用户名: 密码: 验证码:
大白菜分子遗传图谱构建及重要农艺性状QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大白菜(Brassica campestris L. ssp. pekenensis)起源于中国,是我国栽培面积最大的蔬菜作物,其很多农艺性状都是数量性状。构建高密度的永久分子遗传图谱,并对重要农艺数量性状进行QTL定位,对于大白菜基因组学研究有重要意义。本研究在优化大白菜游离小孢子培养技术体系的基础上,创建了包括192个DH系的大白菜永久性作图群体;采用SSR和SRAP标记相结合的方法,构建了大白菜分子遗传图谱,对重要农艺性状进行了定位,主要研究结果如下:
     1.为创制大白菜DH系构建永久作图群体,优化了大白菜游离小孢子培养体系。以13个大白菜杂交种为试材,对游离小孢子培养的关键技术进行了系统研究。不同基因型材料间小孢子胚状体发生率不同,小孢子胚状体发生率最高的为10.6胚/蕾,一个基因型不能产生胚状体。高温热激处理对提高胚状体诱导率作用显著,33℃处理24h或48h对于胚状体发生比72h更为有利。在NLN-13培养基中加入6-BA和NAA可以显著提高胚状体发生率,以‘0.1mg·L~(-1)6-BA+0.05mg·L~(-1)NAA’效果最好,胚状体发生率是未添加激素的2~3倍。抗生长素PCIB对提高胚状体发生率和直接成苗率具有显著作用,最佳的浓度是40μM,可使胚状体发生率提高3.4~6.2倍,直接成苗率提高9.6倍,PCIB对胚状体形成次生胚也都作用。胚状体转胚时间以21d胚龄为宜。本研究成苗率最高的基因型可以达到67.4%,平均自然加倍率可以达到57.5%。
     2.用不同生态型的两个大白菜自交系配制的杂交种进行游离小孢子培养,获得了192个DH系。为其为作图群体,采用SSR和SRAP两种标记技术,通过Joinmap3.0软件构建了一张永久性的遗传连锁图,包含233个标记,SSR标记43个、SRAP标记190个,长度达到1063.8cM,平均图距为4.6cM,标记间的最大间距为18.0cM,最短的为0cM。共10个连锁群,每个连锁群上的标记数在14~32个之间,长度在38.2~150.5cM范围内,利用SSR标记锚定可以与染色体对应。在233个多态性标记中,149个(63.9%)显著偏离孟德尔1:1遗传分离比率,各连锁群上偏分离标记比例不同。
     3.以233个分子标记的大白菜分子遗传图谱为框架,在沈阳和大连两地对大白菜的形态性状包括株高、株幅、外叶长、外叶宽、叶形指数、叶柄长、叶柄宽、叶柄厚8个性状进行了QTL定位和遗传效应分析。采用基于混合线性模型的复合区间作图法的QTLnetwork2.0软件,在9个连锁群上定位了37个形态学相关的QTL,检测到4对上位性QTL,分布在A05,A06,A08,A09连锁群上。其中控制株高的QTL有4个,控制株幅的QTL有3个,控制外叶长的QTL有7个,控制外叶宽的QTL有6个,控制叶形指数的QTL有4个,控制叶柄长的QTL有2个,控制叶柄宽的QTL有5个,控制叶柄厚的QTL有6个。各QTL贡献率不同,在5.09%~31.37%之间,24个QTL的贡献率大于10.00%。贡献率最高的是控制外叶宽的QTL,在A10连锁群上。相关性状QTL的位置往往集中在连锁群上相同或相近的区域,控制株高和外叶长的2个QTL位于A08的相同位置(73.9cM),控制外叶长和叶柄厚的2个QTL均位于A05连锁群的33.4cM处,控制外叶长和叶柄长的2个QTL均位于A10连锁群的0.0cM处,控制外叶宽和叶柄厚的2个QTL位于A06连锁群上12.7cM处。外叶宽和叶柄宽在两地都检测到相同位置的QTL。
     4.通过沈阳、大连两地的田间性状调查的数据分析,利用已构建好的分子遗传图谱,在混合线性模型下,对叶片颜色相关性状进行QTL分析,检测到共51个QTL定位于7个连锁群上,并且检测到有7对上位性QTL。将控制外叶色L的QTL有4个,控制外叶色a的QTL有4个,控制外叶色b的QTL有4个、控制叶柄色L的QTL,控制叶柄色a的QTL有4个,控制叶柄色b的QTL6个、控制球帮色L的QTL有6个、控制球帮色a的QTL有4个,控制球帮色b的QTL有5个,控制球心色L的QTL有5个,控制球心色a的QTL有3个,控制球心色b的QTL有3个。各QTL贡献率不同,在2.12%~73.19%之间,12个QTL的贡献率大于30.00%。在A03连锁群上0.0~4.0cM区域,检测到控制叶柄色L,叶柄色a,叶柄色b,球帮色L,球帮色a,球帮色b的QTL共12个,解释的遗传贡献率为34.54%~73.19%,且很多QTL都在两个地点检测到,此区域存在着控制叶柄色和球帮色重要的QTL。
Chinese cabbage (Brassica campestris L. ssp. pekenensis) is originated from China, which has thelargest cultivation area. Many important agronomic traits of Chinese cabbage are quantitative traits, so it isnecessary to construction a genetic map and map QTL on the linkages. The study tried to opitimize themicrospore culture technique and obtained a DH population. Based on the SSR and SRAP markers, agenetic map was constructed for mapping the important agronomic traits. Marker analysis was performedon192doubled haploid (DH) lines obtained from F1progeny of two homozygous parents. The mainresults of the present study were as follows:
     1. In order to establish an efficient technique system of isolated microspore culture and constructionimmortal mapping population in Chinese cabbage, isolated microspore culture was performed using13F1hybrids of Chinese cabbage. Genotypic difference in embryogenic response was observed, the highestfrequency of embryogenesis was10.6embryos per bud, and one genotype did not response toembryogenesis. Heat shock treatment is efficient for embryogenesis, compared with the longer incubationperiod (72h), heat shock treatment at33℃for24or48h was more beneficial for microsporeembryogenesis. The embryogenesis frequency can improve2-3fold by adding ‘0.1mg·L~(-1)6-BA+0.05mg·L~(-1)NAA’to NLN-13medium. While anti-auxin PCIB is used to enhance microspore embryogenesisand plant regeneration without an intervening callus phase. The optimum concentration of PCIBapplication was found to be40μM in NLN-13medium, which resulted in a3.4-to6.2-fold increase in thenumber of embryos (8.27-19.2embryos per bud) and a9.6-fold increase (21.33%) in the plant regenerationfrequency in comparison with the controls. The embryos, produced in NLN medium supplemented with40μM PCIB and transferred at the21-day-old reached the high direct plant regeneration rate. The highestplant regeneration rate reached to67.4%and the average spontaneous doubling frequency of the differentgenotypes of B. rapa was57.5%.
     2. A genetic linkage map of Chinese cabbage was constructed, which was based on a DH populationwith192inividuals. SSR and SRAP were adoptd and233markers including43SSR,190SRAP markerswere integrated into the resulted map using Joinmap3.0version. This map consisted of10linages groups,covering1063.8cM with a mean marker intervalof4.6cM, the largest interval between markers was18.0cM. Various linkage groups were feature by14-32markers,38.2-150.5cM length. The10linkagemaps can correspond to chromosomes by the anchor SSR markers. Among the233polymorphic markers,149(63.9%) deviated from the Mendelian segregation ratios.
     3. Based on a linkage map with233markers, QTL network2.0is used to investigate QTL of themajor traits related to plant morphology using the data collected under two locations.37QTLs and4paisrof epistatic loci controlling8agronomic traits related to morphology traits were mapped on9linkages.These QTLs included4for plant heitht,3for plant diameter,7for leaf length,6for leaf width,4for leaflength/Leaf width,2for petiole length,5for petiole width,6for petiole thickness. The explained varianceswere different, ranged from5.09%-31.37%.24QTL can explain more than10.00%. The QTL controllingleaf width was mapped on A10. The QTL of assoeiated traits often located on the same loci or near regionof a linkage group.2QTLs controlling plant height and leaf length were mapped on the same positon ofA08(73.9cM),2QTLs controlling leaf length and petiole length were mapped on the same positon of A05(33.4cM),2QTLs controlling leaf length and petiole were mapped on the same positon of A10(0.0cM),2QTLs controlling leaf width and petiole thickness were mapped on the same positon of A06(12.7cM). TheQTLs controlling leaf width and petiole width were detected in the two locations.
     4. Based on a linkage map with233markers, QTL network2.0is used to investigate QTL of the major traits related to leaf colour traits using the data collected under two locations.51QTLs and7paisr ofepistatic loci controlling colour traits were mapped on7linkages. These QTLs included4for outer leafcolour L,4for outer leaf colour a,4for outer leaf colour b,4for petiole colour1L,4for petiole colour1a,6for petiole colour1b,6for petiole colour2L,4for petiole colour2a,5for petiole colour2b,5for innerleaf colour L,3for inner leaf colour a,3for inner leaf colour b. The explained variances were different,ranged from2.12%~73.19%.12QTL can explain more than30.00%.12QTLs controlling petiole colourwere mapped between0.0~4.0cM on A03, each QTL can explained between34.54%~73.19%and manyQTLs were detected in the two locations, this area existed important QTL controlling petiole colour.
引文
1.班清宇,耿建峰,侯喜林,成研,王倩.2010.不结球白菜叶片脯氨酸与可溶性蛋白的QTL分析.南京农业大学学报,33(2):35-38.
    2.曹鸣庆,李岩,蒋涛,西尾刚.1992.大白菜和小白菜游离小孢子培养试验简报.华北农学报,7(2):119-120.
    3.陈书霞,王晓武,方智远,程智慧,孙培田.2003.芥蓝×甘蓝的F2群体抽薹期性状QTLs的RAPD标记.园艺学报,30(4):421-426.
    4.陈文辉,方淑桂,曾小玲,朱朝辉,廖晓珍.2006.甘蓝和青花菜杂种小孢子培养.热带亚热带植物学报,14(4):321-326.
    5.陈玉萍,田志宏,陈爱武,孟金陵.1998.包心芥菜游离小孢子培养的初步研究.华中农业大学学报,17(1):93-95.
    6.董章辉,石玉真,张建宏.2009.棉花纤维长度主效QTLs的分子标记辅助选择及聚合效果研究.棉花学报,21(4):279-283.
    7.杜玮南,方福德.2000.单核昔酸多态性的研究进展.中国医学科学院学报,22(4):392-394.
    8.方宣钧,吴为人,唐纪良.2001.作物DNA标记辅助育种.北京:科学出版社
    9.冯辉,郭姝,冯建云,王玉书.2009b.菜用羽衣甘蓝的小孢子胚诱导和植株再生.园艺学报.4:587-592.
    10.冯辉,杨硕,王超楠,付颖.2009a.青梗菜优异DH的创制与利用.中国农业科学,9:3195-3202.
    11.葛宇.2011.大白菜UGMS遗传图谱的构建及重要农艺性状的QTL分析.沈阳农业大学博士学位论文
    12.耿建峰,原玉香,张晓伟,蒋武生,韩永平,高睦枪,栗根义.2003.利用游离小孢子培养育成早熟大白菜新品种‘豫新5号’.园艺学报,30(2):249.
    13.耿建峰.2007.利用DH群体构建不接球白菜遗传图谱及重要农艺性状QTL定位.南京农业大学博士学位论文
    14.韩阳,叶雪凌,冯辉.2005.提高大白菜小孢子植株获得率的研究.园艺学报,32(6):1092-1094.
    15.韩阳,叶雪凌,冯辉.2006.大白菜小孢子培养影响因素研究.中国蔬菜,(7):16-18.
    16.何杭军,王晓武,汪炳良.2004.芥蓝游离小孢子培养初报.园艺学报,31(2):239-240.
    17.姜凤英.2006.羽衣甘蓝游离小孢子培养体系的构建与应用.沈阳农业大学博士学位论文
    18.李光涛,李昌功.1996.紫菜薹游离小孢子培养再生小植株.华中农业大学学报,(11):111-113.
    19.李威,王晓武,武剑.2009.大白菜叶片长宽性状的QTL定位.中国蔬菜,(16):14-19.
    20.李岩,刘凡,曹鸣庆.1993.通过游离小孢子培养方法获得小白菜三个变种的胚胎及植株.华北农学报,8(3):92-97.
    21.李跃飞.2011.大白菜桔红心和黄心性状的分子标记及基因定位.沈阳农业大学博士学位论文
    22.李柱刚,崔崇士,马荣才,曹庆鸣.2001.遗传标记在植物上的发展与应用.东北农业大学学报,32:313-331.
    23.栗根义,高睦枪.1998.利用游离小孢子培养技术育成豫白菜7号(豫园1号).中国蔬菜,(4):16-19
    24.刘凡,李岩,姚磊,曹鸣庆.1997.培养基水分状况对大白菜小孢子胚成苗的影响.农业生物技术学报,5(2):131-136.
    25.刘学军,童继平,李素敏,韩傲男.2010.DNA标记的种类、特点及其研究进展.生物技术通报,7:35-40.
    26.刘勋甲,郑用琏,尹艳.1998.遗传标记的发展及分子标记在农作物遗传育种中的运用:遗传标记的发展及分子标记的检测技术.湖北农业科学,1:33-35.
    27.卢钢,曹家树,陈杭,向珣.2002.白菜几个重要园艺性状的QTLs分析.中国农业科学,35:969-974.
    28.卢钢,曹家树.2001.白菜和芜菁杂种小孢子培养研究.浙江大学学报(农业与生命科学版),27(2):161-164.
    29.潘俊松,王刚,李效尊,何欢乐,吴爱忠,蔡润.2005.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位.自然科学进展,15:167-172.
    30.石淑稳,刘后利.1993.甘蓝型油菜种间和属间杂种小孢子胚状体的诱导.华中农业大学学报,12(6):544-550.
    31.宋晓飞,申书兴,张晓伟,王晓武.2006.大白菜叶片刺毛性状AFLP标记的筛选.中国蔬菜,12:6-8.
    32.陶红剑.2011.一个水稻粒重QTL GW6的精细定位和基因聚合育种研究.中国农业科学院硕士学位论文
    33.王怀名,G.米克斯-瓦格纳,杨艳丽.1992.嫩茎花椰菜花药和花粉培养中的胚胎发生.华北农学报,7(4):6l-67.
    34.王美,张凤兰,孟祥栋,刘秀村,赵岫云,樊治成.2004.中国白菜AFLP分子遗传图谱的构建.华北农学报,19(1):28-33.
    35.王娜,葛宇,王涛,朴钟云.2011.大白菜营养茎长和宽的QTL定位和分析.分子植物育种,9(1):204-210.
    36.吴国胜,王永健,姜亦魏.1997.大白菜耐热性遗传效应研究.园艺学报,24(2):141-144.
    37.徐东辉,孙日飞,张延国等.2007.大白菜叶色相关性状的QTL定位与分析.园艺学报,34(1):99-104.
    38.徐艳辉,冯辉,张凯.2001.大白菜游离小孢子培养中若干因素对胚状体诱导和植株再生影响.北方园艺,(3):6-8.
    39.轩正英,徐书法,冯辉.2005.大白菜游离小孢子培养成胚影响因素的研究.辽宁农业科学,(2):18-19.
    40.严准,田志宏,孟金陵.1999.甘蓝游离小孢子培养的初步研究.华中农业大学学报,18(1):5-7.
    41.杨旭,余阳俊,张凤兰,赵帕云,张德双,徐家炳.2008a.利用DH群体进行白菜株高和开展度的QTL定位与分析.扬州大学学报,29(4):90-94.
    42.杨旭,余阳俊,张凤兰,赵帕云,张德双,徐家炳.2008b.应用DH群体进行白菜叶片数和单株重的QTL定位与分析.分子植物育种,6(6):1213-1218.
    43.杨旭.2006.白菜(Brassica campestris L.)耐抽薹性及其它农艺性状QTL定位的研究.西北农林科技大学博士学位论文
    44.杨玉珍,彭方仁.2006.遗传标记及其在林木研究中的应用.生物技术通讯,5:788-791.
    45.于拴仓,王永健,郑晓鹰.2003a.大白菜分子遗传图谱的构建与分析.中国农业科学,36(2):190-195.
    46.于拴仓,王永健,郑晓鹰.2003b.大白菜耐热性QTL定位与分析.园艺学报,30(4):417-420.
    47.于拴仓,王永健,郑晓鹰.2003c.大白菜部分形态性状的QTL定位与分析.遗传学报,30(12):1153-1160.
    48.于拴仓,王永健,郑晓鹰.2004.大白菜叶球相关性状的QTL定位与分析.中国农业科学,37(1):106-111.
    49.原玉香,张晓伟,耿建峰,蒋武生,韩永平.2004.利用游离小孢子培养技术育成早熟大白菜新品种‘豫新60’.园艺学报,31(5):704
    50.张德双,曹鸣庆.1997.通过游离小孢子培养获得绿菜花再生植株.华北农学报,12(2):136.
    51.张德双,张凤兰,徐家炳.2003.大白菜花色和球色遗传规律的研究.华北农学报,18(2):81-84.
    52.张坤普,徐宪斌,田纪春.2009.小麦籽粒产量及穗部相关性状的QTL定位.作物学报,35(2):270-278.
    53.张立阳.2005.大白菜连锁图谱的构建和重要农艺性状的QTL定位.扬州大学硕士学位论文
    54.张鲁刚,王鸣,陈杭,刘玲.2000.中国白菜RAPD分子连锁图谱的构建.植物学报,42(5):485-489.
    55.张鲁刚.1999.中国白菜分子标记遗传图谱的构建及QTL定位研究.西北农林科技大学博士学位论文
    56.张文英,程君奇,朱军,吴为人.2004.上位性及其在遗传育种研究中的作用.生物信息学,2(2):39-42.
    57.张晓芬,王晓武,娄平,张晓伟,王永清,原玉香,赵建军,孙日飞.2005.利用大白菜DH群体构建AFLP遗传连锁图谱.园艺学报,32(3):443-448.
    58.张晓伟,耿建峰,原玉香,蒋武生,徐小利,高睦枪,栗根义.2002.耐热大白菜(豫白1号)的选育.中国蔬菜,28(6):577.
    59.张延国,王晓武.2005.小孢子培养技术在青花菜上的应用.中国蔬菜,(6):7-9.
    60.张有做,楼程富,周金妹.1998.不同倍性桑品种基因组DNA多态性比较.浙江农业大学学报,24(1):79-81.
    61.余阳俊,陈广,徐家柄,张凤兰,孙继志,赵岫云,张德双.2005.早中熟桔红心大白菜新品种‘北京桔红2号’.园艺学报,32(2):372
    62.周英,冯辉,王超楠,刘如娥.2006.大白菜小孢子胚诱导和植株再生.沈阳农业大学学报,37(6):816-820.
    63.周永明,Scarth R.1995.甘蓝型油菜和白菜型油菜种间杂种的小孢子培养.植物学报,37(11):848-855.
    64.周永明,Scarth R.1996.甘蓝型油菜和芥菜型油菜杂种小孢子培养获得再生植株.作物学报,22(4):399-402.
    65.朱允华,刘明月,吴朝林.2003.影响菜心游离小孢子培养的因素.长江蔬菜,9:46-47.
    66. Achar PN.2002. A study of factors affecting embryo yields from anther culture of cabbage.Plant CellTiss Organ Cult,69:183-188.
    67. Agarwal PK, Agarwal P, Custers JBM, Liu CM, Bhojwani SS.2006. PCIB an antiauxin enhancesmicrospore embryogenesis in microspore culture of Brassica juncea. Plant Cell Tiss Organ Cult,86:201-210.
    68. Ajisaka H, Kuginuki Y, Hida K, Enomoto S, Hirai M.1995. A linkage map of DNA markers inBrassica campestris.Breed Sci,45(Supp l.):195
    69. Ajisaka H, Kuginuki Y, Shiratori M, Ishiguro K, Enomoto S, Hirai M.1999. Mapping of loci affectingthe culturing efficiency of microspore culture of Brassica rapa L. syn. campestris L. using DNAPolymorphism. Breed Sci,187-192.
    70. Ajisaka H., Kuginuki Y, Yui S, Enomoto S, Hirai M.2001. Identification and mapping of a quantitativetrait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp pekinensis syn.campestris L.) using bulked segregate analysis-a QTL controlling extreme late bolting in Chinesecabbage. Euphytica,118:75-81.
    71. Aslam FN, MacDonald MV, Loudon PT, Ingram DS.1990. Rapid-cycling Brassica species: Inbreedingand selection of Brassica napus for anther culture ability and assessment of its potential for microsporeculture. Ann Bot,66:331-339.
    72. Babbar SB, Gupta SC.1980. Chilling induced androgenesis in anthers of Petunia hybrid without anyculture medium. Z pflanzemphysiol,100:279-283.
    73. Babbar SB, Gupta SC.1986. Effect of carbon source on Datura metel microspore embryogenesis andthe growth of callus raised from microspore-derived embryos, Biochem Physiol Pflanzen,181:331-338
    74. Baillie AMR, Epp DJ, Hutcheson D, Keller W.1992. In vitro culture of isolated microspores andregeneration of plants in Brassica campestris. Plant Cell Rep,11:234-237.
    75. Barro F, Martin A.1999. Response of different genotypes of Brassica carinata to microspore culture.Plant Breeding,118:79-81.
    76. Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ.2010. Comparative mapping ofquantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napusL.). Theor Appl Genet,120:271-281.
    77. Belmonte MF, Ambrose SJ, Ross ARS, Abrams SR, Stasolla C.2006. Improved development ofmicrospore-derived embryo cultures of Brassica napus cv. Topas following changes in glutathionemetabolism. Physiol Plant,127:690-700.
    78. Bhojwani SS, Sharma KK, Anther and pollen culture for haploid production, in Advances in plantbreeding, vol2, edited by AK Mandal, PK Ganguli and PK Banerjee (CBS Publishers and Distributors,New Delhi).1991.65-91.
    79. Bhojwani SS.1988. Tissue culture methods for haploid production, in Proc Reg Workshop Tissue Cult.Trop Plants,(Dhaka Univ, Dhaka)1-15.
    80. Biddington NL, Robinson HT.1991. Ethylene production during anther culture of Brussels sprouts(Brasscia oleracea var. gemmifera) and its relationship with factors that affect embryo production.Plant Cell Tiss Organ Cult,25:169-177.
    81. Binarova P, Hause G, Cenklova V, Cordewener JHG, van Lookeren Campagne MM.1997. A shortsevere heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L.Sex Plant Reprod,10:200-108.
    82. Binarova P, Straatman K, Hause B, Hause G, van Lameren AAM.1993. Nuclear DNA synthesis duringthe inducton of embryogenesis in cultured microspores and pollen of Brassica napus L. Theor ApplGenet,87:9-16.
    83. Burnett L, Yarrow S, Huang B.1992. Embryogenesis and plant regeneration from isolated microsporesof Brassica rapa L. ssp. oleifera. Plant Cell Rep,8:486-488.
    84. Byrne M, Murrell J C, Allen B, Moran G F.1995. An integrated genetic linkage map for eucalyptsusing RFLP, RAPD and isozyme markers.Theoretical Applied Genetics,91:869-875.
    85. Cao MQ, Li Y, Liu F, Doré C.1994. Embryogenesis and plant regeneration of pakchoi (Brassica rapaL. ssp. chinensis) via in vitro isolated microspore culture. The Plant Cell,13:447-450.
    86. Cardional AJ, Lee M, Sharopova N, Woodman-Clikeman WL, Long MJ.2001. Genetic mapping andanalysis of quantitave trait loci for resistance to stalk tunneling by the European corn borer in maize.Crop Sci,41:835-845.
    87. Charne DG, Pukacki P, Kott LS, Beversdorf WD,1988. Embryogenesis following cryopreservation inisolated microspores of rapeseed, Brassica napus L. Plant Cell Rep.7:407-409.
    88. Chatelet P, Gindreau K, Herve Y.1999. Development and use of microspore culture applied tovegetable Brassica oleracea breeding.Clement C, Pacini E, Audran JC. Anther and pollen: frombiology to biotechnology[C].New York, USA: Springer-Verlag Berlin Heidelberg,249-260.
    89. Chen JL, Beversdorf WD.1990. A comparison of traditional and haploid-derived breeding populationsof oilseed rape (Brassica napus L.) for fatty acid composition of the seed oil. Euphytica,51:59-65.
    90. Chen JL, Beversorf WD.1992. Production of spontaneous diploid lines from isolated microsporesfollowing cryopreservation in spring rapeseed (Brassica napus L.). Plant Breed,108:324-327.
    91. Chen W, Zhang Y, Liu X, Chen B, Tu JX, Fu TD.2007. Detection of QTL for six yield-related traits inoilseed rape (Brassica napus) using DH and immortalized F2populations. Theor Appl Genet,115:849-858.
    92. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ et al.2007.The reference genetic linkage map forthe multinational Brassica rapa genome sequencing project.Theor.Appl.Genet,115(6):777-792.
    93. Chuong PV, Beuversdorf WD.1985. High frequency embryogenesis through isolated microsporeculture in Brassica napus L. and B. carinata Braun. Plant Sci,39:219-226.
    94. Chuong PV, Deslauriers C, Kott LS, Beversdorf WD.1988. Effects of donor genotype and budsampling on microspore culture of Brassica napus. Can J Bot,66:1653-1657.
    95. Chyi YS, Hoenecke ME, Sernyk JL.1992. A genetic map of restriction fragment length polymorphismloci for Brassica rapa (syn.campestris). Genetics,35:746-757.
    96. Cloutier S, Cappadocia M, Landry BS.1995. Study of microspore-culture responsiveness in oilseedrape (Brassica napus L.) by comparative mapping of a F2population and two microspore-derivedpopulations. Theor Appl Genet,95:841-847.
    97. Da Silva Dias JC.1999. Effect of activated charcoal on Brassica oleracea micropre cultureembryonenesis. Euphytica,108:65-69.
    98. Deepak P, Kadambari G, Gautam S, Abha A.2008. Activated charcoal induced high frequencymicrospore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant CellTissue Org. Cult.,93:269-282.
    99. Donis-Keller H,Green P,Helms C, Cartinhour S, Weiffenbach B,Stephens K, Keith TP,Bowden DW,Smith DR, Lander ES, Botstein D, Akots G, Rediker K, Gravius T, Brown VA, Rising MB, Parker C,Powers JA, Watt DE, Kauffillann ER, Brieker A, Phipps P, Muller-Kahle H, FultonTR, Ng S, SuhurnrnJW, Braman JC, Knowlton RF, Barker DF, Crooks SM, Lineoln SE,Daly MJ, Abrahamson J.1987. Agenetic linkage map of the human genome. Cell,51:319-337.
    100. Duijs JG, Voorrips RE, Visser DL, Custer JBM.1992. Microspore culture is successful in most croptypes of Brassica oleracea L. Euphytica,60:45-55.
    101. Dunwell JM, Thurling N.1985. Role of sucrose in microspore embryo production in Brassica napusssp. oleifera. J Exp Bot,36:1478-1491.
    102. Echavarri Bego a, Mercedes Soriano, Luis Cistué, M.Pilar Vallés, Ana M, Castillo.2008. Zincsulphate improved microspore embryogenesis in barley. Plant Cell Tiss Organ Cult,93:295-301.
    103. Ferrie AMR, Dirpaul J, Krishna P, Krochko J, Keller WA.2005. Effects of brassinosteroids onmicrospore embryogenesis in Brassica species. In Vitro Cell. Dev. Biol,41P:742-745.
    104. Ferrie AMR, Keller WA.2007. Optimization of methods for using polyethylene glycol as anon-permeating osmoticum for the induction of microspore embryogenesis in the Brassicaceae In VitroCell Dev Biol,43P:348-355.
    105. Ferrie AMR, Palmer CE and Keller WA.1995. Haploid embryogenesis in In vitro embryogenesis inplants, edited by TA Thorpe (Kluwer Academic Publishers, Dordrecht).309-344.
    106. Ferrie AMR, Taylor DC, MacKenzie SL, Keller WA.1999. Microspore embryogenesis of high sn-2erucic acid Brasica oleracea germplasm. Plant Cell Tiss Org Cult,57:79-84.
    107. Ferriol M, Pico B, Nuez F.2003. Genetic diversity of a germplasm collection of Cucurbita pepo usingSRAP and AFLP markers. Theor Appl Genet,107:271-282.
    108. Find J, Grace L, Korgstrup P.2002. Effect of anti-auxins on maturation of embryogenic tissue cultuesof Nordmanns fir (Abies nordmanniana). Physiol plant,116:231-237.
    109. Foster RJ, McRae DH, Bonner J.1995. Auxin-antiauxin interaction at high auxin concentrations. PlantPhysiol,30:323-327.
    110. Gamborg OL, Miller RA, Ojima K.1968. Nutrient requirements of suspension culture of soybean rootcells. Exp Cell Res,50:151-158.
    111. Gland A, Lichter R, Schweiger HG.1988. Genetic and exogenous factors affecting embryogenesis inisolated microspore cultures of Brassica napus L. J Plant Physiol,132:613-617.
    112. Gu HH, Hagberg P, Zhou WJ.2004. Cold pretreatment enhances microspore embryogenesis in oilseedrape (Brassica napus L.) Plant Growth Regul,42:137-143.
    113. Gu HH, Zhou WJ, Hagberg P.2003. High frequency spontaneous production of doubled haploid plantsin microspore cultures of Brassica rapa ssp. Chinensis. Euphytica,134:239-245.
    114. Guo YD, Pulli S.1996. High-frequency embryogenesis in Brassica campestris microspore culture.Plant Cell Tissue Organ Cult,46:219-225.
    115. Gupta SC and Babbar SB.1980. Enhancement of plantlet formation in anther cultures of Datura metelL. by pre-chilling of buds. Z pflanzemphysiol,96:465-470.
    116. Haanstra J P W, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden A W,Tanksley S, Lindhout P and Peleman J.1999. An integrated high density RFLP-AFLP map of tomatobased on two Lycopersicon esculetum XL. Pennellii F2populations. Theoretical Applied Genetics,99:254-271.
    117. Haddadi P, Moieni A, Karimzadeh G, Abdollahi MR.2008. Effects of gibberellin, abscisic acid andembryo debryo desiccation on normal plantlet regeneration, sedondary embryogenesis and callogenesisin microspore culture of Brassica napus L.cv. PF704. International Journal of Plant Production,2:153-162.
    118. Hadifi K, Speth V, Neuhaus G.1998. Auxin-induced developmental patterns in Brassica junceaembryos. Development,125:879-887.
    119. Hansen M, Svinnset K.1993. Microspore culture of Swede (Brassica napus ssp. rapifera). Plant CellRep,12:496-500.
    120. Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y and Nakagahra M.1996.Detection of segregation distortions in an rice cross using a high-resolution molecular map. TheoreticalApplied Genetics,92:145-150.
    121. Hause B, Hause G, Pechan P, Van Lammeren AAM.1993. Cytoskeletal changes and induction ofembryogenesis in microspore and pollen culturesof Brassica napus L. Cell Biol. Int,17:153-168.
    122. Hause G and Hahn H.1998. Cytological characterization of multicellular structures in embryogenicmicrospore cultures of Brassica napus L., Bot Acta,111:204-211.
    123. Hays DB, Reid DM, Yeung EC, Pharis RP.2000. Role of ethylene in cotyledon development ofmicrospore-derived embr yos of Brassica napus. J Exp Bot,51:1851-1859.
    124. Henderson CAP, Pauls KP.1992. The use of haploidy to develop plants that express several recessivetraits using light-seeded canola (Brassica napus) as an example. Theor. Appl. Genet,83:476-479.
    125. Huang B, Bird S, Kemble R, Miki B, Keller W.1991. Plant regeneration from microspore-derivedembryos of Brassica napus: effect of embryo age, culture temperature, osmotic pressure, and abscisisacid. In Vitro Cell. Dev. Biol.,27P:28-31.
    126. Huang B, Bird S, Kemble R, Simmonds D, Keller W and Miki B.1990. Effects of culture density,conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas.Plant Cell Rep,8:594-597.
    127. IliC-Grubor K, Attree SM, Fowke LC.1998. Induction of microspore-derived embryos of Brassicanapus L. with polyethylene glycol (PEG) as osmoticum in a low sucrose medium. Plant Cell Rep,17:329-333.
    128. Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC.2009. Development of publicimmortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapaand B. oleracea. Theor Appl Genet,120:31-43.
    129. Jampatong C, McCullen MD, Barry BD, Darrah LL, Byrne PF, Kross H.2002. Quantitative trait locifor first-and second-generation European corn borer resistance in the maize inbred Mo47. Crop Sci,42:584-593.
    130. Jansen RC.1994. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics,138:871-881.
    131. Kahler AL, Wehrhahr CF.1986. Associations between quantitative traits and enzyme loci in the F2population of a maize hybrid. Thero Appl Genet,72:15-26.
    132. Keller WA, Armstrong KC.1978.High frequency production of microspore derived plants fromBrassica napus anther cultures.Z. Pflanzenzchtg.80,100-108.
    133. Kim JS, Chung TY, King GJ, et al.2006. A Sequence–Tagged Linkage Map of Brassica rapa.Genetics,174:29-39.
    134. Kim YH, Lee SS.1997. Microspore culture of Chinese cabbage (Brassica campestris ssp. pekinensis)and Korean turnip (B. campestris ssp. rapa), J Korean Soc Hort Sci,38:368-371.
    135. Kole C, Kole P, Vogelzang R, Osbom TC.1997. Genetic linkage map of a Brassica rapa recombinantinbred population.J Heredity,88:553-557.
    136. Kosambi DD.1944. The estimation of map distances from recombination values. Ann Eugen,12:172-175.
    137. Kott LS and Beversdorf WD.1990. Enhanced plant regeneration from microspore-derived embryos ofBrassica napus by chilling, partial desiccation and age selection. Plant cell tissue organ cult.,23:187-192.
    138. Kott LS, Polsoni L, Beversdorf WD.1988a. Cytological aspects of isolated microspore culture ofBrassica napus. Can J Bot,66:1658-1664.
    139. Kott LS, Polsoni L, Ellis B, Beversdorf WD.1988b. Autoxicity in isolated microspore cultures ofBrassica napus. Can J Bot,66:1665-1670.
    140. Krakowsky MD, Lee M, Woodman-Clikeman WL, Long MJ, Sharopova N.2004. QTL mapping ofresistance to stalk tunneling by the European corn borer in RILs of maize population B73×De811.Crop Sci,44:274-282.
    141. Leroux B, Carmoy N, Giraudet D, Potin P, Larher F, Bodin M.2009. Inhibition of ethylenebiosynthesis enhances embryogenesis of cultured microspores of Brassica napus. Plant Biotechnol.Rep,3:347-353.
    142. Li G, Quiros CF.2001. Sequence-related amplified polymorphism (SRAP), a new marker systembased on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor ApplGenet,103:455-461.
    143. Licher R.1982. Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol,105:427-434.
    144. Lichter R.1989. Efficient yield of embryoids by culture of isolated microspores of differentBrassicaceae species. Plant Breeding,103:119-123.
    145. Lionneton E, Beuret W, Delaitre C.2001. Improved microspore culture and doubled haploid plantregeneration in the brown condiment mustard (Brassica juncea).Plant Cell Reports,20(2):126-130.
    146. Lionneton E, Ravera S, San chez L, Aubert G, Delourme R. and Ochaa S.2002. Development of anAFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard(Brassica junce). Genome,45:1203-1215.
    147. Lionnetron E, Beuret W, Delaitre C, Ochatt S and Rancillac M.2001. Improved microspore cultureand doubled-haploid plant regeneration in the brown condimengt mustard (Brassica juncea). Plant Cellrep,20:126-130.
    148. Liu CM, Xu ZH, Chua NH.1993. Auxin polar transport is essential for the establishment of bilateralsymmetry during early plant embryogenesis. The Plant Cell,5:621-630.
    149. Liu GS, Li Y, Liu F, Cao MQ.1995. The influence of high temperature on the cultures of isolatedmicrospores of Chinese cabbage. Acta Bot Sin,37:140-146.
    150. Liu P Y, Zhu J, Lou X, Lu Y.2003. A method for marker-assisted selection based on QTLs withepistatic effects. Genetica,119:75-86.
    151. Lo KH, Pauls KP.1992. Plant growth environment effects on rapeseed microspore development andculture. Plant Physiol,99:468-472.
    152. Lou P, Zhao JJ, Kim JS, Shen S, Carpio DPD, Song XF, Jin MN, Vreugdenhil D, Wang XW,Koornneef M, Bonnema G.2007. Quantitative trait loci for flowering time and morphological traits inmultiple populations of Brassica rapa. J Exp Bot,58:4005-4016.
    153. Lou P, Zhao JJ, Kim SJ.2007. Quantitative trait loci for flowering time and morphological traits inmultiple populations of Brassica rapa. Journal of Experimental Botany,11:1-12.
    154. Lowe AJ, Moule C, Trick M, Edwards K.2004. Efficient large-scale development of microsatellitesfor marker and mapping applications in Brassica crop species. Theor Appl Genet,108:1103-1112.
    155. Lu H, Romero-Severson J, Bernardo R.2002. Chromosomal regions associated with segregationdistortion in maize. Theor Appl Genet,105:622-628.
    156. MacRae D H, Bonner J.1953. Chemical structure and antiauxin activity. Physiol Plant,6:485-510.
    157. Maluszynski M, Kasha KJ, Forster BP, Szarejko I.2003. Doubled haploid production in crop plants: amanual. Kluwer, Dordrecht Maraschin SF, Lamers GEM, de Pater BS, Spaink HP, Wang M.2003.14-3-3isoforms and pattern formation during barley microspore embryogenesis. J Exp Bot54:1033-1043.
    158. Mathias R.1988. An improved in vitro culture procedure for embryoisd derived from isolatedmicrospores of rape (Brassica napus L.). Plant breeding,100:320-322.
    159. Matsumoto E, Yasui C, Ohi M, Tsukada M.1998. Linkage analysis of RFLP markers for clubrootresistance and pigmentation in Chinese cabbage (Brassica rapa ssp.pekinensis).Euphytica,104:79-86.
    160. Mayer U, Buttner G, Jurgens G.1993. Apical-basal pattern formation in the Arabidopsis embryo:Studies on the role of the gnom gene. Development,117:149-162.
    161. Meinke DW.1985. Embryo-lethal mutants of Arabidopsis thaliana: Analysis of mutants with a widerange of lethal phases. Theor. Appl. Genet,69:543-552.
    162. Mohammad RA, Ahmad M, Mokhtar JJ.2004. Interactive effects of heat shock and culture density onembryo induction inn isolated microspore cultures of Brassica napus L. cv. Global. Iranicn J Biot,2(2):97-100.
    163. Nitsch C and Nitsch JP.1967. The induction of flowering in vitro in stem segments of Plumbagoindica L. I. The production of vegetative buds. Planta,72:355-370.
    164. Nitta T, Takahata Y, Kaizuma N.1997. Scanning electron microscopy of microspore embryogenesis inBrassica ssp. Plant Cell Rep,16:406-410.
    165. Novakova B, Salava J, Lydiate D.1996. Construction of a genetic linkage map for Brassicacampestris L.(syn. Brassica rapa L.). Genetika Slechteni,32:249-256.
    166. Nozaki T, Kumazaki A, Koba T, Ishikawa K, Ikehashi H.1997. Linkage analysis among loci forRAPDs, isozymes and some agronomic traits in Brassica campestris L. Euphytica,95:115-123.
    167. Ockendon DJ.1985. Anther culture in Brussels sprout (Brassica oleracea var. gemmifera). Ⅱ. Effectof genotype on embryo yields. Ann Appl Biol,107:101-104.
    168. Okada K, Ueda, J, Komakl MK, Bell CJ, Shimura Y.1991. Requirement of the auxin polar transportsystem in early stages of Arabidopsis floral bud formation. Plant Cell,3:677-684.
    169. Palmer CE, Keller WA, Arnison PG.1996. Experimental haploidy in Brassica species. In: S. M. Jain,S. K. Sopory, and R. E. Veilleux (eds), In vitro Haploid Production in Higher Plants, Kluwer AcademicPublishers, Dordrecht, TheNetherlands.3:143-172.
    170. Pan MJ, Staden JV.1998. The use of charcoal in vitro culture–A review. Plant Growth Regulation,26:155-163.
    171. Pawlowshi WP, Torbert K A, Rines H, Wand Somers D A.1998. Irregular patterns of transgenesilencing in allohexaploid oat. Plant Molecular Biology,38:597-607.
    172. Pechan PM, Bartels D, Brown DC and Schell J.1991. Messenger-RNA and protein changesassociated with induction of Brassica microspore embryogenesis. Planta,184:161-165.
    173. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P,Blanchard P.2005. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers.Theor Appl Genet,111:1514-1523.
    174. Polsoni L, Kott LS, Beversdorf WD.1988. Large-scale microspore culture technique formutation-selection studies in Brassica napus. Can J Bot,66:1681-1685.
    175. Pream D, Gupta PK, Agnihotri A.2005. Effect of various exogenous and endogenous factors onmicrospore embryogenesis in India mustard (Brassica juncea (L)CZERN and COSS). In Vitro CellDev Biol Plant,41:266-273.
    176. Prem D, Gupta K, Gautam S, Agnihotri A.2008. Activated charcoal induced high frequencymicrospore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell Tiss.Org. Cult.93:269-282.
    177. Pulido A F, Bakos A, Castillo MP, Vallés B, Barnabás AO.2006. Influence of Fe concentration in themedium on multicellular pollen grains and haploid plants induced by mannitol pretreatment in barley(Hordeum bulgare L.). Protoplasma,228:101-106.
    178. Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D,Pradhan AK.2007. Mapping of yield influencing QTL in Brassica juncea: implications for breeding ofa major oilseed crop of dryland areas. Theor Appl Genet,115:807–817.
    179. Ramesar-Fortner NS, Yeung EC.2006. Physiological influences in the development and function ofthe shoot apical meristem of microspore-derived embryos of Brassica napus ‘Topas’. Can J Bot,84:371-373.
    180. Rao PS, Suprasanna P.1996. Methods to double haploid chromosome numbers. In: Jain SM, SoporySK, Veilleux RE (eds) In vitro haploid production in higher plants,1: Kluwer, Dordrecht,317-339
    181. Ritala A, Mannonen L, Oksman-Caldentey KM.2001. Factors affecting the regeneration capacity ofisolated barley microspores (Hordeum vulgare L.). Plant Cell Rep,20:403-407.
    182. Roustan JP, Latche A, Fallot J.1989. Stimulation of Daucus carota somatic embryogenesis byinhibitors of ethylene biosynthesis: cobalt and nickel. Plant Cell Rep,8(3):182-185.
    183. Rudolf K, Bohanec B and Hansen N.1999. Microspore culture of white cabbage, Brassica oleraceavar. capitata L. Genetic improvement of non-responsive cultivars and effedt of genome doublingagents. Plant Breeding,118:237-241.
    184. Saiki RK, Scharf S, Faloona FA et al.1985. Enzymatic amplification of fl-globin sequences andrestriction site analysis for diagnosis of sickle cell anemia. Science,230:1350-1354.
    185. Sato S, Katoh N, Iwai S, Hagimori M.2002. Effect of low temperature pretreatment of buds orinflorescence on isolated microspore culture in Brassica rapa (syn. B. campestris). Breeding Science,52:23-26.
    186. Sato T, Nishio T, Hirai M.1988. Initial culture conditions for embryogenesis from microspore ofChinese cabbage (Brassica campestris L.). JPN J Breed,38:70-71.
    187. Sato T, Nishio T, Hirai M.1989. Plant regeneration from isolated microspore cultures of Chinesecabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep,8:486-488.
    188. Sibov ST, de Souza Jr CL, Garcia AAF, Garcia AF, Silva AR, Mangolin CA, Benchimol LL, de SouzaAP.2003. Molecular mapping in tropical maize (L.) using microsatellite markers.1. Map constructionand localization of loci showing distorted segregation. Hereditas,139:96-106.
    189. Siebel J, Pauls KP.1989. A comparison of anther and microspore culture as a breeding tool in Brassicanapus. Theor Appl Genet,78:473-479.
    190. Simmonds DH, Gervais C, Keller WA.1991. Embryogenesis from microspores of embryogenic andnon-embryogenic lines of Brassica napus, in Rapeseed in a changing world, Proc8thInt GCIRCRapeseed Congr, Saskatoon, edited by DI McGregor (GCIRC+Canila Council of Canada),306-311.
    191. Simmonds DH, Keller WA.1999. Significance of preprophase bands of microtubules in the inductionof microspore embryogenesis of Brassica napus. Planta,208:383-391.
    192. Soengas P, Hand P, Vicente JG, Pole JM, Pink DA.2007. Identification of quantitative trait loci forresistance to Xanthomonas campestris pv.campestris in Brassica rapa. Theor Appl Genet,114:637-645.
    193. Song KM, Slocum MK, Osborn TC.1995. Molecular marker analysis of genes encodingmorphological variation in Brassica rapa (syn.campestris).Theor.Appl.Genet,90:1-10.
    194. Song KM, Suzuki JY, Slocum MK, Williams PH, Osborn TC.1991. A linkage map of Brassica rapa(syn.campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet,82:296-304.
    195. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M.2002. Isolation and characterization ofmicrosatellites in Brassica rapa L. Thero Appl Genet,104:1092-1098.
    196. Suwabe K, Iketani H, Nunome T, Ohyama A, Hirai M, Fukuoka H.2004. Characteristics ofmicrosatellites in Brassica rapa genome and their potential utilization for comparative genomics incruciferae. Breed Res,54:85-90.
    197. Suwabe K, Tsukazaki H, Iketani H, et al.2006. Simple Sequence Repeat Based ComparativeGenomics Between Brassica rapa and Arabidopsis thaliana: The Genetic Origin of ClubrootResistance. Genetics,173:309-319.
    198. Swanson EB, Courmans MP, Wu SC, Barsby TL, Beversdorf WD.1987. Efficient isolation ofmicrospores and the production of microspore-derived embryos from Brassica napus. Plant cell rep,6:94-97.
    199. Takahata Y, Keller WA.1991. High frequency embryogenesis and plant regeneration in isolatedmicrospore culture of Brassica oleracea L. Plant Sci,74:235-242.
    200. Takahata Y, Brown DCW, Keller WA.1991. Effect of donor plant age and inflorescence age onmicrospore culture of Brassica napus L. Euphytica,58:51-55.
    201. Takahata Y, Brown DCW, Keller WA, Kaizuma N.1993. Dry artificial seeds and desiccation toleranceinduction in microspore-derived embryos of broccoli. Plant cell tissue organ cult,35:121-129.
    202. Tanhuanpaa PK, Vikki JP, Vikki HJ. l995. Identification of RAPD markers for palmitic acidconcentration in the seed oil of spring turnip rape (Brassica rapa ssp.orelrera).Theor.App1.Genet,9l(3):477-480.
    203. Tanksley SD.1993. Mappng polygenes. Annu Rev Genet,27:205-233.
    204. Taylor DC, Weber N, Barton DL, Underhill EW, Hogge LR et al.1991. Triglycerol bioassembly inmicrospore-devrived embryos of Brasica napus L. cv. Reston, J Plant Physiol,97:65-79.
    205. Taylor DC, Weber N, Underhill EW, Pomeroy MK, Keller WA et al.1990. Storage-protein regulationand lipid accumulation in microspre embryos of Brassica napus., Planta,181:18-26.
    206. Telmer CA, Simmonds DH, Newcomb W.1992. Determination of developmental stage to obtain highfrequencies of embryogenic microspores in Brassica napus. Physiol Plant,84:417-424.
    207. Teutonico RA, Yandell B, Satagopan JM, Ferreria ME, Palta JP, Osborn TC.1996. Genetic analysisand mapping of genes controlling freezing tolerance in oilseed Brassica. Mol Breed,1:329-339.
    208. Teutonico RA, Osbom TC.1995. Mapping loci controlling vernalization requirement in Brassica rapa.Thero Appl Genet.91:1279-1283.
    209. Teutonico RA, Osborn TC.1994. Mapping of RFLP and qualitative trait loci in Brassica rapa andcomparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet,89:885-894.
    210. Thompson KF.1969. Frequencies of haploids in spring oilseed rape (Brassica napus). Hereditas,24:318-319.
    211. Tian H, Yao CY, Sun MX.2004. High frequency conversion of microspore-derived embryos ofBrassica napus cv.Topas by supplemental calcium and vitamins. Plant Cell Tiss. Org. Cult.,76:159-165.
    212. Tonguc M, Earle E D and Griffiths P D.2003. Segregation distortion of Brassica carinata derivedblack rot resistance in Brassica oleracea. Euphytica,134:269-276.
    213. Van Ooijen JW, Voorrips RE.2001. JoinMap3.0, Software for the calculation of genetic linkagemaps. Plant Research International, Wageningen, the Netherlands
    214. Voorrips RE.2002. MapChart, software for the graphical presentation of linkage maps and QTLs. JHeredity,93:77-78.
    215. Wakui K, Takahata Y, Kaizuma N.1994. Effect of abscisic acid and high osmoticum concentration onthe induction of desiccation tolerance in microspore-derived embryos of Chinese cabbage (Brassicacampestris L.). Breed Sci,44:29-34.
    216. Wang TT, Li HX, Zhang JH, Ouyang B, Lu YG, Ye ZB.2009. Initiation and development ofmicrospore embryogenesis in recalcitrant perple flowering stalk (Brassica campestris ssp. Chinesis var.purpurea Hort.). Sci. Hort.,121:419-424.
    217. Wilberg E, R hlem L, Hellman M, Tillberg E, Glimelius K, Stymne S.1991. The microspore-derivedembryo of Brassica napus L. as a tool for studying embryo-specific lipid biogenesis and regulation ofoil quality. Theor Appl Genet,82:515-520.
    218. Wilen RW, Mandel RM, Pharis RP, Holbrook LA, Moloney MM.1990. Effect of abscisic acid andhigh osmoticum on storage protein gen-expression in microspore embryos of Brassica napus.PlantPhysiol,94:75-881.
    219. Williams PH.1985. Crucifer genetics cooperative: resource book. Crucifer Gnetics Cooperative.Madison, Wis.
    220. Wong RSC, Zee SY, Swanson EB.1996. Isolated microspore culture of Chinese flowering cabbage(Brassica campestris ssp. parachinensis). Plant Cell Rep.15,396-400.
    221. Wu J, Yuan YX, Zhang XW, Zhao JJ, Song XF, Li Y, Li XN, Sun RF, Koornneef M, Aarts MGM,Wang XW.2008. Mapping QTLs for mineral accumulation and shoot dry biomass under different Znnutrional conditions in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Soil,310:25-40.
    222. Xu L, Najeeb U, Tang GX, Gu HH, Zhang GQ, He Y, Zhou WJ.2007. Haploid and doubled haploidtechnology. Adv.Bot. Res,45,181-216.
    223. Yan XY, Li JN, Fu FY, Jin MY, Chen L, Liu LZ.2009. Co-location of seed oil content, seed hullcontent and seed coat color QTL in three different environments in Brassica napus L. Euphytica,170:355-364.
    224. Yeung EC, Rahman MH, Thorpe TA.1996. Comparative development of zygotic andmicrospore-derived embryos in Brassica napus L. cv. Topas. I. Histodifferentiation. Int. J. Plant Sci,157:27-39.
    225. Yu SC, Zhang FL, Yu RB, Zhou YM, Qi JN, Zhao XY, Yu YJ, Zhang DS, Li L.2009. Geneticmapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage(Brassica rapa ssp. pekinensis). Molecular Breeding,23:573-590.
    226. Zeng X, Wen J, Wan Z, Yi B, Shen J, Ma C, Tu J, Fu T.2010. Effects of bleomycin on microsporeembryogenesis in Brassica napus and detection of somaclonal variation using AFLP molecular marker.Plant Cell Tiss. Org. Cult.,101:23-29.
    227. Zhang DS, Cao MQ, Qin ZW.1998. Effect of binucleate pollen ratio on embryogenesis in isolatedmicrospore culture of broccoli. Acta Hort Sin,25:201-202.
    228. Zhang FL, Takahata Y.2001. Inheritance of microspore embryogenic ability in Brassica crops. TheorAppl Genet,103:254-258.
    229. Zhang FL, Zhao XY, Zhang DS, Liu F, Xu JB.2001. High frequency production of doubled haploidplants of Chinese cabbage derived from microspore embryogenesis without colchicine treatment.Cruciferae Newsl,23:31-32.
    230. Zhang GQ, Zhang DQ, Tang GX, He Y, Zhou WJ.2006. Plant development from microspore-derivedembryos in oilseed rape as affected by chilling, desiccation and cotyledon excision. Biologia Plantarum,50(2):180-186.
    231. Zhang W, Fu Q, Dai XG, Bao MZ,2008. The culture of isolated microspores of ornamental kale(Brassica oleracea var. acephala) and the importance of genotype to embryo reneration. ScientiaHorticulturae.117,69-72.
    232. Zhang XW, Wu J, Zhao JJ, Song XF, Li Y, Zhang YG, Xu DH, Sun RF, Yuan YX, Xie CH, Wang XW.
    2006. Identification of QTLs related to bolting in Brassica rapa ssp. pekinensis (syn. Brassicacampestris ssp. pekinensis). Agriculture Sciences in China,5(4):265-271.
    233. Zhou WJ, Hagberg P, Tang GX.2002a. Increasing embryogenesis and doubling efficiency byimmediate colchicine treatment of isolated microspores in spring Brassica napus. Euphytica,128:27-34.
    234. Zhou WJ, Tang GX, Hagberg P.2002b. Efficient production of doubled haploid plants by immediatecolchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Regul,37:185-192.
    235. Zhou YM and Scarch Y.1995. Microspore culture of hybrids between Brassica napus and B.campestris. Acta Bot Sin,37:848-855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700