用户名: 密码: 验证码:
六轮摇臂巡视器建模仿真及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月面巡视器是搭载各种仪器执行月面探测任务的重要载体,是登陆月球表面进行探测任务的最直接工具。月面环境的特殊性要求巡视器必须从结构上、控制上提高其移动能力,必须通过构建虚拟月面环境来验证巡视器在未知地形上的通过能力,从而保证巡视器在月面作业的平稳性与可靠性,防止出现由于车轮沉陷或者悬架卡死、底盘托底等导致巡视器无法前进的事故。以上功能的实现需要以精确且高效的巡视器模型为基础,基于此,本文对非结构化环境下六轮摇臂巡视器样机的多体运动学模型、动力学模型及控制模型进行了深入研究,在此基础上对巡视器的移动特性、轮壤作用特性进行了仿真试验,并构建了虚拟月面环境的六轮摇臂巡视器仿真系统,从而为巡视器预测设计、性能试验以及样机预演提供验证平台。
     论文首先推导了六轮摇臂巡视器三维运动学方程,并充分考虑车轮侧滑、滚动滑移以及转向滑移对移动系统的影响,提出了两种高效求解巡视器逆运动学解析解的方法。在此基础上,对整车构型进行了仿真试验,该构型地面适应性强,通过能力高;并且,所建模型的转向驱动角度误差低于0.4%,驱动轮转速精度仅为2.5%,完全可满足控制器设计需要,为下面的地面力学、动力学或者静力学研究提供了理论基础。
     从提高整车的通过性能与驱动效率入手,深入分析了轮壤作用的力学关系,根据车轮轮齿效应、静态沉陷及动态沉陷的机理,推导并建立了刚性筛网轮-土壤作用动力学模型。基于试验验证需求,研制了低重力模拟月壤,并设计了轻小型刚性筛网轮与低重力试验测试装置,以此为基础开展轮壤模型研究并根据试验结果对模型沉陷系数进行了修正。通过模型仿真与试验比对整体误差为3%,为巡视器动力学、静力学建模以及控制器设计、虚拟月面环境仿真系统搭建奠定了基础。在试验过程中,利用试验数据分析了功率系数与驱动效率,发现车轮驱动效率在滑转率0.2时最高,由此得出了滑转率控制模型设计的最佳控制区域。
     在上述运动学与轮-壤动力学模型基础上,建立了六轮摇臂巡视器静力学模型,对其爬越复杂地形状况进行了仿真试验分析,得到的最优牵引力与各轮滑转率可以进行车辆移动性能评判以及滑转率控制设计。同时,在整车动力学建模过程中,以巡视器空间位姿、各关节角度和六维力作为广义坐标,推导了非结构化环境下六轮摇臂巡视器的牛顿-欧拉递归方程,该方法具有模块化建模特点,便于其它有效负载的动力学模型构建。并以此为基础,进行巡视器非常规车辆的轮壤模型重载,实现了虚拟月面环境六轮摇臂巡视器动力学仿真系统的搭建,经验证效果良好,为后续巡视器控制系统仿真试验、通过性能验证等提供了平台。
     本文最后,基于前述六轮摇臂巡视器运动学、动力学模型进行了控制模型的研究。针对动力学模型参数不确定的非线性系统,建立了基于滑模变结构的滑转率控制模型,经仿真验证系统具有很强的鲁棒性能,能够有效提高移动系统的牵引性能。基于六轮摇臂巡视器运动学模型,建立了基于车轮滑转动力学模型的牵引控制模型,并利用线性二次型最优控制法对其求解。以此为基础,对多种复杂地形进行了仿真试验,该模型可高效控制各轮滑转率,增强了巡视器的爬坡能力、通过沟壑以及跨越障碍的能力,适用于巡视器的工程应用条件。
     综上,本研究成果可为六轮摇臂巡视器结构优化、控制器设计、准实时/高保真月面虚拟仿真奠定理论及试验基础,提供工程设计支撑。
Lunar rover is an important carrier to detect lunar by carrying a variety of instruments. It's direct-detecting tool by lunar landing. We must improve the trafficability of lunar rover and ensure the stability and reliability of the system by building virtual environment to improve the machine and control system. In this paper, the prototype of six-wheeled rocker rover multi-body kinematics model, dynamic model and control model under unstructured environment were studied, and the rover moving characteristics and wheel-soil impact were simulated, and the virtual lunar surface environment of six-wheeled rocker lunar rover simulation system was built, which provide the verification platform for predicting design, performance test and prototype preview.
     Firstly, the kinematic equations of six-wheeled rocker lunar rover were deduced in accordance with the engineering prototype of the definition of the motor polarity in this paper. In kinematics modeling analysis, this paper fully considered the influences on the mobile systems from the sliding, rolling slippage and steering wheel slip. And all of these are helpful for providing analytical foundation for wheel-soil dynamics. Two methods were put forward which can solve efficiently the inverse kinematics analytical solution in this paper. On this basis, the simulation test was carried out on the rover configuration, and the configuration possesses strong adaptability to the ground and high capacity. And the solving method is simple, small amount of calculate, high precision. It is verified by simulation, and the steering angle error is below0.4%, and the drive wheel speed accuracy is at2.5%, which can meet the needs of controller design, and provide the theoretical basis for analysis of terramechanics, dynamics and statics.
     To improve the efficiency of the rover trafficability and drive efficiency, the relationship of wheel-soil mechanics must be analyzed. With deep analysis of Beeker and Reece model, and based on the wheel teeth effect and static and dynamic sinkage, the rigid wheel-soil dynamics model was established. For experimental verification, low gravity simulated lunar soil and the light-small rigid mesh wheel and low-gravity test device were designed, and then the wheel-soil dynamics model was amended by the simulation comparing with experiment, and the overall error is3%. This will lay the foundation of dynamics modeling, statics modeling, controller design and virtual environment simulation system building. Power coefficient and drive efficiency were analyzed through the test data, which can be found that drive efficiency is the highest when slip rate is0.2. Accordingly, the optimal control area of the slip rate control model is obtained.
     Based on kinematics and wheel-soil dynamics model, the statics model of lunar rover was derived. Under the condition of optimal energy consumption, simulation analysis is proceeding for the climb over complex terrain. The optimal traction and the slip rate were got which can be used for evaluating the rover motion performance and designing slip rate control system. In the process of rover dynamics modeling, with space position, each joint angle and the six dimensional forces as generalized coordinates. Newton-Euler recursive equation was deduced. This method has the characteristics of modular modeling, which is facilitate for other payload dynamic modeling on this rover. Finally, virtual environment of six-wheeled rocker rover dynamics simulation system were realized, the effect is good, which provides a good test platform for the simulation of control system and trafficability of six-wheeled rocker lunar rover.
     In the end, the control model was studied based on the kinetic model and dynamic model of six-wheeled rocker lunar rover. For parameters uncertain nonlinear system of dynamic model, slip rate control model based on sliding mode variable structure was established. It has strong robust performance, and can effectively improve the traction performance of mobile system. The traction control model based on wheel slip model was put forward based on the kinematic model of six-wheeled rocker rover, and can be solved by the linear quadratic optimal control method. On this basis, a variety of complex topography simulation test has been carried on, and each wheel slip rate can be efficiently controlled. The ability of climbing, cross obstacle and ravines have been strengthened effectively. And the model is suitable for engineering application.
     In conclusion, the research can provide engineering support for structure optimization, controller design and quasi real-time/high fidelity virtual simulation theory and experiment foundation of six-wheeled rocker lunar rover.
引文
[1]卢波.月球探测的意义及发展态势.国际太空,1998(4):1-4.
    [2]薛成位.月球探测势在必行.导弹与航天运载技术,1998(1):1-2.
    [3]宋春霞.基于虚拟样机的月球车移动性能仿真分析研究:[硕士学位论文].长沙:国防科技大学.2005.
    [4]欧阳自远.我国月球探测的总体科学目标与发展战略.地球科学进展,2004,19(3):351-358.
    [5]欧阳自远.月球探测的进展与中国的月球探测.地质科技情报.2004,12(4):10-17.
    [6]Kemurzhang. A. L. and Gromov. V. V. Planetary Vehicles. Machinery Press. Moscow.1993:11-17.
    [7]吴爽,张扬眉.国外地外天体漫游车发展状况研究.Space International/国际太空.2012(8):2-15.
    [8]J. Matijevic. Sojourner:The Mars Pathfinder Micro-rover flight experiment. Space Technol.1997.17(3/4):143-149.
    [9]R. volpe. T. ohm, and R. Petras. Mobile Robot Manipulators for Mars Science Space.1997,17(3):219-229.
    [10]K. Brian. Muirhead. Mars Rovers, Past and Future. Proceedings of the 2004, IEEE Aerospace Conference. Big Sky. MT. June 2004, (6):128-134.
    [11]江磊,姚其昌,何亚丽,张学明,韩宇石.星球车行走系统和他的研制者们-俄罗斯篇.机器人技术与应用.2008(3):17-19.
    [12]A. Kemurdian. Vgromov. and V. Mishkinyuk. Small Marsokhod Configuration. Proceedings of the 1992 IEEE International Conference on Robotics and Automation. Nice, France May 1992.1992:165-168.
    [13]Edward Tunstel, Terry Huntsberger. Hrand Aghazarian, etc. Fido Rover Field Trials as Rehearsal for the NASA 2003 Mars Exploration Rovers Mission. Robotics.2004:320-328.
    [14]Shigeo H. Naritoshi. Takaya S. et al. Fundamental Considerations for the Design of a Planetary Rover. Proc. of ICRA. Nagoya.1995:1939-1944.
    [15]Shigeo H, Hiroyuki K. Yasufumi Wj Nobuto Y Mobility and Remote Control Schemes of an Offset~Wheel Rover Vehicle. Proc. Int. Conf. On Mobile Planetary Robots&Rover Roundup.1997:12-20.
    [16]Shigeo H, Hiroyuki K, Yasufumi W, et al. The Mobility Design Cocepts Characteristics Ground Testing of an Offset~Wheel Rover Vehicle. Proc. Int. Conf. On Mobile Planetary Robots Rover Roundup.1997:1-11.
    [17]美国宇航局http://www.nasa.gov.
    [18]David W:Maria B, Daniel C. et al. Operating Nomad during the Atacama Desert Trek. SST Int Report.1998:83-87.
    [19]Rollins E, Luntz J. Fossella A. et al. Nomad:A Demonstration of the Transforming Chassis. Proceedings of ICRA 98. 1998:137-144
    [20]Yasuharu Kunii. Masaya Suhara. Yoji Kuroda. etc. Command Data Compensation for Real-time Tele-driving System on Lunar rover:Micro-5. Proceedings of the 2001 IEEE International Conference on Robotics 8.
    [21]王其.中国首量月球车首次亮相.科学大观园,2006(24):79-80.
    [22]葛卫平,刘暾,院老虎,赵志萍.新型月球车的控制及实验研究,空间科学学报.2010,30(2):160-164.
    [23]哈工大月球车参展归来.[EB/OL]http://news.hit.edu.cn/32class.htm.
    [24]李良琦.我国首辆八轮月球车在哈工大问世.机器人技术与应用.2008(3):32-37.
    [25]王文超,曹志奎等.转臂式八轮移动月球机器人设计与分析.传动技术.2003(9):27-31.
    [26]李春明,苏波,江磊.卢国轩.面向行驶安全性的月球车行走系统FDTM总体设计.机器人技术与应用.2008(3):10-13.
    [27]刘晓川.月球探测关键技术的发展分析.中国航天.2003.7:39-44.
    [28]Richter L, Ellery A. Gao Y, et al. A predictive wheel-soil interaction model for planetary rovers validated in test beds and against MER mars rover performance data.10th European Conference of the International Society for Terrain-Vehicle Systems. Budapest. Hungary-2006.
    [29]庄继德.计算汽车地面力学.北京:机械工业出版社,2002.36-40.
    [30]谷侃锋.王洪光,赵明扬.滑转率对月球车车轮驱动力学特性的影响分析.计算机仿真.2008.25(6):25-29.
    [31]M. Takano. Mechanism of an Autonomous Mobile Robot and Its Control. Advanced Robotics.1996.4(3):187-202.
    [32]CRAIG J J. Introduction to robotics:mechanics and control.2nd ed. Boston:Addison Wesley Publishing.1989.
    [33]MUIR P F'NEUMANN C P. Kinematic modeling of wheeled mobile robot. International Journal of Robotics System. 1987.4(2):282-340.
    [34]Shin D H. Park K H. Velocity kinematic modeling for wheeled mobile robot. The 2001 IEEE International Conference on Robotics Automation. May 21-26.2001. Seoul. Korea. Piscataway, NJ, USA:IEEE,2001:3516-3522.
    [35]Alexander J C, Maddocks H. On the kinematics of wheeled mobile robots. The International Journal of Robotics Research,1989.8(5):15-27.
    [36]Tarokh M. Mceermott G, Hayati S, et al. Kinematic modeling of a hilgh mobility Mars rover. The 1999 IEEE International Conference on Robotics Automation. May 10~15.1999, Detroit, MI. USA. Piscataway, NJ. USA:IEEE. 1999:992-998.
    [37]蔡则苏.洪炳铭.吕德生.HIT1型月球车的运动学分析.哈尔滨工业大学学报.2003,35(9):1088-1101.
    [38]H. Hacot. Analysis Traction Control of a Rocker-Bogie Planetary Rover. Cambridge, MA, USA. Massachusetts Institute of Technology,1998.
    [39]R. Siegwart. P Lamon. T. Estier. M. Lauria, et al. Innovative design for wheeled locomotion in rough terrain. Robotics and Autonomous Systems.2002(40):151-162.
    [40]PAUL S. Schenker. Terry L. Hansberger. et al. Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human. Robotic Colonization. Autonomous Robots.2003(14):103-126.
    [41]E. T. Baumgartner. H. Aghazarian. A. Trcbi-Ollennu. Rover Localization Results for the FIDO Rover. Sensor Fusion and Decentralized Control in Robotic Systems IV. Boston. MA. USA. October.2001.
    [42]L. ojeda, J. Borenstein. Methods for the Reduction of Odometry Errors in Over-constrained Mobile Robots. Autonomous Robots.2003(16):273-286.
    [43]Mongkol Thianwiboon, Viboon Sangveraphunsiri. Traction Control for a Rocker-Bogie Robot with Wheel-Ground Contact Angle Estimation. Roboc Cup.2006:682-690.
    [44]张武,党兆龙.贾阳.月面数字地形构造方法研究.航天器环境工程.2008,25(4):35-40.
    [45]M. G. Bekker[美].地面车辆系统导论.机械工业出版社.1978:74-24.
    [46]M. G. Bekker. The development of moon rover. Journal of the British Interplanetary.1985,38:537-543.
    [47]J. V. Perumpral, J. B Lilzedahl. et al. A numerical method for predicting the stress distribution and soil deformation under a tractor wheel. Journal of Terramechanics.1971.8(1):19-26.
    [48]李杰.庄继德,赵旗.车辆地面力学弹塑性本构关系.吉林工业大学自然科学学报.1999,29(2):1-7.
    [49]庄继德.地面计算力学.机械工业出版社,2001.198-202.
    [50]张克健.车辆地面力学.国防工业出版社.2002:126-238.
    [51]黄祖永[加拿大].地面车辆原理.李长枯等译.机械工业出版社.1985:60-121.
    [52]A. R. Reece. Problems of Soil-Vehicle Mechanics. U. S. Army L. L. L. ATAC. No.8479. Warren. Mich.1964.
    [53]Z. Janosi. B. Hanamoto. Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils. Proceedings of the 1st International Conference of ISTVES. Torino.1961.
    [54]O. Onafeko and A. R. Recce. Soil Stresses and Deformations beneath Rigid Wheels. Journal of Terramech,1967.4(1): 59-80.
    [55].1. Y. Wong. A. R. Reece. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stresses. Part Ⅰ: Performance of Driven Rigid Wheels. Journal of Terramech.1967.4(1):81-98.
    [56]J. Y. Wong. A. R. Reece. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stresses. Part Ⅱ: Performance of Towed Rigid Wheels. Journal of Terramech.1967.4 (2):7-25.
    [57]H. Shibly, K. Iagnemma. An equivalent soil mechanics formulation for rigid wheels in deformable terrain with application to planetary exploration rovers. Journal of Terramechanics.2005. (42):1-13.
    [58]lagnemma K. Dubowsky S. Vehicle-ground contact angle estimation with application to mobile robot traction. Proceedings of the 7th International Conference on Advances on Robot Kinematics.2000.137-146.
    [59]K. lagnemma, H. Shibly. On-Line Terrain Parameter Estimation for Planetary Rovers. Proc. of IEEE International Conference on Robotics and Automation.2002. (30):3142-3147.
    [60]K. lagnemma C. Brooks. Visual Tactile and Vibration-Based Terrain Analysis for Planetary Rovers. Proceedings of the 2004 IEEE Aerospace Conference.2004 (2):841-848.
    [61]K. lagnemma, H. Shibly. Planning and Control Algorithms for Enhanced Rough-Terrain Rover Mobility. Proc. of the 6th International Symposium on Artificial Intelligence and Robotics and Automation in Space.2001, (6):18-22.
    [62]K. Yoshida, H. Asai, et al. Motion Dynamics of Exploration Rovers on Natural Terrain:Experiments and Simulation. Proceedings of the 3rd International Conference on Field and Service Robotics. Helsinki, Finland.2001:281-286.
    [63]K. Yoshida, H. Hamano. Motion Dynamics and Control of a Planetary Rover with Slip-Based Traction Model. Proceedings of SPIE-The International Society for Optical Engineering.2002.4715:275-286.
    [64]丁亮等.基于应力分布的月球车轮地相互作用地面力学模型.机械工程学报.2009.45(7):50-55.
    [65]Ding Liang, wheel slip-sinkage and its prediction model of lunar rover. J. Cent. South unit. Technol. 2010 (17): 129-135.
    [66]杨艳静等.月球车轮与月面相互作用的两种仿真模型的比较与应用.航天器环境工程.2009.26(3):206-210.
    [67]焦震等.基于地面力学的月球车爬坡轮-地相互作用模型,机器人.2010,32(1):70-76.
    [68]李建桥等. 刚性轮-月壤相互作用预测模型及试验研究.中国农业工程学会2007年学会论文集,2007:1-5.
    [69]Iagnemma. A Laboratory Single Wheel Tested for Studying Planetary Rover Wheel-Terrain Interaction. MIT Field and Space Robotics Laboratory.2005:2-9.
    [70]D. S. Apostolopoulos. Analytical Configuration of Wheeled Robotics Locomotion. The Robotics Institute of Carnegie Mellon University Technical.
    [71]K. Jizuka, Y. Sato. Y. Kuroda. et al. Study on Wheel of exploration Robot on Sandy Terrain. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing. China.2006:4272-4277.
    [72]K. Yoshida and T. Shiwa. Development of a Research Testbed for Exploration Rover at Tohoku University. Journal of Space Technology and Science.1996.12 (1):9-16.
    [73]李明,齐春子.月面巡视探测器动力学建模.中国空间科学技术2008.28(1):1-8.
    [74]王佐伟,吴宏鑫.月球探测车转向系统动力学建模与分析.中国空间科学技术.2004.6(3):14-20.
    [75]王佐伟.梁宏鑫.梁斌.月球探测车动力学建模与协调驱动控制.宜昌:第二十二届中国控制会议论文集.2003:554-558.
    [76]居鹤华,崔平远,崔祜涛.具有滑移的摇臂式巡视器建模与控制.机械工程学报.2005.41(9):134-139.
    [77]居鹤华.基于自主行为智能体的月球车运动规划与控制:[博士学位论文].哈尔滨:哈尔滨工业大学,2003:20-21.
    [78]Kazuya Yoshida. Hiroshi Hamano. Motion Dynamics of a Rover with Slip Based Traction Model. Proceedings of the 2002 IEEE International Conference on Robotics & Automation.2002:3155-3160.
    [79]Kazuya Yoshida, Hiroshi Hamano. Motion Dynamics and Control of a Planetary Rover with Slip-Based Traction Model. SPIE 16th Int.2002(47):15-33.
    [80]Kazuya Yoshida. Hiroshi Hamano. and Toshinobu Watanabe. Slip-based Traction Control of a Planetary Rover. B. Sicilian and P. Dario (Eds.):Experimental Robotics Ⅷ. STAR 5.2003:644-653
    [81]H Shibly. K lagnemma. S Dubwsky. An equivalent soil mechanics formulation for rigid wheels in deformable terrain with application to planetary exploration roves. Journal of Terramechanics.2005(42):1-13.
    [82]Pierre Lamon. Ambroise Krebs. Michel Lauria. Roland Siegwart. Wheel torque control for a rough terrain rover. IEEE International Conference on Robotics and Automation, New Orleans. USA.2004.
    [83]袁勇,丁同才,胡震宇.月球车车轮驱动能力研究.动力、能源、结构、材料技术第三届学术会议论文集.2006:371-376.
    [84]谷侃锋.赵明扬.基于滑转率的六轮纵列式月球车驱动控制研究.机器人.2008,30(2):117-122.
    [85]刘建军,陈建新.月球车的一体化轮系月面行驶控制及仿真Proceedings of the 24th Chinese Control Conference. Guangzhou, P. R. China,2005(6):1434-1438.
    [86]Kenneth J. Waldron. Muhammad E. Abdallah. An Optimal Traction Control Scheme for Off-Road Operation of Robotic Vehicles. IEEE/ASME Transactions on Mechatronics.2007.12(2):126-133.
    [87]R. Siegwart, P. Lamon, T. Estier. Innovative Design for Wheeled Locomotion in Rough Terrain. Robotics and Autonomous Systems.2002.40:151-162.
    [88]K. Iagnemma. S. Kang, H. Shibly. Online terrain parameter estimation.for wheeled mobile robots with application to planetary rovers. IEEE Transactions on Robotics.2004,20(5):921-927.
    [89]P. Lamon, A. Krebs, M. Lauria. et al. Wheel Torque Control for a Rough Terrain Rover. Proceedings of IEEE International Conference on Robotics and Automation. New Orleans. USA.2004:4682-4687.
    [90]Lamon.3D Position Tracking For All-Terrain Robots. Swiss:Doctoral Dissertation of Swiss Institute of Federal. 2005:45-50.
    [91]Yoji Kuroda. Teppei Teshima. Ylshinori Sato, et al. Mobility Performance Evaluation of Planetary Rover with Similarity Model Experiment. IEEE ECRA 2004 Final Paper.2004:1394-1399.
    [92]包金宇,廖文和,薛善良.虚拟现实技术初探.综述与展望.2004(5):1-3.
    [93]骆训纪.孙增圻等,月球漫游车仿真研究发展概况.第二届月球车探测技术研讨会论文集.2001:188-194
    [94]杨艳春.鲍劲松,金烨.一种真实感虚拟月面建模方法.系统仿真学报.2007.19(11):2515-2158.
    [95]Yan-chun Yang. Jin-song Bao, Ye Jin, et al. A Virtual Simulation Environment for Lunar Rover. Framework and Key Technologies International Journal of Advanced Robotics System.2008.5(2),201-208.
    [96]Craig J. Introduction to robotics:mechanics and control.2nd ed. Boston:Addison Wesley Publishing.1989.
    [97]Muir P Fneumann. Kinematic modeling of wheeled mobile robots. International Journal of Robotics System.1987. 4(2):282-340.
    [98]Shin D H. Park K H. Velocity kinematic modeling for wheeled mobile robot. The 2001 IEEE International Conference on Robotics Automation. May 21-26,2001. Seoul. Korea. Piscataway. NJ. USA:IEEE.2001(3):516-522.
    [99]Alexander J C. Maddocks J H. On the kinematics of wheeled mobile robots. The International Journal of Robotics Research.1989.8(5):15-27.
    [100]Tarokh M, Mcdermott G. Hayati S. et al. Kinematic modeling of a high mobility Mars Rover. The 1999 IEEE International Conference on Robotics Automation. May 10-15,1999. Detroit. MI. USA. Piscataway, NJ. USA:IEEE. 1999:992-998.
    [101]P. F. Muir and C. P. Neumann. Kinematic modeling of wheeled mobile robots. J. Robotic Systems.1987,4(2): 282-340.
    [102].1. J. Craig. Introduction to Robotics.2nd. Adelson Wesley Publishing.1989.
    [103]W. Kim. D. H. Kim. B. J. Yi. et al. Kinematic Modeling of Mobile Robots by Transfer Method of Augmented Generalized Coordinates. IEEE International Conference on Robotics and Automation. Seoul. Korea.2001: 3516-3522.
    [104]D. H. Shin. K. H. Park. Velocity Kinematic Modeling for Wheeled Mobile Robots. Proceedings of the 2001 IEEE International Conference on Robotics & Automation. Seoul. Korea.2001:3085-3091.
    [105]王世杰,李雄耀,唐红.李阳.月面环境与月壤特性研究的主要问题探讨.地球化学.2010.39(1):73-81
    [106]欧阳自远.月球科学概论.北京:中国宇航出版社.2005:362-387.
    [107]J olliff B L. Wieezorek. M A. Shearer C K. Neal C R. Reviews in Mineralogy and Geocheminstry Vol.60: New Views of the Moon. Chantilly VA:Mineralogical Society of America.2006:708-779.
    [108]J. Balaram. Kinematic Observers for Articulated Rovers. Proceedings of the 2000 IEEE International Conference on Robotics and Automation. San Fransiso.2000:2597-2604.
    [109]K. Iagnemma. A. Rzepnieski, S. Dubowsky. et al. Mobile Robot Kinematic Recon figurability for Rough-Terrain. Proceedings of the SPIE Symposium on Sensor Fusion and Decentralized Control in Robotic Systems Ⅲ.2000:4196.
    [110]王佐伟.梁斌.吴宏鑫.六轮月球探测车运动学建模与分析.宇航学报.2003,9:456-461.
    [111]M. Tarokh. G. McDermott. S. Hayati. et al. Kinematic Modeling of A High Mobility Mars Rover. Proceedings of the 1999 IEEE International Conference on Robotics &Automation, Detroit. Michigan.1999:992-998.
    [112]M. Tarohb, G. McDermott, J. Hung. Kinematics and Control of Rocky 7 Mars Rover. Technical Report, Department of Mathematical and Computer Sciences. San Diego State University.1998.8:21-98.
    [113]Genya Ishigami. Akiko Miwa. Keiji Nagatani. et al. Terramechanics Based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil. Journal of Field Robotics.2007.24(3):233-350.
    [114]KAZUYA Y, GENYA ISHIGAMI. Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil. Proceeding of 2004 IEEE/RSJ International conference on Intelligent Robots and Systems.2004:3995-4000.
    [115]居鹤华,曹亮,崔平远.基于模糊逻辑的月球车逆运动学求解方法.宇航学报.2006,27(4):643-648.
    [116]GAO Haibo. DENG Zongquan. DING Liang, et al. Virtual simulation system with path-following control for lunar rovers moving on rough terrain. Chinese Journal of Mechanical Engineering.2012.25(1):38-46.
    [117]杨艳春,鲍劲松,金烨。基于虚拟现实环境的六轮月球车运动性能仿真.上海交通大学学报.2010.44(8):1079-1083.
    [118]吴家铸,等编著.视景仿真技术及应用,西安电子科技大学出版社,2001.
    [119]Yan-chun Yang. Jin-song Bao. Ye Jin et al. A Virtual Simulation Environment for Lunar Rover:Framework and Key Technologies. International Journal of Advanced Robotic Systems.2008,2(5):201-208.
    [120]丁亮,高海波.邓宗全等.基于应力分布的月球车轮地相互作用地面力学模型.机械工程学报.2009,45(7):49-55.
    [121]DING Liang, GAO Hai-bo, DENG Zong-quan, et al. Wheel slip-sinkage and its prediction model of lunar rover. J. Cent. South Univ. Technol.2010. (17):129-135.
    [122]全齐全.月球车车轮与土壤作用的力学特性测试系统的研制与实验:[硕士论文].哈尔滨:哈尔滨上业大学.2007.
    [123]Bekker. Introduction to Terrain-Vehicle System. University of Michigan Press.1969.
    [124]J. Y. WONG. A. R. REECE. Prediction of rigid wheel performance based on analysis of soil-wheel, stresses, part: Performance of driven rigid wheels, Journal/Terramechanics.1967,4(1):81-98.
    [125]J. Y. WONG. Terramechanics and off-road vehicles. Amsterdam:Elsevier.1989.
    [126]J. Y. WONG. Theory of Ground Vehicles. John Wiley & Sons. Inc. New York.2001.
    [127]Scholander. J. Bearing capacity of some forest soils for wheeled vehicles, some technical aspects and consequences.1974.
    [128]Freitag. D. R. Adimensional analysis of the performance of pneumatic tires in soft soil. USA army Waterways Experiment Station. Report.1965. No.3-688.
    [129]Abebeet. Soil compaction by multiple passes of a rigid wheel relevant for optimization of traffic. Journal of Terramechanics.1989.26(2):139-148.
    [130]Genya Ishigami. Terramechanics-based Analysis and Control for Lunar/Planetary Exploration Robots. Tohoku University Graduate School of Engineering.2008.
    [131]K. Iizuka. K. Sato. Y. Kuroda. et al. Experimental Study of Wheeled Forms for Lunar Rover on Slope Terrain. 9th IEEE International Workshop on Advanced Motion Control.2006:266-271.
    [132]HAMBLETON J P. DRESCHER A. Modeling wheel induced rutting in soils:Rolling. Journal of Terramechanics.2009(46):35-47.
    [133]Ishigami G. Nagatani K, Yoshida K. Path planning for planetary exploration rover sand its evaluation based on wheel slip dynamics//IEEE Internationa Conference on Robotic sand Automation Piscataway. NJ, USA:IEEE.2007: 2361-2366.
    [134]郑永春.模拟月壤研制与月壤的微波辐射特性研究:[博士学位论文]. 贵阳:中国科学院地球化学研究所.2005:44-76.
    [135]马文哲.李建桥.邹猛等.粒径分布对实验用十壤机械性能的影响.中国农业机械学会2006年学术年会论文集.2006:749-752.
    [136]樊世超,贾阳,向树红等.月而地形地貌环境模拟初步研究.航天器环境工程.2007,24(1):15-20.
    [137]B. M. Willman, W. W. Boles, D. S. McKay, et al. Properties of lunar soil stimulant JSC-1. Journal of Aerospace Engineering.1995.8 (2):77-87.
    [138]日本清水建設.模擬月土壤の诸性質.2003.
    [139]A. Howard, P. E. Perko. D. N. John, et al. Mars Soil Mechanical Properties and Suitability of Mars Soil Simulates. ASCE Journal of Aerospace Engineering.2006,19 (3):160-176.
    [140]刘吉成,高海波,邓宗全等.月球车样机实验用的松散沙土力学参数测量系统.机械设计.2009,26(3):33-36.
    [141]王庆年,王志浩.车轮重复通过对沙土力学特性影响及参数预测.农业工程学报.1995,11(4):33-38.
    [142]J Y Wong. Prediction of Multi-passes Performance of Tires-A Review. Proc.6th Int. Conf. ISTVS.1978. 371-389.
    [143]王巍,夏玉华,梁斌等.月球漫游车关键技术初探. 机器人,2001,23(3):280-284.
    [144]彭丽媛,李晖,居鹤华.崎岖地形环境中月球车的动力学建模与仿真.系统科学与数学,2011,31(6):742-750.
    [145]Phase I Study of Self-Transforming Robotic Planetary Explorers Final Report.
    [146]John J. Craig. Introduction to Robotics Mechanics and Control. Second Edition, Addison Wesley Publishing. 1989.
    [147]E. Papadopoulos and D. Rey. A New Measure of Tip over Stability Margin for Mobile Manipulators. Proceedings of the IEEE International Conference on Robotics and Automation,1996.
    [148]E. T. Baumgartner. H. Aghazarian A. Trebi-Ollennu, T.L. Huntsberger. et al. State Estimation and Vehicle Localization for the FIDO Rover. Sensor Fusion and Decentralized Control in Autonomous Robotic Systems III, SPIE Proc. Vol.4196. Boston. USA,2000.
    [149]Andreas Gibbesch. Multibody system modeling and simulation of planetary rover mobility on soft terrain.2006.
    [150]P. F. Muir and C. P. Neumann. Kinematic modeling of wheeled mobile robots. Robotic Systems.1987.4(2): 282-340.
    [151]B. C. Mclnnis and C. F. Liu. Kinematics and Dynamics in Robotics:A Tutorial Based Upon Classical Concepts of Vectorial Mechanics. IEEE Journal of Robotics and Automation.1986.2(4):181-187.
    [152]D. E. Orin and S. Y. Oh. Control of Force Distribution in Robotic Mechanisms Containing Closed Kinematic Chains. Journal of Dynamic Systems. Measurement and Control.1981.103(2):134-141.
    [153]P. F. Muir and C. P. Neumann. Modeling and Control of wheeled mobile robots. Carnegie Mellon University. 1988.
    [154]郭茂政.论惯性积的平移变换和旋转变换.大学物理.2004.23(6):P23-24.
    [155]K. Yoshida, T. Watanabe, N. Mizuno. et al. Traction Control and Navigation of a Lunar Rover. Proceeding of the 7th International Symposium on Artificial Intelligence. Robotics and Automation in Space:i-SAIRAS 2003. NARA. Japan. May.2003.
    [156]谷侃锋. 赵明杨.基于滑移率的六轮纵列式巡视器驱动控制研究.机器人.2008.20(2):117-122.
    [157]Jan van der Burg. P. Blazevic. Anti-Lock Braking and Traction Control Concept for All-Terrain Robotic Vehicles. Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque. New Mexico. April,1997:1400-1405.
    [158]居鹤华,崔平远等.基于模糊滑模的月球车驱动控制.飞行力学.2004,22(2):78-81.
    [159]胡跃明,谭慧琼,李迪.基于非线性系统相对度的学习控制算法及在非完整移动机器人中的应用.控制理论与应用.2001,18(5):662-668.
    [160]沈沉.基于滑模变结构控制的汽车驱动防滑控制系统的研究:[硕士学位论文].沈阳:东北大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700