用户名: 密码: 验证码:
面向月球车连续遥操作的预测显示技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,全世界范围内掀起了新一轮的探月高潮,中国也提出了自己的“嫦娥”探月计划。月球车是“落月探测”中重要组成部分。基于预测显示的连续遥操作技术,能够实现对月球车的有效控制。本文主要针对月球车连续遥操作过程中的预测显示技术进行了研究。
     本文在已取得的轮地接触力学研究成果的基础上,基于加拿大CMLabs公司开发的Vortex动力学平台,针对月球车的移动系统开发出了一款实时高保真度月球车预测仿真平台——ROSTDyn,并对其实时性进行了测试,为连续遥操作的预测显示提供了基础平台。在该平台的基础上,针对基于预测显示进行月球车连续遥操作的一些关键技术进行了研究:对基于预测显示的连续遥操作系统进行了设计,分析了遥操作系统的中所存在的时延,同时对连续遥操作系统的工作流程进行了分析。本课题详细分析了遥操作过程中存在的预测误差,并基于月球车轮地相互作用力学模型,系统地研究了预测显示的模型误差在线修正理论,提出了预测模型在线修正算法,最后采用ROSTDyn预测仿真平台对其进行了验证。本文对于月球车的连续遥操作系统的稳定性和透明性也进行了理论分析和研究,为后续连续遥操作系统的实现提供理论指导。
     本文利用月球车原理样机对所开发的月球车预测仿真平台的预测精度进行验证。根据两组试验:爬坡试验和横过斜坡试验,对滑转率、沉陷量和轮地相互作用力等的试验结果和仿真结果进行了对比,证明ROSTDyn具有较高的预测精度,满足连续遥操作预测显示的需要。
     本文通过对预测显示仿真平台的研发,以及连续遥操作系统中的相关技术的研究,为后续基于预测显示进行月球车连续遥操作系统的实现奠定了基础。
In recent years, a new round of lunar exploration springs up in the world scope. China also puts forward“Chang’e”plan to explore the lunar. The lunar rover is an important part of“Falling Lunar Exporation”project. Based on the pridictive display technology, the continuous teleoperation could control the lunar rover effectively. This article researchs on the pridictive display technology which exsits in the lunar rover continuous teleoperation.
     This article based on the achievement acquired on the terramechanics, using the software Vortex as a foundation platform which is developed by the CMLabs, Canada, developes a simulation platform for the lunar rover—ROSTDyn. Through the test, the simulation speed could reach to real-time. It supports a platform for the predictive display of the continuous teleoperation. Based on this platform, research is carried on some key technologies of teleoperation system: the design of this teleoperation system based on the pridictive display, the analysis of time-delay exsiting in this system, and the analysis of the working process of this system. This article emphasis on the analysises of the error between the prediction model and the real model. Based on the terramechanics model, the correction theory is researched, and the algorithm is raised which is based on the on-line correction of the prediction model, at last it is simulated and tested on ROSTDyn, and result demonsrates it is good. This article analyzes the stability and the transparency, and gives the conditions to accored with the stability and transparency, as a theory foundation of the implementation of this system.
     This article uses principle sample machine of the lunar rover to test the predictive precision of the developed simulation platform. This article designs two groups of experiments: climbing experiments and crossing-slope experiments, comparing the slip, the sinkage and the force between the wheel and the terrain of the experiment results and simulation results. The experiments shows the predictive precision of this platform is good, and could meet the need of the continuous teleoperation to the predictive display .
     This article supports a foundation for the implemention of the continuous teleoperation system for lunar rovers based on the pridictive dipay, through the development of the pridictive dipay platform and the research on the relative technologies.
引文
[1]欧阳自远.我国月球探测的总体科学目标与发展战略.地球科学进展, 2004,(03) :351-358.
    [2]欧阳自远.月球探测的进展与前景.学会月刊. 2003.11.
    [3] Xiaoli Yang and Qing Chen. Virtual Reality Tools for Internet-Based Robotic Teleoperation. Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications. 2004.
    [4]邓霞.大型冷凝器清洗机器人的虚拟现实遥操作系统研究,湖南大学硕士学位论文. 2009.
    [5]葛为民.虚拟现实技术在移动机器人遥操作系统中的应用研究,天津大学博士学位论文. 2004.
    [6]姜正武.水下机械手遥操作仿真技术研究,哈尔滨工程大学硕士学位论文. 2001.
    [7]李焱,贺汉根.应用遥编程的大时延遥操作技术.机器人,2001,23(5): 392-96.
    [8] Thomas B. Sheridan. Space Teleoperation Through Time Delay: Review and Prognosis. IEEE Transaction on Robotics and Automation. VOL.9, NO.5, 1993.
    [9] Terrence Fong, Charles Thorpe. Vehicle Teleoperation Interfaces. Autonomous Robots. 2001, 09.
    [10] Amir H. Behzadan ,Vineet R. Kamat. Visualization of Construction Graphics in Outdoor Augmented Reality. 2005.
    [11]周赟.基于虚拟现实的机械臂遥操作系统研究,华中科技大学硕士学位论文. 2007.
    [12] Schebor F S, Turney J L. Realistic and consistent telerobotics simulation. In: 1991 IEEE International Conference on Robotics and Automation. Charlottesville, 1991,889-894.
    [13] John Wright, Frank Hartman etc. Driving on Mars with RSVP--Building Safe and Effective Command Sequences, IEEE. 2006, 06: 38-45.
    [14] Didier Verna, Lrde/Epita. Virtual Reality and Tel-Operation: a Common Framework.
    [15] Liang Ding. Design of Comprehensive High-fidelity/High-speed VirtualSimulation System for Lunar Rover,IEEE.2008:1118-1123.
    [16] J. Yen, A. Jain and J. (Bob) Balaram. ROAMS: Rover analysis modeling and simulation software. International Symposium on Artifcial Intelligence, Robotics and Automation in Space, 1999, Noordwijk, the Netherlands: 255-262.
    [17] A. Jain, J. Guineau, C. Lim, et al. ROAMS: Planetary Surface Rover Simulation Environment. International Symposium on Artifcial Intelligence, Robotics and Automation in Space, 2003, Nara, Japan.
    [18] A. Jain, J. (Bob) Balaram, J. Cameron, et,al. Recent Developments in the ROAMS Planetary Rover Simulation Environment. IEEE Aerospace Conference Proceedings, 2004: 861-875.
    [19] Paul G. Backes, Jeffrey S. Noms, Mark W. Powell, et, al. Multi-mission Activity Planning for Mars Lander and Rover Missions. IEEE Aerospace Conference Proceedings, 2004: 877–886.
    [20] S. Michaud, L. Richter, N. Patel, et al. RCET: Rover Chassis Evaluation Tools. Proceeding of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation. ESTEC, Noordwijk, The Netherlands, 2004.
    [21] K. Yoshida. The SpaceDyn: a MATLAB Toolbox for Space and Mobile Robots. Journal. of Robotics and Mechatronics. 2000, 12 (4): 411-416.
    [22] Yan-chun Yang, Jin-song Bao, Ye Jin, et al. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies. International Journal of Advanced Robotic Systems, 2008: 201-208.
    [23]王梦宇.基于崎岖地形的月球车仿真研究.哈尔滨:哈尔滨工业大学硕士学位论文. 2008: 10-44.
    [24]焦震.基于地面力学的月球车动力学建模及仿真研究.哈尔滨:哈尔滨工业大学硕士学位论文. 2009: 20-65.
    [25]骆训纪,孙增圻.月球漫游车仿真系统研究.系统仿真学报.2002, 14 (9):1235-1238.
    [26]陈百超.月球车悬架研究及动力学仿真.吉林大学硕士学位论文.2006.
    [27]胡明,邓宗全,高海波等.基于ADAMS的六轮月球车动力学建模与仿真。哈尔滨工业大学学报,2007,39(1):28-31.
    [28]陈启宏.遥操作机器人系统的智能控制研究.东南大学博士学位论文. 2003:4-10.
    [29] Schebor F S,Turney J L.Realistic and consistent telerobotics simulation.
    [30] Kevin R. Wheeler, Rodney Martin. Predictive Interfaces for Long-Distance Tele-Operations. Proc.‘ISAIRAS 2005 Conference’, 2005.
    [31]贾彦辉。基于Vortex的月球车移动性能仿真与评价。哈尔滨:哈尔滨工业大学硕士学位论文. 2010: 22-40.
    [32] [美]M.G Bekker.地面车辆系统导论.北京机械工业出版社. 1978.
    [33] Z. Janosi, B. Hanamoto. Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils. Proceedings of the 1st International Conference of ISTVES, Torino, Italy, 1961, 707-726.
    [34]庄继德.汽车地面力学.北京机械工业出版社. 1980.
    [35]丁亮.月/月球车轮地作用地面力学模型及其应用研究.哈尔滨工业大学博士学位论文. 2009:109-128.
    [36] Genya Ishigami, Akiko Miwa, Keiji Nagatani and Kazuya Yoshida. Terramechanics-Based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil. Journal of Field Robotics. 2007, 24 (3): 233-250.
    [37]张永林,宋爱国.虚拟环境中的计算时延。测控技术,2009,28(2):93-98.
    [38]赵猛,张珩.不确定大时延下遥操作对象模型的在线修正方法.系统仿真学报,2007,19(19):4473-4475.
    [39]李成,梁斌.空间机器人的遥操作.宇航学报,2001,22(1):95-98.
    [40]邓启文,韦庆,李泽湘.大时延力反馈双边控制系统.机器人,2005,27(5): 410-419.
    [41]邓启文,韦庆,李泽湘.力反馈时延遥操作系统的时延相关稳定性分析.控制理论与应用,24(5):815-818.
    [42] Dale A. Lawrence. Stability and Transparency in Bilateral Teleoperation. Proceedings of the 31st Conference on decision and control:2649-2655.
    [43]张永林,宋爱国.广义波变量遥操作系统的透明性分析.宇航学报,2008,29(2):688-692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700