用户名: 密码: 验证码:
质子交换膜染料电池复合材料双极板的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)是一种将燃料和氧化剂的化学能直接转换成电能的连续发电装置,具有能量转换效率高、噪音低、结构简单、发电效率受负载变化影响小等优点,被公认为是21世纪最有发展前景的洁净、高效的发电技术。双极板是PEMFC的关键部件之一,其质量的好坏直接决定电池堆输出功率的大小和使用寿命的长短,其成本占电池堆总成本的40%左右,高成本正是PEMFC的商业化的一大障碍。寻找性能优良且成本低廉的双极板新材料和加工方法已成为燃料电池产业化技术研究中的重要课题。本论文着眼于PEMFC双极板的现实需要和未来发展,在开发高性能、价廉的燃料电池双极板材料和工艺方面进行了新的探索和尝试。
     本文首先采用人造石墨和酚醛树脂为主要原料制备复合材料双极板,对人造石墨/酚醛树脂复合材料的制备工艺进行了初步研究,探讨了原料配比、成型工艺和热处理工艺对复合材料双极板性能的影响,并建立了复合材料双极板成型的模压工艺。研究结果表明,采用人造石墨作导电原料所制备的双极板的电学性能与力学性能都较差,与实际应用存在很大的差距。在此基础上,作者对石墨原料和混料方式进行了筛选,选用天然鳞片石墨为导电原料,采用超声分散方法制备天然石墨/酚醛树脂复合材料,详细研究了复合材料的制备工艺、双极板的成型工艺和双极板的热处理工艺。研究结果表明,采用天然鳞片石墨制备的双极板各项性能比用人造石墨制备的双极板性能提高了很多,电导率和抗折强度都增大了3倍。采用超声分散技术可使复合材料各组分混合得更加均匀,极大地提高了复合材料双极板的综合性能。复合材料双极板的抗折强度随树脂含量的增大而增大,电导率随树脂含量的增大而减小,溶剂和炭黑的加入量、混料时间和固化温度存在最佳值,成型压力与保压时间对复合材料双极板的性能影响规律相同,随成型压力增大与保压时间的延长,双极板的电导率与抗强度都增大,适宜的成型压力为200MPa,保压时间为1分钟。
     针对天然石墨/酚醛树脂复合材料双极板存在强度较低的特点,本文提出了利用炭纤维增强和加入偶联剂的技术解决方案,重点研究了炭纤维加入量、不同炭纤维处理方法、偶联剂种类、偶联剂加入量和偶联剂的加入方式等对复合材料导电性能和力学性能的影响。研究结果表明,复合材料双极板的电导率随着炭纤维添加量的增加而不断降低,强度随着炭纤维添加量的增加先增大后减小。对炭纤维进行液相氧化处理,在同一温度下,双极板的电导率和抗折强度随着处理时间的延长而增大;在处理时间相同的条件下,双极板的电导率和抗折强度随着处理温度的升高而增大。偶联剂的加入能有效地改善双极板的力学性能,不同种类的偶联剂和不同的加入方式时,偶联剂的加入量都存在最佳值。
     本论文还在天然石墨/酚醛树脂复合材料双极板研究的基础上,对粘结剂树脂进行了改进,采用环氧改性的酚醛树脂为粘结剂,研究了树脂配比、树脂含量、石墨粒径、炭黑添加量、溶剂比、成型压力、保压时间以及热固化温度等因素对天然石墨/环氧改性酚醛树脂复合材料双极板结构和性能的影响。研究结果表明,在酚醛树脂体系中加入适量环氧树脂可显著改善复合材料双极板的性能,粘结剂的最佳用量有所减少,在最优的复合材料制备工艺、双极板的成型工艺和热处理工艺条件下,所制备的双极板的体积密度大于1.85g.cm-3,电导率大于120S.cm-1,抗折强度大于40MPa,均能达到美国能源部(DOE)提出的燃料电池双极板的使用标准。本文还利用膨胀石墨的优点,选用其作为导电原料,酚醛树脂为粘结剂制备复合材料双极板,对双极板的制备工艺进行了优化。研究表明,随膨胀石墨量的增加,双极板的电导率增加,强度不断减小,炭黑的加入方式对双极板性能有很大的影响。
     双极板作为燃料电池的重要组成部分,除了基本性能良好外,还需要满足其使用性能。为此,本文还对双极板的使用性能如润湿性、吸水性、热稳定性、热膨胀性、腐蚀性、阻气性和单电池性能进行了研究。结果表明,所研制复合材料双极板具有一定的亲水性,其接触角都在81°-86°之间,双极板的导电性和力学性能受吸水率影响较小。在燃料电池的工作温度范围(80-100℃)内其热稳定性能非常好。热膨胀系数也很小,数量级都为10-6K-1,这在PEMFC的工作温度范围内几乎不会因热膨胀而产生变形。模拟质子交换膜燃料电池工作环境的浸泡腐蚀实验表明,失重率在0.1-0.6%间,在电化学腐蚀中,腐蚀电流密度都小于5μA/cm2,耐腐蚀性能较好,能满足双极板的电池工作要求。模拟单电池试验表明,复合双极板在PEMFC运行环境下性能较稳定,以复合材料双极板组装的PEMFC单电池的开路电压为0.9V左右,在电流密度为1.56A.cm-2时可获得最大功率密度0.66W·cm-2。
Proton Exchange Membrane Fuel Cell (PEMFC) is a device that directly converts the chemical energy of the fuel and oxidant into electrical energy. It is recognized as the most promising power generation technology in the21st century because of it's high efficiency, low emission, simple structure, et al. Bipolar plate is a critical component of the PEMFC, which distributes fuel and oxidant to the membrane electrode and provides electronic connection between single cells. It's quality directly affects the output power and life time of the cell stack, and it's cost accounts for about40percent of the total cost of a cell stack, while the high cost of FC is a key obstacle to its wide application.Therefore, searching materials and manufacturing methods for high performance and low cost bipolar plate has been very important. With the above background, new materials and manufacturing methods for bipolar plates are explored in this study.
     The composite bipolar plates have been preparated firstly using of synthetic graphite and phenolic resin in this article. The preparation technology of synthetic graphite/phenolic resin composites was studied preliminarily. The influences of the raw material configuration, molding technology and heat treatment process on the performance of bipolar plates were investigated, and the forming molding technology of the composite bipolar plates was established. Research results show that the electrical property and mechanical property of bipolar plates preparated using synthetic graphite as conductive fillers are both low, and it can not meet the actual application requirements. On this basis, the author screened graphite raw materials and the mix method, and the natural graphite/phenolic resin composites was preparated using natural graphite as conductive aggregates and using ultrasound decentralized methods. The preparation technology of the composite bipolar plates forming process and heat treatment process was studied detaily. Research results indicate that the performances of bipolar plates preparated using the natural graphite were improved compared to those preparated using the synthetic graphite, and the conductivity and flexural strength are increased to3times respectively. Using ultrasound dispersion technology, composites components are mixed more uniform, and the comprehensive performance of composite bipolar plates are greatly improved. The flexural strength of composite bipolar plates increases and the conductivity decreases with increase of resin content.and the addition of carbon black and curing temperature have the optimal value. The influences of molding pressure and time on the performance of bipolar plates is the same. With the increase of molding pressure and the extension of holding time, conductivity and flexural strength of bipolar plates are increasing, and the suitable forming pressure is about200MPa, the holding time is1minute.
     For the natural graphite/phenolic resin composite bipolar plates have low mechanical performance, carbon fiber and coupling agent were used to reinforce composites strength. The influences of carbon fiber content, different carbon fiber processing methods, coupling agent species, coupling agent content and coupling agent added methods on the electrical conductivity and mechanical properties of composite were investigated respectively. Research results show that the conductivity of composite bipolar plates is decreased with the incease of carbon fiber content, the flexural strength is increased firstly and then decreased. Carbon fiber being liquid handling at the same temperature, the conductivity and flexural strength of bipolar plates increase with processing time increases, and at the same handing time, electrical conductivity and flexural strength of bipolar plates increase as the processing temperature increase. Adding Coupling agent, mechanical property of bipolar plates is effectively improved. Using different types coupling agent and a different adding way, the coupling agent content has the optimal value.
     On the basis of the study on the natural graphite/phenolic resin composite bipolar plates, the binder resin has been improved, and we used phenolic resin modified by epoxy resin as binder. The influences of resin ratio, resin content, graphite granularity, carbon black content, solvents ratio, molding pressure, molding time, curing temperature and other factors on the structure and properties of natural graphite/modified phenolic resin composite bipolar plates have been investigated. The results indicate that the mechanical properties of the bipolar plates significantly improved by adding suitable epoxy resin to the phenolic resin system. The optimum dosage of binder decrease. At optimal composite materials preparation technology, bipolar plate molding technology and heat treatment technology, the preparated bipolar plates have the density greater than1.85g/cm3, conductivity greater than120S/cm, flexural strength greater than40MPa, which have been able to meet the standards of U.S. Department of energy (DOE).The expanded graphite/phenolic resin composite bipolar plates have been preparated taking the advantage of expanded graphite and using it as a conductive aggregates, phenolic resin as binder. Results show that with the increase of expanded graphite content, conductivity of bipolar plates increases, while flexural strength decreases.the addition methods of carbon black has a great influence on bipolar plates performance.
     As an important component of the fuel cell, in addition to the basic performance, bipolar plate needs to meet the operational performance. Therefor, the operational performances of bipolar plates such as wettability, absorbent, thermal stability, thermal expansion, corrosiveness, gas impermeability and single-cell performance also have been investigated. Results show that the composite bipolar plates which were developed in this paper were hydrophilic. those contact angle is between81°-86°, there almost has no infulence of water absorption on the conductivity and strength of bipolar plates. In the range of fuel cell working temperature (80-100℃), thermal stability of bipolar plates is very good. Thermal expansion rate is also very low, the order of magnitude is10-6K-1. In PEMFC working temperature range, bipolar plates almost dosen't becom deformation due to thermal expansion. In simulation cell working environment immersion corrosion, weightlessness is0.1-0.6%. In electrochemical corrosion, the corrosion current densitys are less than5pμA/cm2. In this research corrosion resistance of three bipolar plate is good, which can meet the need of bipolar plates. Simulation experiments of single cell show that the composite bipolar plates have a more stable performance in PEMFC run environment. For the PEMFC assembled with graphite/phenolic composite bipolar plates, the open-circuit voltage is about0.9V, and the maximum power density can reach to0.66W·cm-2at the current density of1.56A·cm-2
引文
[1]Grove W R. On voltaic series and the combination of gases by platinum[J]. London and Edinburgh Philosophical Magazine and Journal of Science,1839,14 (3):127-130
    [2]唐伦成,杨亭阁,王佳.燃料电池技术及应用[J].化工进展,1995,1:18-21
    [3]衣宝廉.燃料电池—原理·技术·应用[M].北京:化学工业出版社,2004
    [4]我国加快燃料电池商业化进程http://www.stdaily.com/oldweb/gb/innovation/ 2002-10/31/content 26486.htm
    [5]孔宪文,桂敏言,冯玉全.燃料电池发电技术现状与前景[J].东北电力技术,2002,3:28-33
    [6]A.O.麦克杜格尔.燃料电池[M].北京:国防工业出版社,1983:1-12
    [7]Kordesch K V, Oliveira J C, Fuel cells, Ulmann's Eecyclopdia of Industrial Chenistry, Fufth Edition, VCH, Weinheim, Germany,1996, A12:55-58
    [8]查全性.燃料电池技术的发展与我国应有的对策[J].应用化学,1993,10(5):38-42
    [9]刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题[J].电源技术,2001,25(5):363-366
    [10]李国华.PEM燃料电池鳞片石墨/树脂复合双极板的研究[D].天津大学硕士学位论文,2003:3-6
    [11]林维明,燃料电池系统[M].化学工业出版社,1996:16-18
    [12]http://www.daviddarling.info/encyclopedia/A/AE_alkaline_fuel_cell.html
    [13].孙兴进,朱新坚,曹广益.熔融碳酸盐燃料电池发电系统的研究[J].能源工程,2000,6:1-3
    [14]郝德利,韩立明,薛金生等.质子交换膜燃料电池技术进展[J].电源技术,2001,25(6):436-440
    [15]武宏让.用于可逆式再生燃料电池的新型电极材料[J].稀有金属快报,2003,7:10-11
    [16]衣宝廉.燃料电池现状与未来[J].电源技术,1998,22(5):216-221
    [17]Alkaline fuel cell http://wenku.baidu.com/view/123da6717fd5360cbaladb 99.html
    [18]贺华,赵景联.燃料电池的开发现状及其发展前景http://bbs.topenergy. org/archiver/tid-14824
    [19]Choi K H, Kim H S, Lee T H. Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition[J]. J Power Sources,1998,75: 230-237
    [20]蒋晓原,周仁贤,毛建新等.CeO2在Pd/g-Al2O3催化剂中的助剂作用[J].应用化学,1999,16(1):26-30
    [21]桑孝一.松晃.燃料电池用空电及びその造方法[P].JP 10055807(1998)
    [22]E.A.Ticianelli, J.G. Berry, S.Srinivasav. Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphological characteristics of the electrodes[J]. J.Appl.Electrochem.,1991,21:597-598
    [23]菜年生.质子交换膜在燃料电池中的应用[J].膜科学与技术,1996,16(4):1-6
    [24]张华民,明平文,邢丹敏.质子交换膜燃料电池的发展现状[J].当代化工2001,30(1):7-11
    [25]K.Cott, W.M.Taama, P.Argyropoulos. Material aspects of the liquid feed direct methanol fuel cell[J]. J.Appl.Electrochem.,1998,28:138-139
    [26]M.S.Wilson, S.Gottesfeld. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J]. J.Appl.Electrochem.,1992,22:1-7
    [27]M.S.Wilson, S.Gottesfeld. High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells[J]. J. Electrochem. Soc.,1992, 139:28-30
    [28]M.Hogarth, P.Christensen, A.Hamnett, et al. The design and construction of high-performance direct methanol fuel cells.1.Liquid-feed systems[J]. J. Power Sources,1997,69:113-124
    [29]L.Liu, C.Pu, R.Viswanathan. Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells[J]. Electrochimica Acta,1998, 43(24):3657-3663
    [30]燃料电池的应用与使用http://www.stcsm.gov.cn/learning/lesson/jinrong/ 20020921/20020921-3.asp
    [31]毛宗强.燃料电池[M].北京:化学工业出版社,2005,47-49
    [32]Viral Metha, Joyce Smith Cooper. Review and analysis of PEM Fuel Cell Design and Manufacturing[J]. J.Power Sources,2003,114 (1):32-53
    [33]邵志刚,衣宝廉,韩明等.质子交换膜燃料电池电极的一种新的制备方法[J].电化学,2000,6(3):317-323
    [34]Curtis Marr. Xianguo Li. Composition and performance modeling of catalyst layer in a proton exchange membrance fuel cell[J]. J. Power Sources.1999.77 (1):17-27
    [35]侯明,吴金锋,衣宝廉等.PEM燃料电池流场板[J].电源技术,2001,25(4):294-298
    [36]Jool A, CITY J. Process for the production of a porous monolithic graphite plate[P].US:4782586(1988)
    [37]Grasso A P. Composite Article[P].US patent:6039823(2000)
    [38]Besmann M.T., Klett W.J., Henry J.J. Carbon/Carbon composite bipolar plate for proton exchange membrane fuel cells[J]. J. Electrochemical Society,2000, 147(11):4083-4086
    [39]王明华,曹广益,朱新坚等.一种浸渍燃料电池用双极板的新方法[J].电源技术,2003,27(6):492-493
    [40]张海峰,衣宝廉,侯明等.质子交换膜燃料电池双极板的材料与制备[J].电源技术,2003,27(2):129-133
    [41]Spear. Metal platelet fuel cells production and operation methods[P].US Patent:5683828(1997)
    [42]Hornung R, Kappelt G. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells[J]. J. Power Sources,1998,72:20-21
    [43]Li Y, Meng W J. Corrosion resistant PEM fuel cell[P].US Patent: 5624769(1997)
    [44]Thomas, Ieuan. Bipolar plate for fuel cells[P].GB:WO 0022689(2001)
    [45]Fukui Yasushi, Matsuno Masenori, Saito Minoru. Separator for low temperature type fuel cell and method of production thereof [P]CN:1273699A(2000)
    [46]E.Middelman, W.Kout, B.Vogelaar, et al. Bipolar plates for PEM fuel cells [J]. Journal of Power Sources,2003,118:44-46
    [47]Bronoel G.,Versailles, Besse S., et al. Bipolar collector for fuel cell[P], US20010006745(2001)
    [48]Oliver J.Murphy, Alan Cisar, Eric Clarke. Low cost light weight high power density PEM fuel cell stack[J].J. Eletrochemica Acta,1998,43(24):3829-3840
    [49]沈春晖.水泥/导电填料复合材料双极板的制备与性能研究:[武汉理工大学博士学位论文D],武汉理工大学,2006:12-18
    [50]Busick D.N., Wilson M.S., "Low-cost composite bipolar plates for PEMFC stacks", in:"Proton conducting membrane fuel cells". Electrochemical Society Proceedings Series.27,1998
    [51]Hsu-Chiang, Chen-Chi M Ma, Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell[J]. Journal of Power Sources,2004,134:7-17
    [52]Heinzel A, Mahlendorf F, Niemzig O, Kreuz C, Injection moulded low cost bipolar plates for PEM fuel cells[J]. Journal of Power Sources,2004,131:35-40
    [53]James C Branu, Conductivity fuel cell collector plate and method of fabrication [P],US6,451,471B1(2002,9,17)
    [54]K. W. Tucker, G. P. Weeks, Wet-lajd sheet material and composites thereof US Patent 5614312,(1997)
    [55]Jianhua Huang, D. G. Baird, J. E. Mcgragh, Development of mel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials[J]. Joumalof power sources,2005,150(4):110-119
    [56]B.K.Kakati,D.Deka,Diff. erences in physico-mechanical behaViors of resol(e) and novolac type phenolic resin based composite bipolar palte for proton exchange membrane (PEM) fuel cell[J]. Electrochimica acta,2007,525: 7330-7336
    [57]H. S. Lee, H. J. Kim, S. G. Kim, et al., Evaluation of gaphite composite bipolar plate for PEM(proton exchange membrane) fuel cell:electrical, mechanical, and molding properties[J]. Journal of materials processing technology,2007,187-188:425-428
    [58]Richard J Lawrance, Low cost bipolar current collector-separator for electrochemical cells [P], US4,214,969 (1980)
    [59]Edward N Balko, Richard J Lawrance, Carbon fiber reinforced fluorocarbon-graphite bipolar current collector separator[P], US4,339,322 (1982)
    [60]H. C. Kuan, C. C. M. M.K. H. Chen, S. M. Chen, Preparation, electrical, mechanical and theral properities of composite bipolar plate for a fuel cell[J]. Journal of Power Sources,2004.134(1):7-17
    [61]J. F. LeCostaouec, Carbon fiber reinforced plastic bipolar plates with continuous electrical pathways[P],US Patent0219646 (2003)
    [62]R. B. Mathur, S. R. Dhakate, D. K. Gupta, et al., Effect of different carbon fillers on the properities of graphite composite bipolar plate[J]. journal of materials processing technology.2008,203:184-192
    [63]S. H. Liao, C. Y. Chen, C. C. Weng, et al., Preparation and propertities of carbon nanotube/polypropylene nanocomposite bipolar plates for electrolyte membrane fuel cell[J]. Journal of power sources,2008.185(2):1225-1232
    [64]Wilson M S,Busick D N, Composite bipolar plate for electrochemical cells[P],US6,248,467B1(2001)
    [65]Zafar Iqbal, Jeff Pratt, Jim Matrunich, JamesV Guiheen, Nanocomposite for fuel cell bipolar plate[P],US6,572,997B1(2003)
    [66]Chen Guohua, Wu Cuiling, Weng Wengui, et al, Preparation of polystyrene/ graphite nanosheet composite[J]. Polymer,2003,44:1781-1784
    [67]Roger C Emanuelson, Warren L Luoma,William A Taylor, Separator plate for electrochemical cells[P],US4,301,222 (1981)
    [68]James C Braun,John E Zabriskie,Michel Fuchs,et al, Fuel cell collector plate and method of fabrication[P],US6,180,275B1 (2001)
    [69]Cho E A, Jeon U-S, Ha H Y,et al., Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources,2004, 125:178-182
    [70]Kurt I Butler, Highly conductive molding compounds and fuel cell bipolar plates comprising these compounds[P],US6,251,308B1(2001)
    [71]R. H. J. Blunk, M. H. A. Elhamid, et al, Polymeric composite bip01ar plates for vehicle applications[J]. Journal of Power Sources,2006,156(2):151-157
    [72]田军.石墨晶体结构及石墨层间化合物对摩擦性能的影响[J].新型碳材料1995,(4):54-58
    [73]Genhua Zheng, Jingshen Wu, Wenping Wang, el al. Characterizations of expanded graphite/polymer composites prepared by situ polymerization[J]. Carbon,2004,42(14):2839-2847
    [74]Wenge Zheng, Shing-Chung Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites[J].Composites Science and Technology,2003,63(2):225-235
    [75]王东,张伟,夏保佳等.质子交换膜燃料电池金属双极板研究[J].电源技术,2005,29(8):491-495
    [76]吕源,宋丽娜,肖敏等.纳米复合双极板在质子交换膜燃料电池环境中的老化分析[J].高分子材料科学与工程,2006,22(4):212-215
    [77]武涛,郑永平,黄正宏等.柔性石墨双极板透气性的研究[J].材料科学与工程学报,2005,23(2):196-199
    [78]王宏军.粉末填料/聚合物导电复合材料的导电机理[J].高分子材料科学与 工程,1990,6(6):1-8
    [79]龚文化,曾黎明.聚合物基导电复合材料研究进展[J].化工新型材料,2002,30(4)38-40
    [80]Paul A. Lagace, Notch sensitivity of graphite/epoxy fabric laminates[J]. Composites Science and Technology,1986,26(2):95-117
    [81]E. K. Sichel, T. Emma. Electrical conduction in a heat-treated polyimide Solid State Communications,1982,41(10):747-749
    [82]Wilson M S. Composite bipolar plate for electrochemical cells.USP6248467, (2001)
    [83]Mercuri; Robert Angelo; Gough; Jeffrey John. Flexible graphite composite for use in the form of a fuel cell flow field plate.USP6037074(2000)
    [84]陈智琴,C/C复合材料用高成炭率酚醛树脂的制备及其耐热性能的研究[湖南大学硕士论文].长沙:湖南大学材料科学与工程学院,2007:35-40
    [85]Li M, Tucker C L. Optimal curing for thermoset matrix composites: thermochemical and consolidations [J]. Polym. Compos.,2002,23:739-757
    [86]Ganglani M, Carr S H, Torkelson J M. Influence of cure via network structure on mechanical properties of a free-radical polymerizing thermoset [J]. Polymer, 2002,43:2747-2760
    [87]Hsiao K T, Little R, Restrepo O, Minaie B. A study of direct cure kinetics characterization during liquid composite molding [J]. Composites Part A,2006, 37:925-933
    [88]XIA Jin-tong, HU Zhong-liang, CHEN Zhen-hua. Carbon brushes with thermosetting resin binder[J].Trans. Nonferrous. Met. Soc. china,17(2007)
    [89]肖锋,叶建东,王迎军.超声技术在无机材料合成与制备中的应用[J].硅酸盐学报,2002,30(5):615-619
    [90]王广阔,杨英贤.不同超声频率与温度对纳米ZnO颗粒分散性能的影响[J].纺织科技进展,2005,2:24-26
    [91]张杰,黄玉东,刘丽等.超声处理对酚醛树脂及纳米分散的影响[J].航空材料学报,2005,25(5):42-45
    [92]Wilson M S. Composite bipolar plate for electrochemical cells.USP6248467. 2001
    [93]Mercuri; Robert Angelo:Gough; Jeffrey John. Flexible graphite composite for use in the form of a fuel cell flow field plate.USP6037074(2000)
    [94]武井武,河岛千寻编,梁济博译.新碳素材料[M].兰州:兰州碳素厂研究所,1981,181-185
    [95]张福勤,黄启忠,黄伯云等.C/C复合材料石墨化度与导电性能的关系[J].新型炭材料,2001,16(2):45-48
    [96]陈蔚然.碳素材料工艺基础[M].长沙:湖南大学出版社,1984,30-34
    [97]I.Krupa, I.Chodak, physical properties of termoplastlc/graphite composites[J]. European Polymer Journal,2001,37(11):2159-2168
    [98]P. Potschke, A.R.Bhatacharyya, A.Janke, Carbon nanotube-filled Polycarbonate composites Produced by melt mixing and their use in blends with Polyethylene[J]. Carbon,2004,42(5-6):965-969
    [99]W.G.Zheng, X.H.Lu, S.C.Wong, Electrical and mechanical properties of expanded graphite-reinforced high-density of Polyethylene[J]. Journal of Applied Polymer Science,2004,91(5):2781-2788
    [100]G.R.Ruschau, S.Yoshikawa, R.E.Newnham, Effects of filler particle size on the resistlvity of conductive composite[J]. Inlernational Journal for Hybrid Microelectronics,1990,13(4):100-104
    [101]翁建新,陈国华.环氧树脂/石墨微片复合导电材料的制备方法[J].热固性树脂,2004,14(4):13-15
    [102]J. R. Nelson, W. K. Wissing. Importance of carbon black morophology on its use in electrically conductive polymer composites [J]. Carbon,1984,22 (2):230-238
    [103]陈光,崔崇.新材料概论[M].北京:科学科学出版社,2003:223-224
    [104]顾宜.材料科学与工程基础[M].北京:化学工业出版社,2004:226
    [105]王彦明,王威强,李爱菊等.炭纤维增强酚醛树脂/石墨复合材料双极板的性能[J],山东大学学报,2006,7(3):37-38
    [106]德尔蒙多J著.炭纤维和石墨纤维复合材料技术[M].李仍之译,北京:科学出版社,1987:159-161
    [107]殷永霞,沃西源.炭纤维表面改性研究进展[J].航天返回与遥感,2004,25(1):51-54
    [108]刘杰,郭云霞,梁节英.炭纤维表面电化学氧化的研究[J].化工进展,2004,23(3):282
    [109]闰联生,陈增解.表面氧化处理对提高碳/酚醛材料性能的影响.固体火箭技术,1999,22(3):50-54
    [110]康勇,项素云,梁培亮.沥青基炭纤维表面复合处理的研究[J].功能高分子学报,1999,12(4):450-452
    [111]杜慧玲,齐锦刚,庞洪涛.表面处理对炭纤维增强聚乳酸材料界面性能的影响[J].材料保护,2003,36(2):16-18
    [112]郭云亮,张涑戎,李立平.偶联剂的种类和特点及应用[J].橡胶工业,2003,50(11):692-696
    [113]廖俊,陈圣云等.硅烷偶联剂及其在复合材料中的应用[J].化工新型料,2001,29(9):26-28
    [114]Plueddemann E P著;梁发思,谢世杰译.硅烷和钛酸酯偶联剂[M],上海:科学技术文献出版社,1987
    [115]沈玺,高雅男,徐政.硅烷偶联剂的研究与应用[J].上海生物医学工程,2006,26(1):14-17
    [116]夏定国,赵煜娟,王振尧.燃料电池研究进展及产业化对策[J].新材料产业,2004:19-23
    [117]黄发荣,焦杨声.酚醛树脂及其应用[M].化学工业出版社,2003:82-84
    [118]美]古托夫斯基.先进复合材料制造技术[M].化学工业出版社,2004:106-111
    [119]KNIBBS R H, MORRIS J B. Some effects of oxidation on the properties of graphite [A]. In:Third SCI Conference on Industrial Carbons and Graphites [C]. London:Society of Chemical Industry,1972:297-308
    [120]梁国证,顾媛娟.模压成型技术[M].化学工业出版社,2000:56-63
    [121]黄家康,岳红军,董永祺.复合材料成型技术[M].化学工业出版社,1998:212-218
    [122]张南哲,许素莲.聚合物复合导电材料的导电机理[J].长春光学精密机械学院学报,1995,18(4):25-31
    [123]Li-gang Xia, Ai-ju Li, Wei-qiang Wang.Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate[J]. Journal of Power Sources.2008,178:363-367
    [124]赵晓旭,岳慧颖.新型炭/改性酚醛树脂(C/R)复合材料的研究[J].炭素,2001,(1):25-27
    [125]钱欣,濮阳楠,金扬福.酚醛树脂/石墨导热塑料性能研究[J].工程塑料应用,1997,25(3):10-12
    [126]Y.Kuga, M.Shirahige, Y.Ohira, K.Ando, Production of finely ground natural graphite Particles with high electrical conductivity by controlling the gnnding atmosphere[J]. Carbon,2002,40(5):695-701
    [127]Joong Hee Lee, Yun Ki Jang Chang Eui Hong.Effect of carbon fillers on properties of polymer composite bipolar plate of fuel cells[J]. Journal of Power Sources,2009,193:523-529
    [128]Limei Cui, Yong Zhang, Yinxi Zhang. Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black[J]. European Polymer Journal,2007,43:5097-5106
    [129]Y.P.Mamunya, H.Zois, L.Apekis, E.V.Lebedev, Influence of Pressure on the electrical conductivity of metal Powders used as fillers in polymer composites[J]. Powder Technology,2004,140(1-2):49-55
    [130]关振铎,张中太,焦金生.无机材料物理性能[M].清华大学出版社,2004:42-45
    [131]周钟瑔,李劲,李京等.环氧与酚醛改性环氧涂层固化反应与吸水性关系的研究[J].中国腐蚀与防护学报,1997,17(3):173-180.
    [132]Ballard corporation homepage. http://www.ballard.com.Last retrieved on August 10,2006
    [133]Angelo M R, Paul C J, Lee W M, et al. Eur Pat WO0064808(2000)
    [134]赵若冬,刘宗浩,许莉,王宇新.高性能NG/PF复合双极板制备[J].应用化工,2006,35(3):185-187
    [135]Flandin L, Prasse T,Schueler R. Anomalous percolation transition in carbon black epoxy composite materials[J]. Phys. Rev. B,1999,59(22):14349-14355
    [136]I. Morozov,B. Lauke, G.Heinrich. A new structural model of carbon black framework in rubbers[J]. Computational Materials Science,2010,47:817-825
    [137]Lu, G., Li, X., Jiang, H., Mao, X. Electrical conductivity of carbon fibers/ABS resin composites mixed with carbon black[J]. Journal of Applied Polymer Science,1996,62:2193-2199
    [138]Du, Ling. Highly conductive epoxy/graphite polymer composite bipolar plates in proton exchange membrane (PEM) fuel cells[D]. The University of Akron.2008
    [139]Springer T E, Wilson M S, Gottesfele S. Modeling and experimental diagonotics in polymer electrolyte fuel cell[J]. J. Electrochem. Soc.,1993,140:3513-3518
    [140]Priyanka H. Maheshwari. R.B. Mathur, T.L. Dhami. Fabrication of high strength and a low weight composite bipolar plate for fuel cell applications[J]. Journal of Power Sources.2007,173(1):394-403
    [141]Chao Du, Pingwen Ming, Ming Hou. Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources,2010,195:794-800
    [142]Taylor Craig A,Wayne Mark F,Chiu Wilson K S. Heat treatment of thin carbon films and the effect on residual stress, modulus, thermal expansion and microstructure[J]. Carbon,2003,41(10):1867-1875
    [143]赵建国,李克智,李贺军,孙国栋,王闯.炭/炭复合材料热膨胀性能的研究[J].材料热处理学报,2006,27(6):1-4
    [144]S. Stucki, G.G. Scherer, S.Schlagowski, E. Fischer. PEM water electrolyser: evidence for membrane failure in 100kW demonstration plants[J]. J. Appl. Electrochem.,1998,28:1041-1049
    [145]黄悼,屠海令,张冀强等.质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社,2000:57-66
    [146]H.E. Vandan, H.V Bekkum. Preparation of platinum on activated carbon[J]. J.Catalysis,1991,131:335-340
    [147]R. Hornung, G. Kappelt. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells[J]. J. Power Sources,1998,72:20-21
    [148]M. Waidhas, A. Datz, U. Gebhardt, R. Vhelmolt, R. Homung, G. Luft. Low-cost PEMFC Development at Siemens-Material Aspects, in Mat. Res. Soc. Symp. Proc.Vol.575.2000 Materials Research Society (MRS).229-238
    [149]D. Busick, M. Wilson. Development of Composite Materials for PEFC Bipolar Plates, in Mat. Res. Soc. Symp. Proc. Vol.575.2000 Materials Research Society (MRS).247-251
    [150]M.S. Wilson, C. Zawodzinski, S. Mdler-Holst, D.N. Busick, F.A. Uribe, T.A. Zawodzinski. PEMFC stacks for power generation. Proceeding of the 1999 U.S.DOE Hydrogen Program Review, NREL/cp-570-26938
    [151]D.R. Hodgson, B. May, P.L. Adcock, D.P. Davies. New lightweight bipolar plate system for polymer electrolyte membrane fuel cells[J]. J. Power Sources,2001, 96:233-235
    [152]L. Ma, S. Warthesen, D.A. Shores. Evaluation of materials for bipolar plates in PEMFCs[J]. J. New Mat. Electrochem. Systems.2000,3:221-228
    [153]T.M. Besmann, J.W Klet, J.J. Henry, Jr., E. Lara-Curzio. Carbon/carbon composite bipolar plate for proton exchange membrane fuel cells[J]. J. Electrochem. Soc.,2000.147(11):4083-4086
    [154]M.S. Wilson, C. Zawodzinski, G. Bender, T.A. Zawodzinski, D.N. Busick. PEMFC stacks for power generation. Proceedings of the 2000 DOE Hydrogen Program Review,NREL/CP-570-28890
    [155]Priyanka H. Maheshwari, R.B. Mathur, T.L. Dhami. Fabrication of high strength and a low weight composite bipolar plate for fuel cell applications[J]. Journal of Power Sources,2007,173:394-403
    [156]李久青,杜翠薇.腐蚀试验方法及监测技术[M].中国石化出版社,2007:25-44
    [157]Jianhua Huang, Dinald G. Baird, James E.McGrath. Development of fuel cell bipolar plate from graphite filled wet-lay thermoplastic composite materials[J].Journal of Power Sources,2005,150:110-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700