用户名: 密码: 验证码:
基于被动滑转原理的轮地相互作用测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对星球进行探测时,星球探测车是人类必不可少的工具,因为它可以搭载各种星球探测仪器,为人类减轻负重,甚至可载人以扩大探测范围。对于星球探测车最重要的是要求它能够在特殊的环境下工作,为此,在设计阶段就应了解探测车的运动性能以及车轮的环境适应性能,以提高星球车的地形适应能力,这些设计都要考虑车轮与地面相互作用的力学特性,而对于二者的力学特性的研究又离不开相应的试验和测试,因此搭建一个可以对多种星球条件下的地形环境进行轮地相互作用测试的系统是十分必要的。出于这种目的,本文对基于被动滑转原理的轮地相互作用测试技术进行了研究,并将其分为崎岖地形模拟技术和车轮被动滑转测试技术两个部分进行详细的分析。
     使用一个二维转动平台来实现斜坡模拟是崎岖地形模拟技术的重点。通过深入研究转动平台的二维运动,发现经连续转动后二维转动平台具有耦合特性,于是在机构上使用解耦补偿铰链来实现对二维耦合运动的解耦,并进行结构设计。最后通过理论推导对提出的机构进行运动学分析,得到机构自由度和运动关系曲线,并在使用ADAMS进行验证。
     通过分析国内外已有的轮地相互作用测试装置,针对现存采用主动滑转原理的系统提出了被动滑转原理,并使用车轮测试装置提供被动滑转状态。基于轮地力学进行被动滑转原理公式的推导,同时以干沙为例解释了在被动滑转状态下的车轮力学特性。为了提供被动滑转状态,提出车轮被动滑转测试装置的机构原理,并进行三维设计,同时对轮压误差进行了预测,最后分析了其误差产生的原因,提出了误差补偿算法并提高了轮压加载的精度。
     搭建崎岖地形模拟系统并进行了相应的试验。设计了控制系统及数据采集系统,并对崎岖地形模拟系统的运动特性进行了试验分析。
When detecting various planets, planetary exploration rovers are indispensable tools, as they can carry a variety of planet detection equipment to reduce the weight of human load, manned rover can even expand the discovery scope. The most important requirement for a planetary exploration rover is its workability in special circumstances. Thus,during the designing process, we should know the rover’s motion performance and the obstacle performance of wheels in order to enhance the rover’s capability of adapting to various terrain. Of all these designs, the interactive mechanic properties between wheels and the ground must be taken into account and the relative testing are just an indispensable part in researching for this property. Therefore, it is necessary to construct a system of wheel-soil interaction performance testing under various planet conditions. For this purpose, the thesis went into further research of wheel-soil interaction performance testing technology which is based on forced slip theory.
     Firstly, the simulation of rough terrain of which the focal point is the implementation of the 2DOF rotating platform provides the environment of soil. By further researching the 2DOF rotating, the paper found the coupling state of 2DOF rotation and we achieved the goal of decoupling two-dimensional rotating (non-interference in the two rotations) by using decoupling hinge. Secondly, we structurally designed the proposed model. Thirdly, we made kinematic analysis through theoretical deduction and got the relative curve. Finally, we tested and verified the formula of the theoretical deduction by using ADAMS simulation model of the movement.
     By analyzing all the existing devices of wheel-soil interaction performance testing bed, we found some drawbacks of the existing equipments and thus proposed the forced slip theory (the realization of forced slip by using wheel-soil interaction performance testing bed).At first, we made theoretical deduction of forced slip theory based on wheel-soil mechanics. Second, we explained the mechanical properties of wheel under forced slip condition by using dry sand. Then, we proposed the mechanism of wheel-soil interaction performance testing devices, designed the structure, forecasted the error and analyzed the possible reasons of errors. At last, we proposed error compensation algorithm and improved the accuracy of the wheel loading pressure.
     Ultimately, the research realized the whole system and made some relative testing and designed the control system and data acquisition system. This study also made test analysis of the movement property of 2DOF rotating platform.
引文
[1]郑水春,欧阳自远,王世杰,等.月壤的物理和机械性质[J].矿物岩石,200424( 4):14- 19.
    [2]高海波,孟庆鑫,邓宗全,等.行星轮式月球车车轮与地面间的动载荷分析[J]哈尔滨工业大学学报,2006, 38(4):523-528.
    [3] Richter L, Ellery A, Gao Y, et al. A predictive wheel-soil interaction model for planetary rovers validated in test beds and against MER Mars Rover Performance Data[A]. 10th European Conference of the International Society for Terrain-Vehicle Systems[C].Budapest,Hungary,2006,10:3-6.
    [4] M G贝克.地面—车辆系统导论[M].北京:机械工业出版,1978.
    [5] M.G.Bekker. Theory of land locomotion. The University of Michigan Press,Ann Arbor, Michigan, 1956:15-18
    [6] Z.Janosi, Hanamoto B. Analytical Determination of Drawbar Pull as a Functionof Slip for Tracked Vehicle in Deformable Soils. Proc. 1st Int. Conf. of ISTVS,Torino. 1961:707-736
    [7] Reece A.R. Problems of Soil-Vehicle Mechanics. U.S. Army L.L.L., ATAC,No.8479 warren, Michigan. 1966: 23-27
    [8] S. WANJII, T.HIROMA. Prediction Of Wheel Performance by analysis ofNormal And Tangential Stress Distributions under The Wheel Soil Interface.Journal of Terramechanics. 1998, 34(3): 165-186
    [9] Perumpral J V, Lilzedahl J B., Perloff W H. A Numerical Method for Predictingthe Stress Distribution and Soil Deformation under a Tractor Wheel. Journal ofTerramechanics. 1971, 8(l):9-22
    [10] Sally Annette Shoop. Finite element modeling of tire-terrain interaction.University of Michigan, 2001:43-48
    [11] C.H.Liu, J.Y.Wong. Numerical simulation of tire-soil interaction based oncritical state soil mechanics. Journal of Terramechanics, 1996, 33(5): 209-221
    [12]吴大林.履带车辆地面力学仿真研究.计算机仿真.2004,(12):42~44
    [13]谢立.日本住友公司研制成功轮胎试验新装置.橡塑技术与装备.2002,(28):58~59
    [14] AESCO. "Matlab/Simulink Module AESCO Soft Soil Tyre Model (AS2TM)User's Guide", 2003
    [15] Harnisch C, Lach B. "Off Road Vehicles in a Dynamic Three-DimensionalRealtime Simulation", Proceedings of the 14th International Conference of theInternational Society for Terrain-Vehicle Systems, Vicksburg, MS USA,2002,(10): 20-24
    [16] Robert Bauer, Winnie Leung. Experimental and Simulation Results ofwheel-Soil Interaction for Planetary Rovers. Proceedings IROS, 2005:2-6
    [17] Fujii H, Oida A, Nakashima H. Analysis of Interaction between lunarterrain-wheel and treaded wheel by Distinct Element Method. Proc 14th Confof ISTVS, 2002:323-328
    [18]H Nakashima, Oida A. Algorithm and implementation of soil-tire contactanalysis code based on dynamic FE-DE method. Journal of Terramechanics,2004, (4): 127-137
    [19] H.Shibly, K.Iagnemma. An equivalent soil mechanics formulation for rigidwheels in deformable terrain with application to planetary exploration rovers.Journal of Terramechanics.2005,(42): 1 -13
    [20] K. Yoshida and T. Shiwa. Development of a Research Testbed for ExplorationRover at Tohoku University. Journal of Space Technology and Science. 1996,12 (1): 9-16
    [21] K. Yoshida, T. Watanabe, N. Mizuno, et al. Terramechanics-based Analysis and Traction Control of a Lunar/Planetary Rover. Proceedings of the 4th International Conference on Field and Service Robotics, Lake Yamanaka, Japan, 2003: 225-234
    [22] K. Yoshida, N. Mizuno, G. Ishigami, et al. Terramechanics-based Analysis for Slope Climbing Capability of a Lunar/Planetary Rover. The 24th International Symposium on Space Technology and Science. 2004: 1-6
    [23] K. Yoshida and G. Ishigami. Steering Characteristics of a Rigid wheel for Exploration on Loose Soil. Proc of the 2004 IEEE Int. Conf. on Intelligent Robots and Systems. Sendai, Japan, 2004: 3995-4000
    [24] D.Apostolopoulos. Analytical Configuration of Wheeled Robotic Locomotion.Doctoral dissertation,tech. report CMU-RI-TR-01-08.Robotics InstituteCarnegieMellon University.2001:55-57
    [25] K. Iizuka, K. Sato, Y. Kuroda and T. Kubota. Experimental Study of Wheeled Forms for Lunar Rover on Slope Terrain. 9th IEEE International Workshop on Advanced Motion Control. Istanbul, Turkey, 2006: 266-271
    [26] K. Jizuka, Y. Sato, Y. Kuroda, et al. Study on Wheel of exploration Robot on Sandy Terrain. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006: 4272-4277
    [27]陈炳聪.土壤-车辆系统力学.中国农业出版社,1981: 62~102
    [28]邓卓荣,由书城.水田拖拉机行走机构与土壤相互关系的研究报告.中国地面机械系统研究会.第四届年会论文集.1987: 201~204
    [29]谢小妍,邵耀坚.水田表层土壤粘度及承压特性的探讨.中国地面机械系统研究会第四届年会论文集.1987: 115~119
    [30]庄继德.车辆沙地行驶理论.机械工业出版社,1996:10~65 [31 ]王庆年,王志浩,李杰敏.车轮重复通过对沙土力学特性影响及参数预测.农业工程学报.1995,(04):33~38
    [32]李杰,庄继德,翟忠魁.车辆行驶的表层沙土非线性弹性本构模型的试验研究.农业工程学报.1996,(02):54~58
    [33]李杰,庄继德,叶楠.确定松软地面剪切特性模型参数的新方法.农业机械学报.2003,(3):5~7 [34 ]樊慧文.地面-车辆系统模型及性能预测.物探装备.1997,(04):7~12
    [35]赵奇,徐颖李杰车辆行驶工况下的沙漠沙本构特性模型的建立吉林大学学(江学版).2003(1):42~45
    [36]张克健,张相麟.履刺效应的有限元分析.兵工学报.1982, (4): 54~60
    [37]刘大维,陈吉清,土国林.轮脚与土壤相互作用的有限元分析.农业机械学报.1996,(3):12~17
    [38]邱丽娟,余群.地面-车辆系统力学中的有限元法.机械工业出版社,1989:99~102
    [39]李杰.车辆行走机构与沙地相互作用及仿驼蹄轮胎力学模型的研究.吉林工业大学,1997:45~50
    [40]陈斌.履刺式刚性轮在沙土上的牵引特性研究.长春:吉林大学硕士学位论文, 2007: 27-36.
    [41]全齐全.月球车车轮与土壤作用的力学特性测试系统的研制与实验滨:哈尔滨工业大学硕士学位论文.2007:18-49
    [42] J. Y. Wong, A. R. Reece. Prediction of Rigid Wheel Performance Based onAnalysis of Soil-Wheel Stresses, Part I: Performance of Driven Rigid Wheels. Journal of Terramechanics, 1967, 4 (1): 81-98
    [43] Z. Janosi, B. Hanamoto. Analytical Determination of Drawbar Pull as aFunction of Slip for Tracked Vehicle in Deformable Soils. Proceedings of the 1st International Conference of ISTVES, Torino, Italy, 1961, 707-726
    [44]丁亮.月/星球车轮地作用地面力学模型及其应用研究.哈尔滨:哈尔滨工业大学博士学位论文.2009:87-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700