785-789
    [70] Sehar I, Kaul A, Bani S, etc. Immune up regulatory response of a non-caloric natural sweetener,stevioside[J]. Chemico-Biological Interactions,2008,173(2):115-121
    [71] Nakamura Y, Sakiyama S, Takenaga K. Suppression of syntheses of high molecular weightnonmuscle tropomyosins in macrophages[J]. Cell Motility and The Cytoskeleton,1995,31(4):273-282
    [72] Mizushina Y, Akihisa T, Ukiya M, etc. Structural analysis of isosteviol and related compounds asDNA polymerase and DNA topoisomerase inhibitors[J]. Life Sciences,2005,77(17):2127-2140
    [73] Tadhani M B, Subhash R. In vitro antimicrobial activity of Stevia rebaudiana Bertoni leaves[J].Tropical Journal of Pharmaceutical Research,2007,5(1):557-560
    [74] Lin J, Opoku A R, Geheeb-Keller M, etc. Preliminary screening of some traditional zulu medicinalplants for anti-inflammatory and anti-microbial activities[J]. Journal of Ethnopharmacology,1999,68(1-3):267-274
    [75] Vlietinck A J, Van Hoof L, Totté J, etc. Screening of hundred Rwandese medicinal plants forantimicrobial and antiviral properties[J]. Journal of Ethnopharmacology,1995,46(1):31-47
    [76] Alonso Paz E, Cerdeiras M, Fernandez J, etc. Screening of uruguayan medicinal plants forantimicrobial activity[J]. Journal of Ethnopharmacology,1995,45(1):67-70
    [77] Puri M, Sharma D. Antibacterial activity of stevioside towards food-borne pathogenic bacteria[J].Engineering in Life Sciences,2011,11(3):326-329
    [78] de Boer H J, Kool A, Broberg A, etc. Anti-fungal and anti-bacterial activity of some herbalremedies from Tanzania[J]. Journal of Ethnopharmacology,2005,96(3):461-469
    [79] Sharma D, Puri M, Tiwary A K, etc. Antiamnesic effect of stevioside in scopolamine-treated rats[J].Indian Journal of Pharmacology,2010,42(3):164-167
    [80] Shi L-Y, Wu J-Q, Zhang D-Y, etc. Efficient synthesis of novel jolkinolides and related derivativesstarting from stevioside[J]. Synthesis-Stuttgart,2011,(23):3807-3814
    [81]毛近隆.天然活性成分甜菊苷化学结构修饰的研究进展[J].北京联合大学学报(自然科学版),2011,(01):70-74
    [82] Khaibullin R N, Strobykina I Y, Kataev V E, etc. New synthesis of diterpenoid(16S)-dihydrosteviol[J]. Russian Journal of General Chemistry,2009,79(5):967-971
    [83]张大永,汤湧,王可, etc. ent-贝壳杉烯类化合物的合成及其抗肿瘤活性[J].中国药科大学学报,2010,(01):20-25
    [84]刘秀芳,黄曦,徐汉生.甜叶醇的结构改造及生物活性试验[J].武汉大学学报(理学版),1994,(02):74-78+94
    [85] de Oliveira B H, Stiirmer J C, de Souza J D, etc. Plant growth regulation activity of steviol andderivatives[J]. Phytochemistry,2008,69(7):1528-1533
    [86]周家华,温其标.甜菊甙的除苦[J].食品与机械,1994,(05):26-27
    [87] Fukunaga Y, Miyata T, Nakayasu N, etc. Enzymic transglucosylation products of stevioside:separation and sweetness-evaluation[J]. Agricultural and Biological Chemistry,1989,53(6):1603-1607
    [88] Velazquez-Hernandez M L, Baizabal-Aguirre V M, Bravo-Patino A, etc. Microbialfructosyltransferases and the role of fructans[J]. Journal of Applied Microbiology,2009,106(6):1763-1778
    [89] Ishikawa H, Kitahata S, Ohtani K, etc. Transfructosylation of rebaudioside A (a sweet glycoside ofStevia leaves) with Microbacterium-fructofuranosidase[J]. Chemical&Pharmaceutical Bulletin,1991,39(8):2043-2045
    [90] Ishikawa H, Kitahata S, Ohtani K, etc. Production of stevioside and rubusoside derivatives bytransfructosylation of-fructofuranosidase[J]. Agricultural and Biological Chemistry,1990,54(12):3137-3143
    [91] Suzuki K, Fukumura T, Shibasaki-Kitakawa N, etc. Kinetic model for synthesis offructosyl-stevioside using suspended β-fructofuranosidase[J]. Biochemical Engineering Journal,2002,10(3):207-215
    [92]李玉强,邵佩霞,王永华, etc. β-呋喃果糖苷酶的生产及对甜菊苷和莱鲍迪A苷的酶法改性研究[J].食品与发酵工业,2009,35(03):27-31
    [93] Aramsangtienchai P, Chavasiri W, Ito K, etc. Synthesis of epicatechin glucosides by aβ-cyclodextrin glycosyltransferase[J]. Journal of Molecular Catalysis B: Enzymatic,2011,73(1-4):27-34
    [94] Shimoda K, Hamada H. Enzymatic synthesis and antiallergic activities of curcuminoligosaccharides[J]. Biochem Insights,2010,3:1-5
    [95] Katsuragi H, Shimoda K, Kimura E, etc. Synthesis of capsaicin glycosides and8-nordihydrocapsaicin glycosides as potential weight-loss formulations[J]. Biochem Insights,2010,3:35-39
    [96] Svensson D, Ulvenlund S, Adlercreutz P. Efficient synthesis of a long carbohydrate chain alkylglycoside catalyzed by cyclodextrin glycosyltransferase (CGTase)[J]. Biotechnology andBioengineering,2009,104(5):854-861
    [97] Leemhuis H, Kelly R, Dijkhuizen L. Engineering of cyclodextrin glucanotransferases and theimpact for biotechnological applications[J]. Applied Microbiology and Biotechnology,2010,85(4):823-835
    [98]李兆丰,顾正彪,堵国成, etc.环糊精葡萄糖基转移酶的结构特征与催化机理[J].中国生物工程杂志,2010,30(06):144-150
    [99] Uitdehaag J C M, van der Veen B A, Dijkhuizen L, etc. Catalytic mechanism and productspecificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the-amylasefamily[J]. Enzyme and Microbial Technology,2002,30(3):295-304
    [100] Van der Veen B A, Van Alebeek G-J W M, Uitdehaag J C M, etc. The three transglycosylationreactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain251)proceed via different kinetic mechanisms[J]. European Journal of Biochemistry,2000,267(3):658-665
    [101] Srimaroeng C, Chatsudthipong V, Aslamkhan A G, etc. Transport of the natural sweetenerstevioside and its aglycone steviol by human organic anion transporter (hOAT1; SLC22A6) andhOAT3(SLC22A8)[J]. Journal of Pharmacology and Experimental Therapeutics,2005,313(2):621-628
    [102] Strokopytov B, Penninga D, Rozeboom H J, etc. X-ray structure of cyclodextringlycosyltransferase complexed with acarbose. Implications for the catalytic mechanism ofglycosidases[J]. Biochemistry,1995,34(7):2234-2240
    [103] Jung S W, Kim T K, Lee K W, etc. Catalytic properties of β-cyclodextrin glucanotransferase fromalkalophilicBacillus sp. BL-12and intermolecular transglycosylation of stevioside[J].Biotechnology and Bioprocess Engineering,2007,12(3):207-212
    [104] Jaitak V, Kaul V, Bandna, etc. Simple and efficient enzymatic transglycosylation of stevioside byβ-cycloanodextrin gluctransferase from Bacillus firmus[J]. Biotechnology Letters,2009,31(9):1415-1420
    [105] Kochikyan V, Markosyan A, Abelyan L, etc. Combined enzymatic modification of stevioside andrebaudioside A[J]. Applied Biochemistry and Microbiology,2006,42(1):31-37
    [106] Abelyan V A, Balayan A M, Manukyan L S, etc. Characteristics of cyclodextrin production usingcyclodextrin glucanotransferases from various groups of microorganisms[J]. Applied Biochemistryand Microbiology,2002,38(6):527-535
    [107]朱海霞,郑建仙.甜菊糖的酶法改性[J].中国食品添加剂,2004,(01):54-60
    [108] Lobov S V, Kasai R, Ohtani K, etc. Enzymic production of sweet stevioside derivatives:transglucosylation by glucosidases[J]. Agricultural and Biological Chemistry,1991,55(12):2959-65
    [109]史作清,朱伯儒,施荣富, etc. α-葡萄糖基-甜菊糖的酶促合成反应研究(Ⅰ)[J].高等学校化学学报,1996,17(11):1800-1803
    [110] Danieli B, Luisetti M, Schubert-Zsilavecz M, etc. Regioselective enzyme-mediated glycosylationof natural polyhydroxy compounds. Part1. Galactosylation of stevioside and steviolbioside[J].Helvetica Chimica Acta,1997,80(4):1153-1160
    [111] Li J, Zhang D, Wu X. Synthesis and biological evaluation of novel exo-methylene cyclopentanonetetracyclic diterpenoids as antitumor agents[J]. Bioorganic&Medicinal Chemistry Letters,2011,21(1):130-132
    [112]姜中玉,陈育如,刘虎.一株将甜菊苷转化为甜茶甙的细菌鉴定及转化特性[J].微生物学报,2011,(01):43-49
    [113] Milagre H M S, Martins L R, Takahashi J A. Novel agents for enzymatic and fungal hydrolysis ofstevioside[J]. Brazilian Journal of Microbiology,2009,40(2):367-372
    [114]杨扬,陈社云,陈凯, etc.甜菊糖提取工艺进展及发展前景[J].中国食品添加剂,2010,(05):194-199+219
    [115]卿石臣.除异味甜菊糖甙产品的开发及性质研究[J].中国食品添加剂,1994,(04):25-26
    [116] Abelyan V H, Balayan A M, Ghochikyan V T, etc. Transglycosylation of stevioside bycyclodextrin glucanotransferases of various groups of microorganisms[J]. HayastaniKensabanakan Handes,2004,56(1-2):3-9
    [117]郁军,岳鹏翔,程其春.酶法改性甜菊糖甙的工艺研究[J].食品科学,2008,(08):189-193
    [118]陈智,王莹,田景振.环糊精葡糖基转移酶法改性甜菊糖的研究[J].食品工业科技,2010,(04):178-179+182
    [119]张蔚,吴炳炎,郭庆文. GB/T24401-2009. α-淀粉酶制剂[S].2009
    [120]史作清,刘莲芳. GB8270-1999.食品添加剂甜菊糖甙[S].1999
    [121]张杨,陈天红,史作清, etc.重结晶法分离精制莱鲍迪甙A的研究[J].1998,14(6):515-520
    [122] Wood H B, Jr., Allerton R, Diehl H W, etc. Stevioside. I. The structure of the glucose moieties[J].Journal of Organic Chemistry,1955,20:875-83
    [123]朱文优,王新惠,张超.糖化酶的结构及催化机制的研究进展[J].酿酒,2009,(01):21-23
    [124] Kroyer G. Stevioside and Stevia-sweetener in food: application, stability and interaction with foodingredients[J]. Journal of Consumer Protection and Food Safety,2010,5(2):225-229
    [125] Park H-Y, Kim H-J, Lee J-K, etc. Galactooligosaccharide production by a thermostableβ-galactosidase from Sulfolobus solfataricus[J]. World Journal of Microbiology and Biotechnology,2008,24(8):1553-1558
    [126] Trincone A, Cobucci-Ponzano B, Di Lauro B, etc. Enzymatic synthesis and hydrolysis ofxylogluco-oligosaccharides using the first archaeal alpha-xylosidase from Sulfolobussolfataricus[J]. Extremophiles,2001,5(4):277-282
    [127] Kim Y-S, Park C-S, Oh D-K. Lactulose production from lactose and fructose by a thermostableβ-galactosidase from Sulfolobus solfataricus[J]. Enzyme and Microbial Technology,2006,39(4):903-908
    [128] Sugimoto N, Sato K, Liu H M, etc. Analysis of rubusoside and related compounds in tenryochaextract sweetener[J]. Shokuhin Eiseigaku Zasshi,2002,43(4):250-253
    [129] Koh G Y, Chou G, Liu Z. Purification of a water extract of chinese sweet tea plant (Rubussuavissimus S. Lee) by alcohol precipitation[J]. Journal of Agricultural and Food Chemistry,2009,57(11):5000-5006
    [130] Koh G Y, McCutcheon K, Zhang F, etc. Improvement of obesity phenotype by Chinese sweet leaftea (Rubus suavissimus) components in high-fat diet-Induced obese rats[J]. Journal of Agriculturaland Food Chemistry,2011,59(1):98-104
    [131]陈全斌,张巧云,义祥辉.高纯度甜茶甙的制备[J].林业科技,2006,(04):55-56
    [132] Kaneda N, Kasai R, Yamasaki K, etc. Chemical studies on sweet diterpene-glycosides of Steviarebaudiana: conversion of stevioside into Rebaudioside A[J]. Chemical&Pharmaceutical Bulletin,1977,25(9):2466-2467
    [133] Husain Q.-Galactosidases and their potential applications: a review[J]. Critical Reviews inBiotechnology,2010,30(1):41-62
    [134] McSweeney P L H, Fox P F, Playne M J, etc. Galacto-oligosaccharides and other products derivedfrom lactose[B]. Springer New York,2009:121-201
    [135] Iwasaki K-i, Nakajima M, Nakao S-i. Galacto-oligosaccharide production from lactose by anenzymic batch reaction using-galactosidase[J]. Process Biochemistry,1996,31(1):69-76
    [136] Mladenoska I, Winkelhausen E, Kuzmanova S. Transgalactosylation/hydrolysis ratios of various-galactosidases catalyzing alkyl--galactoside synthesis in single-phased alcohol media[J]. FoodTechnology and Biotechnology,2008,46(3):311-316
    [137] Hansson T, Adlercreutz P. The temperature influences the ratio of glucosidase and galactosidaseactivities of-glycosidases[J]. Biotechnology Letters,2002,24(18):1465-1471
    [138] Nakkharat P, Haltrich D. Purification and characterisation of an intracellular enzyme with-glucosidase and-galactosidase activity from the thermophilic fungus Talaromycesthermophilus CBS236.58[J]. Journal of Biotechnology,2006,123(3):304-313
    [139] Ishikawa E, Sakai T, Ikemura H, etc. Identification, cloning, and characterization of aSporobolomyces singularis β-galactosidase-like enzyme involved in galacto-oligosaccharideproduction[J]. Journal of Bioscience and Bioengineering,2005,99(4):331-339
    [140] Czermak P, Ebrahimi M, Grau K, etc. Membrane-assisted enzymatic production ofgalactosyl-oligosaccharides from lactose in a continuous process[J]. J Membrane Sci.,2004,232(1-2):85-91
    [141] Hu Y, Luan H, Hao D, etc. Purification and characterization of a novel ginsenoside-hydrolyzingβ-D-glucosidase from the China white jade snail (Achatina fulica)[J]. Enzyme and MicrobialTechnology,2007,40(5):1358-1366
    [142]刘鑫,戴均贵.人参皂苷生物转化的研究新进展[J].人参研究,2010,(04):19-22
    [143] Su J H, Xu J H, Lu W Y, etc. Enzymatic transformation of ginsenoside Rg3to Rh2using newlyisolated Fusarium proliferatum ECU2042[J]. J. Mol. Catal. B Enzym.,2006,38(2):113-118
    [144] Zhang C Z, Yu H S, Bao Y M, etc. Purification and characterization of ginsenoside-β-glucosidasefrom ginseng[J]. Chemical&Pharmaceutical Bulletin,2001,49(7):795-798
    [145]王镜岩,朱圣庚,徐长法.生物化学[B].第三版,高等教育出版社,2006:351-366
    [146] Zhang F, Koh G Y, Jeansonne D P, etc. A novel solubility-enhanced curcumin formulation showingstability and maintenance of anticancer activity[J]. Journal of Pharmaceutical Sciences,2011,100(7):2778-2789
    [147] Goto A, Clemente E. Rebaudioside A influence on the flavor and solubility of stevioside[J].Ciencia e Tecnologia de Alimentos,1998,18(1):3-6
    [148] DuBois G E, Bunes L A, Dietrich P S, etc. Diterpenoid sweeteners. Synthesis and sensoryevaluation of biologically stable analogs of stevioside[J]. Journal of Agricultural and FoodChemistry,1984,32(6):1321-1325
    [149]刘虎,陈育如,姜中玉.一株快速转化甜菊苷的细菌鉴定、产酶及转化特性[J].微生物学报,2010,(07):885-890
    [150] Okamoto K, Nakano H, Yatake T, etc. Purification and some properties of a-glucosidase fromFlavobacterium johnsonae[J]. Bioscience, biotechnology, and biochemistry,2000,64(2):333-340
    [151] Sharipova R R, Strobykina I Y, Kataev V E, etc. Synthetic glycosides of ent-caurene seriescontaining substituents with benzyl, phenoxyl, and uracyl fragments[J]. Russian Journal of GeneralChemistry,2009,79(12):2668-2672
    [152] Avent A G, Hanson J R, De Oliveira B H. Hydrolysis of the diterpenoid glycoside, stevioside[J].Phytochemistry,1990,29(8):2712-2715
    [153] Ogawa T, Nozaki M, Matsui M. Total synthesis of stevioside[J]. Tetrahedron,1980,36(18):2641-2648
    [154] Melis M S, Rocha S T, Augusto A. Steviol effect, a glycoside of Stevia rebaudiana, on glucoseclearances in rats[J]. Brazilian Journal of Biology,2009,69(2):371-374
    [155] Pisani F M, Rella R, Raia C A, etc. Thermostable β-galactosidase from the archaebacteriumSulfolobus solfataricus[J]. European Journal of Biochemistry,1990,187(2):321-328
    [156]江南大学一种β-半乳糖苷酶的突变体及其制备方法和应用[P]. CN102337254A,2012-02-01,2011.
    [157]于露,李凡修.羟基自由基的光度法分析研究进展[J].长江大学学报(自然科学版),2011,(03):13-15
    [158] Rodriguez-Colinas B, de Abreu M A, Fernandez-Arrojo L, etc. Production ofgalacto-oligosaccharides by the β-galactosidase from Kluyveromyces lactis: comparative analysisof prmeabilized cells versus soluble enzyme[J]. Journal of Agricultural and Food Chemistry,2011,59(19):10477-10484
    [159] deOliveira B H, Strapasson R A. Biotransformation of isosteviol by Fusarium verticilloides[J].Phytochemistry,1996,43(2):393-395
    [160] Kohda H, Kasai R, Yamasaki K, etc. New sweet diterpene glucosides from Stevia rebaudiana[J].Phytochemistry,1976,15(6):981-983
    [161] Halliwell B. The wanderings of a free radical[J]. Free Radical Biology and Medicine,2009,46(5):531-542
    [162] Free radicals and antioxidants: updating a personal view[J]. Nutrition Reviews,2012,70(5):257-265
    [163]韩强,林惠芬.一些天然提取物对超氧自由基和羟基自由基的清除作用[J].日用化学工业,2000,30(3):14-17
    [164] Gedye R, Smith F, Westaway K, etc. The use of microwave ovens for rapid organic synthesis[J].Tetrahedron Letters,1986,27(3):279-282
    [165] Loupy A, Perreux L, Liagre M, etc. Reactivity and selectivity under microwaves in organicchemistry. Relation with medium effects and reaction mechanisms[J]. Pure and Applied Chemistry,2001,73(1):161-166
    [166] Favretto L, Nugent W A, Licini G. Highly regioselective microwave-assisted synthesis ofenantiopure C3-symmetric trialkanolamines[J]. Tetrahedron Letters,2002,43(14):2581-2584
    [167] Marwah P, Marwah A, Lardy H A. Microwave induced selective enolization of steroidal ketonesand efficient acetylation of sterols in semisolid state[J]. Tetrahedron,2003,59(13):2273-2287
    [168] Parker M C, Besson T, Lamare S, etc. Microwave radiation can increase the rate ofenzyme-catalysed reactions in organic media[J]. Tetrahedron Letters,1996,37(46):8383-8386
    [169] Roy I, Gupta M N. Applications of microwaves in biological sciences[J]. CurrentScience-Bangalore-,2003,85(12):1685-1692
    [170] Huang W, Xia Y M, Gao H, etc. Enzymatic esterification between n-alcohol homologs andn-caprylic acid in non-aqueous medium under microwave irradiation[J]. Journal of MolecularCatalysis B: Enzymatic,2005,35(4):113-116
    [171] Parker M-C, Besson T, Lamare S, etc. Microwave radiation can increase the rate ofenzyme-catalysed reactions in organic media[J]. Tetrahedron Letters,1996,37(46):8383-8386
    [172]夏咏梅,孙诗雨,方云, etc.微波辐射-酶耦合催化(MIECC)反应[J].化学进展,2007,(Z1):250-255
    [173] Yu D, Wu H, Zhang A, etc. Microwave irradiation-assisted isomerization of glucose to fructose byimmobilized glucose isomerase[J]. Process Biochemistry,2011,46(2):599-603
    [174] Goswami S, Adak A K. The first microwave-assisted regiospecific synthesis of6-substitutedpterins[J]. Tetrahedron Letters,2002,43(46):8371-8373
    [175] de la Hoz A, Díaz-Ortiz á, Moreno A. Microwaves in organic synthesis. Thermal and non-thermalmicrowave effects[J]. Chemical Society Reviews,2005,34(2):164-178
    [176] Gelo-Pujic M, Guibe-Jampel E, Loupy A, etc. ChemInform abstract: Lipase-catalyzedesterification of some α-D-glucopyranosides in dry media under focused microwave irradiation[J].ChemInform,1997,28(23):2777-2780
    [177] Bini M, Checcucci A, Ignesti A, etc. Analysis of the effects of microwave energy on enzymaticactivity of lactate dehydrogenase (LDH)[J]. The Journal of microwave power,1978,13(1):95-104
    [178] Vukova T, Atanassov A, Ivanov R, etc. Intensity-dependent effects of microwave electromagneticfields on acetylcholinesterase activity and protein conformation in frog skeletal muscles[J].Medical science monitor: international medical journal of experimental and clinical research,2005,11(2):50-56
    [179] Soysal, S ylemez Z. Kinetics and inactivation of carrot peroxidase by heat treatment[J]. Journalof food engineering,2005,68(3):349-356
    [180] Roy I, Gupta M N. Non-thermal effects of microwaves on protease-catalyzed esterification andtransesterification[J]. Tetrahedron,2003,59(29):5431-5436
    [181] Zhu S, Wu Y, Yu Z, etc. Comparison of three microwave/chemical pretreatment processes forenzymatic hydrolysis of rice straw[J]. Biosystems Engineering,2006,93(3):279-283
    [182] Yadav G D, Lathi P S. Synergism between microwave and enzyme catalysis in intensification ofreactions and selectivities: transesterification of methyl acetoacetate with alcohols[J]. Journal ofMolecular Catalysis A: Chemical,2004,223(1):51-56
    [183] Vacek M, Zarevúcka M, Wimmer Z, etc. Selective enzymic esterification of free fatty acids withn-butanol under microwave irradiation and under classical heating[J]. Biotechnology Letters,2000,22(19):1565-1570
    [184] Zarevúcka M, Vacek M, Wimmer Z, etc. Models for glycosidic juvenogens: Enzymic formation ofselected alkyl-β-D-glucopyranosides and alkyl-β-D-galactopyranosides under microwaveirradiation[J]. Biotechnology Letters,1999,21(9):785-790
    [185] Fang Y, Sun S Y, Xia Y M. The weakened1,3-specificity in the consecutive microwave assistedenzymatic synthesis of glycerides[J]. Journal of Molecular Catalysis B-Enzymatic,2008,55(1-2):6-11
    [186] Fang Y, Huang W, Xia Y M. Consecutive microwave irradiation induced substrate inhibition on theenzymatic esterification[J]. Process Biochemistry,2008,43(3):306-310
    [187]王超,徐清,宗李燕.微波辐射对洗涤剂用酶的作用[J].日用化学品科学,2009,(05):25-28
    [188]闵瑞,方云,夏咏梅.低功率微波耦合溶剂相酶促酯化反应及其荧光光谱的变化[J].光谱学与光谱分析,2009,(02):428-431
    [189] Kamerke C, Pattky M, Huhn C, etc. Synthesis of UDP-activated oligosaccharides with commercialβ-galactosidase from Bacillus circulans under microwave irradiation[J]. Journal of MolecularCatalysis B: Enzymatic,2012,79(0):27-34
    [190] Young D D, Nichols J, Kelly R M, etc. Microwave activation of enzymatic catalysis[J]. Journal ofThe American Chemical Society,2008,130(31):10048-10049

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700