用户名: 密码: 验证码:
DOC辅助DPF再生方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒物是柴油机尾气排放中主要污染物之一。目前用于减少柴油机颗粒物排放最有效的后处理装置是壁流式颗粒物捕集器,但是由于其再生技术还不是很成熟,严重制约了其广泛使用。因此,深入全面的研究出一种比较适用的颗粒物捕集器的再生技术具有非常重要的意义。
     本文在总结现有各种再生方法优缺点的基础上,提出了在DOC前喷入柴油,提升发动机尾气温度,实现颗粒物捕集器再生的方法,并对该再生方法进行了全面深入的研究。本文研究的主要内容归纳如下:
     (1)提出了一种用于壁流式颗粒物捕集器再生的方法。针对目前国内外学者提出的各种柴油机颗粒物捕集器再生方法的优缺点,结合国内柴油机技术及燃油质量,提出一种叫做DOC辅助DPF再生的再生方法。该再生系统结构较简单,控制过程简便,可适用于国内市场上绝大部分柴油机汽车;该再生方法对柴油质量要求不苛刻,对燃油经济性恶化幅度小,对发动机使用寿命损害幅度小。
     (2)根据DOC辅助DPF再生方法的一个特例,提出怠速再生方法。该方法需要在发动机较高负荷时先喷入少量柴油提升尾气温度,再让发动机回到怠速状态,依靠发动机尾气流量降低,进一步提升尾气温度,实现满载的DPF再生。该再生方法的燃油经济性更好,控制过程更简单。
     (3)对再生方法的二次污染排放进行研究。研究发现DOC辅助DPF再生方法的二次污染为HC和CO。分析二次污染中HC和CO的来源,发现HC主要是由喷入的柴油在DOC中未完全氧化而产生,CO主要是由再生过程中DPF中的颗粒物未彻底燃烧而生成。对再生过程中HC和CO排放的影响因素进行分析,发现影响二次污染中CO排放的因素主要包括再生时DPF中的颗粒物量、再生时DOC后的尾气温度、再生时的排气流量、和再生时发动机尾气中的氧气浓度;影响二次污染中HC排放的因素主要包括喷油流量、DOC前尾气温度和空速。
     (4)研究再生方法对DOC和DPF的老化程度。对两种再生方法分别进行4万公里老化试验,研究表明两种再生方法都会对DOC和DPF的性能造成老化,且老化幅度相仿。DOC性能老化主要体现在对CO起燃温度变高,对HC及颗粒物的催化效率降低和再生过程的能量利用率降低;DPF性能老化主要体现在空载时捕集效率降低。不可燃物对DPF背压的影响可以忽略不计。
     综上所述,本文系统地研究了DOC辅助DPF再生方法及其怠速再生方法。全面分析了再生方法的经济性及二次污染,深入地研究了再生方法对DOC和DPF的老化情况。研究结果对于推广壁流式颗粒物捕集器在柴油车上的广泛应用,减少柴油机颗粒物对环境的污染等方面具有重要的理论意义和工程应用价值。
Particulate matter is one main pollutant of the Diesel exhaust. Currently wall-flow diesel particulate filter is the most effective post-processing device used to reduce diesel particulate emissions, but its recycling technology is not very mature, seriously hampered it be widespread used. Therefore, thorough study on a more applicable regeneration method of diesel particulate filters has great significance.
     Summarized the advantages and disadvantages of various existing regeneration methods, propounded a new regeneration technology. In this technology, diesel is injected into diesel engine exhaust prior to the DOC, and then the temperature of diesel engine exhaust is increased to achieve diesel particulate filters regeneration, and this regeneration technology was comprehensively studied. The main contents of this paper are summarized as follows:
     (1) A regeneration method for wall-flow diesel particulate filters is proposed. According to the advantages and disadvantages of a variety of diesel particulate filters regeneration methods proposed by the domestic and foreign scholars, combined with the domestic diesel engine technology and fuel quality, a regeneration method called DOC assisted DPF regeneration method is proposed. The structure of this regeneration system and it’s control process is quite simple. This regeneration method suitable for most diesel cars on the domestic markets; The regeneration method is not demanding quality requirements for diesel, the fuel economy deterioration rate is small, no damage to the engine life.
     (2) According to a special case of DOC assisted DPF regeneration method, idling regeneration method is proposed. In this method, a small amount of diesel is sprayed into diesel exhaust to increase the temperature of engine exhaust when the load of engine is higher, then let the engine return to idle state, relying on the decrease of engine exhaust flow to further enhance the exhaust temperature, to achieve regeneration of DPF. The fuel economy of this regeneration method is better than DOC assisted DPF regeneration method, and it’s control process is easier than DOC assisted DPF regeneration method.
     (3) The secondary pollution of the regeneration method is investigated. HC and CO is found to be the secondary pollution of DOC assisted DPF regeneration method. The sources of HC and CO are analysised, the HC is mainly produced by the diesel which is not completely oxidized in the DOC. CO is mainly produced by the particulate matter which is not completely combustted in the DPF regeneration process. The factors of HC and CO emission on the regeneration were analyzed. The factors impact CO emission including the the amount of particulate matter in DPF when beginning regeneration、the exhaust gas temperature after DOC during regeneration、the exhaust flow during regeneration、and the oxygen concentration of the engine exhaust gas during regeneration; The factors impact HC emission including the amount of fuel injection, the exhaust gas temperature before DOC and space velocity.
     (4) The aging of DOC and DPF is investigated. Two methods of regeneration are carried out 40,000km aging test,Studies show that the two regeneration methods all will result in the performance of aging on the DOC and DPF, and the aging magnitude are similar. The degradation of DOC is mainly reflected on the ignition temperature of CO becomes higher, and the catalytic efficiency of HC and particulate matter are become lower;The degradation of DPF is mainly reflected on the trapping efficiency of empty DPF becomes lower. The impact of nonflammable particulate matter on the back pressure of DPF is negligible.
     In conclusion, the tow regeneration method of diesel particulate filters, DOC assisted DPF regeneration method and the idling regeneration method, are systematically studied in this paper. The fuel economy and the secondary pollution of regeneration methods were comprehensive analysised, the aging of regeneration method to DOC and DPF were in-depth studyed. The results has an important theoretical significance and engineering applications for expanding the applied scope of wall-flow diesel particulate filters in vehicle, reducing diesel particulate matter pollution on the environment.
引文
[1] Szu-Chich Chen, Chung-Min Liao. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources[J]. Science of the Total Environment, 2006, 366(1):112-123.
    [2] Denise L. Mauzerall, Babar Sultan, Namsoug Kim. NOx emissions from large point sources:variability in ozone production, resulting health damages and economic costs[J]. Atmospheric Environment, 2004, 39(16):2851-2866.
    [3] J. W. Knebel, D Ritter, M. Aufderheide. Exposure of human lung cells to native diesel motor exhaust—development of an optimized in vitro test strategy[J]. Toxicology in Vitro, 2002(16):185-192.
    [4] Michael P. Walsh. Worldwide development in motor vehicle diesel particulatecontrol[J]. SAE Paper 1989-01-0168.
    [5]刘际芳.汽车排放污染物对人体的危害[J].天津科技, 2003(5): 49-50.
    [6] JOHNSON T V. Diesel emission control technology[R]. SAE Paper, 2004-01-0070, 2004.
    [7] ZHANG Z, LIU BY H. Experimental study of aerosol filtration in the transition flow regime [J]. Aerosol Science and Technology, 1992, 16(4): 227-235.
    [8]成晓北,黄荣华,陈德良,等.直喷式柴油机排放颗粒物尺寸分布特性[J].燃烧科学与技术,2006, 12(4):335-339.
    [9]邹建国,钟秦.柴油机排放颗粒物组成分析[J].中国环境监测,2006, 22(3):23-26.
    [10]董素荣,宋崇林,张国宾,等.柴油机缸内颗粒物粒数粒径分布规律的研究[J].内燃机学报, 2008, 26(1):24-28.
    [11] K. Yamamoto, S. Oohori, H. Yamashita, et al. Simulation on soot deposition and combustion in diesel particulate filter [J]. Science Direct, 2008, 13(84):1-12.
    [12] Masoudi M. Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters[C]. SAE Paper 2001-01-0911.
    [13]陈文淼,陈虎,王建昕,等.柴油机PM排放测试分析方法探讨[J].车用发动机,2005, 156(2):54-58.
    [14]张兆合,刘巽俊,刘忠长.柴油机排气颗粒物样品分离方法的研究[J].内燃机学报,1999, 17(2):144-147.
    [15]肖宗成,崔东焕,刘巽俊,等.柴油机排气颗粒物的热解质量分析[J].内燃机工程,1993, 14(4):19-23.
    [16]宋崇林,范国梁,涂险峰,等.色谱质谱中的选择离子监测方式定量分析柴油机排气颗粒物中多环芳香烃[J].分析化学,2000, 28(9):1121-1125.
    [17]谭丕强,胡志远.柴油机捕集器结构参数对不同粒径颗粒物过滤特性的影响[J].机械工程学报,2008, 44(2):175-181.
    [18]张炜,宋崇林,王林,等.柴油机燃烧过程中颗粒物微观结构的变化规律[J].内燃机学报,2010, 28(3):221-227.
    [19]董素荣,宋崇林,崔兰,等.柴油机燃烧形成颗粒物的形态特性及微量元素分析[J].内燃机学报,2008, 26(6):499-504.
    [20]宋崇林,王玉秋,范国梁,等.柴油机排气颗粒中有机组分的分离方法及微量金属的测定[J].天津大学学报,2000, 33(6):707-710.
    [21] J . P. Shi, R. M. Harrison, F. Brear. Particle size distribution from a modern diesel engine [J]. Sci. Total Environ, 1999, 23(5):305–317.
    [22] Shaohua Hu, Jorn D. Herner, Martin Shafer, et al. Metals emitted from heavy-duty vehicles equipped with advanced PM and NOx emission controls [J]. Atmospheric Environment, 2009, 34(43):2950-2959.
    [23]张春润,“863计划”项目《柴油车颗粒物捕集器关键技术研究及产业化》验收报告[D]. 2003.01.
    [24] Su D S,Jentoft R E,Muller J O, et al. Microstructure and oxidation behavior of Euro IV diesel engine soot: A comparative study with synthetic model soot substances [J]. Catalysis Today, 2004, 90(1):127-132.
    [25]宋崇林,张炜,王林,等.一种基于图像处理技术的柴油机单颗粒微观结构的分析方法[J].燃烧科学与技术,2010, 16(5):388-394.
    [26] GB 18352.1-2001,轻型汽车污染物排放限值及测量方法(I)[S].北京:中国标准出版社,2001.
    [27] GB 18352.2-2001,轻型汽车污染物排放限值及测量方法(II)[S].北京:中国标准出版社,2001.
    [28] GB 18352.3-2005,轻型汽车污染物排放限值及测量方法(中国III、IV段)[S].北京:中国标准出版社,2005.
    [29]邓成林,柴油机颗粒物捕集器数值模拟及试验研究[D]. [硕士学位论文].天津:军事交通学院,2004.6.
    [30]邵玉平,柴油机颗粒物捕集器逆向喷气再生技术研究[D]. [博士学位论文].天津:天津大学,2005.12.
    [31]刘丽萍,柴油机颗粒物过滤系统的研究[D]. [博士学位论文].山东:山东大学,2009.5.
    [32]高希彦,基于红外加热再生的柴油机排气颗粒物后处理技术的研究[D]. [博士学位论文].大连:大连理工大学,2002.4.
    [33] Subhasis Biswas, Vishal Verma, James J, et al. Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits[J]. Atmospheric Environment, 2009, 25(43):1917-1925.
    [34] Ohno K.. Newly-conceived porous structure of SiC-DPF[J]. SAE Paper 2002-01-00325.
    [35] Ogyu K., Kudo A., Oshimi Y., et al. Characterization of thin wall SiC-DPF[J]. SAE Paper 2003-01-0377.
    [36] Merkel G.A., Beal D.M., Hickman D.L., et al. Effects of microstructure and cell geometry on performance of cordierite diesel particulate filters[J]. SAE Paper 2001-01-0193.
    [37]温苗苗,吕林,高孝洪.柴油机选择性催化还原后处理系统仿真[J].内燃机学报,2009, 27(3):249-254.
    [38] KoebelM, ElsenerM, KleemannM. Urea-SCR: A Promising Technique to Reduce NOx Emissions from Automotive Diesel Engines[J]. Catal Today, 2000, 59(3):335-345.
    [39] Khair M, Lemaire J, Fischer S. Achieving Heavy-Duty DieselNOx /PM Levels Below the EPA 2002 Standards—AnIntegrated Solution[C]. SAE paper 2000-01-0187.
    [40] KhairM, Lemaire J, Fischer S. Integration of EGR, SCR, DPF and Fuel2Borne Catalyst for NOx /PM Reduction [C]. SAE Paper 2000-01-1933.
    [41]曲虹霞,钟秦. NH3选择性催化还原NOx的实验研究[J].南京理工大学学报(自然科学版), 2002, 26(1):72-75.
    [42] Birkhold F, Meingast U, Wassermann P, et al. Modeling and Simulation of the Injection of Urea2Water-Solution for Automotive SCR DeNOx Systems [J]. Applied Catalysis B: Environmental, 2007, 70(1/4):119-127.
    [43]曾科,龙学明,刘兵.采用低温等离子体技术降低柴油机有害排放物的研究[J].内燃机学报,2003, 21(1):45-49.
    [44]黄奇飞.低温等离子体辅助催化型颗粒物捕集器净化柴油机尾气污染物的研究[D]. [博士学位论文].天津:天津大学,2007.8.
    [45] Sandip D. Shah, Douglas A. Dobson. A Soot Generator for DPF Qualification Studies [J]. SAE Paper 2000-01-1016.
    [46]姜东峰,范国梁,宋崇林.介质阻挡放电低温等离子体对柴油机排放物的影响[J].燃烧科学与技术,2005, 11(2):131-137
    [47] Toshiaki Y., Masaaki O., Tomoyuki K.. Nonthermal plasma regeneration of dieselparticulate filter[J]. SAE Paper 2003-01-1182.
    [48] Yoshihiko M., Satoshi S., Kazunori T., et al. Simultaneous removal of NOx and particulate from diesel engine exhaust using plasma and oxidative catalyst[J]. SAE Paper 2003-01-1185.
    [49]傅娟娟,蔡忆昔,孙平,等.处理柴油机氮氧化物和颗粒的低温等离子体法[J].农机化研究, 2004, 35(4):231- 235.
    [50]蔡忆昔,赵卫东,吴江霞,等.低温等离子发生器工作特性及试验研究[J].农业机械学报,2005, 36(10):117-120.
    [51] Alkemade Ulrich G, Ber nd Schumann. Engines and Exhaust After Treatment Systems for Future Automotive Applications[J]. Solid State Ionics, 2006, 24(177):2291-2296.
    [52] Twigg Martyn V. Progress and Future Challenges in Controlling Automotive Exhaust Gas Emissions [J]. Applied Catalysis B, 2007, 28(70):2-15.
    [53]蔡忆昔,赵卫东,李小华,等.低温等离子体降低柴油机颗粒物排放的试验[J].农业机械学报,2008, 39(2):1-5.
    [54]景晓军,艾毅,秦孔建,等.柴油机等离子体后处理器台架试验研究[J].汽车工程,2009, 31(6):516-519.
    [55]严兆大,曹韵华,芮阳,等.柴油机用纤维颗粒捕集器的压力损失研究[J].内燃机工程,2002, 23(2):40-43.
    [56] Setten B A, Makkee M, Moulijn J A. Molten Salts Supported on Ceramic Foam in the Potential Application of a Diesel Soot Abatement Technology[C]. SAE Paper 2001-01-0905.
    [57] Zelenka P, Reczek W, Mustel W, et al. Towards Securing the Particulate Trap Regeneration: a System Combining a Sintered Metal Filter and Cerium Fuel Additive[C]. SAE Paper 1998-01-0998.
    [58]曹韵华,严兆大,张镇顺,等.柴油机金属丝纤维过滤体的模型改进和试验验证[J].内燃机工程,2004, 22(1):33-38.
    [59]张春润.“863计划”项目《柴油车排气污染控制集成技术》验收报告[D]. 2005.7.
    [60] Miwa S, Abe F., Hamanaka T, et al. Diesel particulate filters made of newly developed SiC[C]. SAE Paper 2001-01-0192.
    [61] KonstandopoulosA G, John H J. Wall-Flow Diesel Particulate Filters-Their Pressure Drop and Collection Efficiency[C]. SAE Paper 1989-01-0405.
    [62] Konstandopoulos A G, Skaperdas E. Inertial Contributions to the Pressure Drop of Diesel Particulate Filters[C]. SAE Paper 2001-01-0909.
    [63]王劲.柴油机颗粒物捕集器捕集再生机理及模型研究[D]. [博士学位论文].长沙:湖南大学,2005.3.
    [64] Athanasions G.K. Fundamental Studies of Diesel Particulate Filters:Transient Loading, Regeneration and Aging[J]. SAE Paper 2000-01-1016.
    [65] Koltsatis G.C., Haralampous O.A., Margaritis N.K., et al. 3-Dimensional modeling of the regeneration in SiC particulate filters[J]. SAE Paper 2005-01-0953.
    [66] Piscaglia F., Rutland C.J. and foster D.E.. Development of a CFD model to study the hydrodynamic characteristics and the soot deposition mechanism on the porous wall of a diesel particlate filter[J]. SAE Paper 2005-01-0963.
    [67]刘云卿,龚金科.柴油机壁流式过滤体非稳态捕集过程的计算模型[J].内燃机学报,2009, 23(2):171-179.
    [68] Merkel G A, Cutler W A, Warren C J. Thermal Durability of Wall-Flow Ceramic Diesel Particulate Filters[C]. SAE Paper 2001-01-0190.
    [69] Child D, Cioffi J. An Electronically Controlled Diesel Particulate Filter System Employing Electrically Regenerated Ceramic Fiber Wound Cartridges[C]. SAE Paper 1994-01-0265.
    [70]徐哲.柴油机颗粒物捕集器再生特性仿真研究[D]. [硕士学位论文].长春:吉林大学汽车工程学院,2009.3.
    [71]龚金科,刘云卿,鄂加强,等.柴油机颗粒物捕集器加热再生过程的数值模拟[J].华南理工大学学报,2007, 35(6):14-20.
    [72]张春润,邵玉平,孙海东,等.壁流式过滤体的流动阻力分析及再生效率研究[J].车用发动机,2005, 159(5):65-67.
    [73] Gieshoff J, Pfeifer M, Schafer S A, et al. Regeneration of Catalytic Diesel Particulate Filters [C]. SAE Paper 2001-01-0907.
    [74]谭丕强,胡志远,楼狄明,等.颗粒物捕集器再生技术的研究动态和发展趋势[J].车用发动机,2005, 159(5):6-9.
    [75] Huynh C T, Johnson J H, Yang S L, et al. A One-Dimensional Computational Model for Studying the Filtration and Regeneration Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter [C]. SAE Paper 2003-01-0841.
    [76] Junko Oi-Uchisawa, Akira Obuchi, Shudong Wang. Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation [J]. Applied Catalysis B: Environmental, 2003(43):117-129.
    [77] Yoshit sugu Ogura, Kazuya Kibe, Satoshi Kaneko, etal. Development of oxidation catalyst for diesel engine [C]. SAE Paper 1994-01-0240.
    [78] Ritsuko Shinozaki, Yoshiaki Kishi, Hiromi Tohno. The durability of and evaluation methods for diesel oxidation catalysts [C]. SAE Paper 1998-02-0802.
    [79] Hammerle R H, Ketcher D, Horrocks R W, et al. Emissions from diesel vehicles with and without lean NOx and oxidation catalysts and particulate traps [C]. SAE Paper 1995-01-0391.
    [80] Motohisa Kamijo, Maki Kamikubo, Hiroshi Akama ,et al. Study of an oxidation catalyst system for diesel emission control utilizing HC adsorption [J]. SAE Paper, 2001(22):277-280.
    [81] F. Piscaglia, G. Ferrari. A novel 1D approach for the simulation of unsteady reacting flows in diesel exhaust after-treatment systems [J]. Energy, 2008(84): 1-12.
    [82]楼狄明,马滨,谭丕强,等.车用柴油机氧化催化转化器的实验研究[J].车用发动机,2009, 181(2):32-35.
    [83] Song Juhun, Wang Jinguo, Andr’L, et al. The Role of Fuel-borne Catalyst in Diesel Particulate Oxidation Behavior [J]. Combustion and Flame, 2006(146):73-84.
    [84]许允,刘忠长,姜伟,等.氧化催化转化器对降低柴油机颗粒物排放的影响研究[J].吉林大学学报,2007, 37(1):65-68.
    [85]康守方,于俊杰,郝郑平,等.柴油车氧化催化剂在抑制硫酸盐颗粒形成方面的研究进展[J].环境污染治理技术与设备,2003, 12(4):125-129.
    [86]颜伏伍,杜传进,侯献军,等.采用氧化型催化剂降低柴油机尾气排放的研究[J].车用发动机,2003, 23(3):48-52.
    [87]李新,资新运,颜伏伍,等.柴油机颗粒物捕集器燃油添加剂催化再生研究[J].武汉理工大学学报,2009, 31(24):50-57.
    [88] Ohno K, Taoka N, Ninomiya T, et al. SiC Diesel Particulate Filter Application to Electric Heater System [C]. SAE Paper 1999-01-0464.
    [89]袁守利,杜传进,颜伏伍.基于添加剂和电加热的柴油机DPF再生技术研究[J].车用发动机,2007, 13(3):75-78.
    [90]段家修,龚晓辉,许斯都,等.柴油机颗粒物捕集器电加热再生技术的试验研究[J].内燃机学报,1999, 17(1):22-26.
    [91] Bissett E J. Mathematical Model of the Thermal Regeneration of a Wall-Flow Monolith Diesel Particulate Filter [J]. Chemical Engineering Science, 1984, 39(7):1232-1244.
    [92] Sang-Jin Lee, Soo-Jeong Jeong, Woo-Seung Kim. Numerical design of the diesel particulate filter for optimum thermal performances during regeneration [J]. Applied energy, 2009, 11(86):1124-1135.
    [93] Nixdorf R D, Green J J, Story J M, et al. Microwave Regenerated Diesel Exhaust Particulate Filter [C]. SAE Paper 2001-01-0903.
    [94] Gautam M., Popuri S., Rankin B., et al. Development of a microwave-assistedregeneration system for a ceramic diesel particulate system[C]. SAE Paper 1999-01-3565.
    [95] Salvat O, Marez P, Belot G. Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Diesel Engine [C]. SAE Paper 2000-01-0473.
    [96]李新,资新运,姚广涛,等.柴油机排气颗粒物捕集器燃烧器再生技术研究[J].内燃机学报,2008, 26(6):538-542.
    [97]张春润,姜大海,资新运,等.柴油机排气颗粒物捕捉器燃气再生技术的研究[J].内燃机学报,2002, 20(5):391-394.
    [98] Mayer A, Lutz T, Lammle C, et al. Engine Intake Throttling for Active Regeneration of Diesel Engine [C]. SAE Paper 2003-01-0381.
    [99] Vincent M.W., Richards P.J. and Catterson D.J. A novel fuel borne catalyst dosing system for use with a diesel particulate filter[C]. SAE Paper 2003-01-0382.
    [100] Blanchard G., Seguelong T. Ceria-based fuel-borne catalysts for series diesel particulate filter regeneration[C]. SAE Paper 2003-01-0378.
    [101] Richards P.J., Vincent M.W., Chadderton J. Service application of a novel fuel borne catalyst dosing system for DPF retrofit[C]. SAE Paper 2005-01-0669.
    [102] Mayer A, Lutz T, Lammle C, et al. Engine Intake Throttling for Active Regeneration of Diesel Engine[C]. SAE Paper 2003-01-0381.
    [103] Argun Yetkin, Adam Kotrba, Tim Gardner, et al. Experimental Evaluation of DOC Light-off Behavior Using Secondary Fuel Injection [J]. SAE Paper 2007-01-0108.
    [104] Stommel P, Backes R, Luders H. Applications for the Regeneration of Diesel Particulate Traps by Combining Different Regeneration Systems [C]. SAE Paper 1997-01-0470,.
    [105]邵玉平.柴油机颗粒物捕集器逆向喷气再生技术研究[D]. [博士学位论文].天津:天津大学,2005.3.
    [106]资新运,宁智,欧阳明高,等.柴油车颗粒物捕捉器逆向喷气再生的关键技术[J].内燃机工程,2002, 23 (6):70-73.
    [107] Ichikawa Y, Yamada S, Yamada T. Development of Wall-flow Type Diesel Particulate Filter System with Efficient Reverse Pulse Air Regeneration[C]. SAE Paper 1995-01-0735.
    [108]苏庆运,刘卫国,陈觉先,等. NO2连续再生柴油机颗粒物捕集器的试验研究[J].内燃机学报,2001, 19(5):443-446.
    [109] Walker A P, Allansson R, Blakeman P G, et al. Optimizing the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating DieselParticulate Filter System[C]. SAE Paper 2002-01-0428.
    [110]许晓光,高希彦,张延辉,等.柴油机颗粒物捕集器的红外加热再生[J].内燃机工程,2002, 23(1) :60-63.
    [111]杨德胜,高希彦,王宪成,等.柴油机颗粒物陶瓷捕集器红外再生的试验研究[J].内燃机学报,2003, 21(3):243-246.
    [112]宁智,资新运,张春润,等.汽车柴油机排气颗粒物后处理系统的开发及研究[J].内燃机工程,2000, 22(1):25-29.
    [113] Wang X, Gao X, Rong H. Experimental Investigation on Electrostatic DPF[C]. SAE Paper 2001-01-0194.
    [114]肖建华,马崴,王建昕,等.在发动机台架上模拟欧Ⅲ低温冷启动排放特性的探索[J].汽车工程,2004, 26(6):639-642.
    [115]俞明,孙国斌,蔡锐彬,等. 15工况法中发动机运转状况的分析[J].华南理工大学学报,2002, 30(5):25-28.
    [116]谭丕强,陆家祥,邓康耀,等.喷油提前角对柴油机排放影响的研究[J].内燃机工程,2004, 25(2):9-11.
    [117]张兆合,高举成,林波.一种测量变工况下内燃机污染物排放的方法[J].哈尔滨工业大学学报,2008, 40(3):432-434.
    [118] Desantes J M, Pastor J V, Arrigle J, et al. Analysis of the Combustion Process in a EUROⅢHeavy-Duty Direct Injection Diesel Engine Tansaction of the ASME[J]. Journal of Engineering for Gas Turbines and Power, 2002, 12(23):636-644.
    [119]张德满,李舜酩,李凯,等.冷却水温对柴油机污染物排放的影响.内燃机学报[J]. 2010, 28(6):510-513.
    [120]张德满,李舜酩,李凯,等. DOC辅助DPF再生方法研究.机械工程学报[J]. 2010, 46(24):505~510.
    [121] Rumminger M.D., Zhou X.Balakrishnan K., et al. Regeneration behavior and transient thermal response of diesel particulate filters[C]. SAE Paper 2001-01-1342.
    [122]张德满,李舜酩,门秀花.单缸发动机消声器压力损失的CFD研究[J].华南理工大学学报,2010, 38(3):129-132.
    [123] Isshiki Yoshihiro, Shimamoto Yuzuru. Analysis of Acoustic Characteristics and Pressure Losses in Intake Silencers by Numerical Simulation [J]. Transactions of the Japan Society of Mechanical Engineers, 1993, 59(559):996-1001.
    [124] Isshiki Yoshihiro, Shimamoto Yuzuru. Simultaneous Prediction of Pressure Losses and Acoustic Characteristics in Silencers by Numerical Simulation [R]. Detroit, M I, USA: Proceedings of the 1996 SAE International Congress & Exposition, 1996.
    [125] Shao L, Riffat S B. Accuracy of CFD for Predicting Pressure Loss in HVAC Duct Fittings [J]. Applied Energy, 1995, 51(3):233-248.
    [126] Kim M H. Three-Dimensional Numerical Study on the Pulsating Flow inside Automotive Muffler with Complicated Flow path [C]. SAE Paper, 2001-01-0944.
    [127]胡效东,周以齐,方建华,等.单双腔抗性消声器压力损失CFD研究[J].中国机械工程.2006, 17(24):2567-2572.
    [128] Hu Xiaodong, Zhou Yiqi. Computational Fluid Dynamics Research on Pressure Loss of Cross2Flow Perforated Muffler [J]. Chinese Journal of Mechanical Engineering, 2007, 20(2):88-93.
    [129]胡效东,周以齐,方建华,等.基于CFD的挖掘机消声器结构优化研究[J].系统仿真学报.2007, 19(13):3126-3129.
    [130]方建华,周以齐,胡效东,等.挖掘机用复杂结构排气消声器的CFD仿真研究[J] .内燃机学报,2009, 27(1):68-73.
    [131]刘志华,葛蕴珊,丁焰,等.柴油机和LNG发动机排放颗粒物粒径分布特性研究[J].内燃机学报,2009, 27(6):518-522.
    [132]刘云卿.壁流式柴油机颗粒物捕集器捕集及微波再生机理研究[D]. [博士学位论文].长沙:湖南大学,2009.8.
    [133]许晓光.基于红外加热再生的柴油机排气微粒后处理技术的研究[D]. [博士学位论文].大连:大连理工大学,2002.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700