用户名: 密码: 验证码:
压电智能结构振动主动控制及优化配置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船主要受到螺旋桨、主机、波浪和风等激励源的作用,在这些激励的作用下,极易使舰船产生有害振动。有害振动影响舰船隐身性、安全性和舒适性。因此,对舰船结构振动主动控制的研究是十分有意义的。本文就是研究舰船最基本结构--梁或板的振动主动控制问题。
     本文以Mindlin板弯曲理论和Hamilton原理为基础,考虑机电耦合特性,建立了四节点四边形压电层合单元有限元模型。采用线性二次型独立模态空间控制方法对压电智能结构振动进行主动控制,推导了状态空间控制方程,并基于精细积分法求解结构受控模态控制前后的响应。采用FORTRAN语言编写了建模及控制过程的程序。分别在简谐激励和舰船振动信号激励作用下,对非连续分布式压电悬臂梁进行了振动主动控制,从仿真结果可以看出,梁结构的振动被有效的抑制,验证了本文方法的有效性。对于压电片离散铺设的情况,联系本文控制方法,以线性二次型性能指标最小为优化准则,使用自适应进化策略优化算法对压电传感器/作动器的位置进行优化,将优化理论与有限元理论结合,编制相应的程序。优化仿真结果验证,优化所得压电片最优布置时的控制效果比非连续分布式铺设时的效果好。本文的研究为进行舰船结构振动主动控制提供理论基础。
The vessel is mainly affected by the propeller, main engine, wave and wind force. In this environment, harmful vibration will occur easily, and it will affect the invisibility, safety and comfortableness of the vessel. So, it is very significant to research on the active vibration of ship structures. In this paper, the active vibration control is researched for beam or plate which is the basic component in ship.
     The finite element model of the 4-node quadrilateral piezoelectric composite structure is developed based on the Mindlin bending theory and Hamilton's principle, considering the electric and mechanical properties. An Independent Modal Space Control (IMSC) technique based on Linear Quadratic Regulator (LQR) method is adopted to carry out the active vibration control of piezoelectric smart structures, control equation in state space is derived and the High Precise Direct (HPD) integration method is used to calculate the response of the structure's controlled modal before and after control. The corresponding programs are composed in FORTRAN. Active vibration control for a discontinuous distributed piezoelectric cantilever, which is subjected to harmonic and the vessel's vibration signal excitation, is used in simulation examples, the vibration of the cantilever is suppressed effectively, and the method in this paper is verified to be effective. For the situation that piezoelectric patches are laid discretely, taking the control method into account, Linear Quadratic Regulator performance index is used as optimal criteria, and adaptive evolutionary strategy method is adopted as optimal algorithm. Combining optimal theory with finite element theory together, the corresponding program is composed. The optimal example result shows that the control effect of optimal placement is better than the control effect of discontinuous distributed placement. The researches in this paper provide a theoretical basis for active vibration control of vessel structure.
引文
[1]张君英,韩军辉.结构振动被动控制方法概述[J].山西建筑,2007,33(19):66-67.
    [2]张目.压电智能桁架的最优控制及优化设计[D].大连理工大学硕士学位论文,2009.
    [3]张光磊,杜彦良.智能材料与结构系统[M].北京:北京大学出版社.2010.
    [4]S Ahmad Fazelzadeh and S Mohammad Jafari. Active control law design for flutter suppression and gust alleviation of a panel with piezoelectric actuators[J]. Smart Material and Structure.2008,17(3):853-862.
    [5]K Ramesh Kumar and S Narayanan. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs [J]. Smart Material and Structure. 2008,17(5).
    [6]K Ramesh Kumar and S Narayanan. The optimal location of piezoelectric actuators and sensors for vibration control of plates [J]. Smart Material and Structure.2007, 16(6):2680-2691.
    [7]H. S.Tzou, W. K. Chai. Design and testing of a hybrid polymeric electrostrictive/piezoelectric beam with bang-bang control [J]. Mechanical Systems and Signal Processing.2007,21 (1):417-429.
    [8]吴大方,刘安成,麦汉超等.压电智能柔性梁振动主动控制研究[J].北京航空航天大学学报.2004,30(2):160-163.
    [9]张利,谢毅,计时鸣等.压电智能结构的柔性梁振动主动控制系统仿真[J].机电工程.2009,26(9):70-72.
    [10]刘培玉,葛斌,王金城.最优控制系统设计[D].大连理工大学出版社.2000.
    [11]Magdalene Marinaki, Yannis Marinakis and Georgios E. Stavroulakis. Vibration control of beams with piezoelectric sensors and actuators using particle swarm optimization[J]. Expert Systems with Applications.2011,38(6):6872-6883.
    [12]Seong Hwan Moon. Finite element analysis and design of control system with feedback output using piezoelectric sensor/actuator for panel flutter suppression[J]. Finite Element in Analysis and Design.2006,42(12):1071-1078.
    [13]N. K. Chandiramani. Active control of a piezo-composite rotating beam using coupled plant dynamics[J]. Journal of Sound and Vibration.2010,329(14):2716-2737.
    [14]Manu Sharma, S P Singh and B L Sachdeva. Fuzzy logic based modal space control of a cantilevered beam instrumented with piezoelectric patches [J]. Smart Material and Structure.2005,14(5):1017-1024.
    [15]Manu Sharma, S P Singh and B L Sachdeva. Modal control of a plate using a fuzzy logic controller[J]. Smart Material and Structure.2007,16(4):1331-1341.
    [16]V. Balamurugan and S.Narayanan. Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control [J]. Finite Elements in Analysis and Design.2001,37(9):713-738.
    [17]S Kapuria and M Yaqoob Yasin. Active vibration control of piezoelectric laminated beams with electroded actuators and sensors using an efficient finite element involving an electric node[J]. Smart Material and Structure.2010,19(4): 45019-45033.
    [18]邓年春,邹振祝.压电板的主动控制[J].压电与声光.2004,26(6):517-520.
    [19]王波,王荣秀.结构振动的独立模态和耦合模态的组合控制[J].振动与冲击.2004,23(4):26-30.
    [20]缑新科,崔明月.压电层合板的振动主动控制[J].噪声与振动控制.2009,29(5):50-53.
    [21]G. E. Stavroulakis, G. Foutsitzi and E. Hadjigeorgiou et al. Design and robust optimal control of smart beams with application on vibrations suppression [J]. Advances in Engineering Software.2005,36():806-813.
    [22]M. Sunar, S. J. Hyder and B. S. Yilbas. Robust design of piezoelectric actuators for structural control[J]. Computer methods in Applied Mechanics and Engineering. 2006,293(1-2):335-359.
    [23]X.Zhang, C. Shao and D. Xu et al. Robust H∞ vibration control for flexible linkage mechanism systems with piezoelectric sensors and actuators[J]. Journal of Sound and Vibration.2001,243(1):145-155.
    [24]Halim. D and Moheimani. S.O. R. Experimental implementation of spatial H∞ control on a piezoelectric-laminate beam[J]. Mechatronics.2002,7(3):346-356.
    [25]Gustavo Luiz C.M.de Abreu and Jose F. Ribeiro. A self-organizing fuzzy logic controller for the active control of flexible structures using piezoelectric actuators[J]. Applied Soft Computing.2002,1(4):271-283.
    [26]Qu Wenzhong, Sun Jincai and Qiu Yang. Active control of vibration using a fuzzy control method[J]. Journal of Sound and Vibration.2004,275(3-5):917-930.
    [27]Wei Wang and Xiangdong Liu. Fuzzy sliding mode control for a class of piezoelectric system with a sliding mode state estimator[J]. Mechatronics.2010,20(6):712-719.
    [28]Her-Terng Yau, Cheng-Chi Wang and Chin-Tsung Hsieh et al. Nonlinear analysis and control of the uncertain micro-electro-mechanical system by using a fuzzy sliding mode control design [J]. Computers & Mathematics with Applications. 2010,61(8):1912-1916.
    [29]Chun-Fei Hsu. Adaptive growing-and-pruning neural network control for a linear piezoelectric ceramic motor[J]. Engineering Applications of Artificial Intelligence.2008,21 (8):1153-1163.
    [30]Faa-Jeng Lin, Rong-Jong Wai and Kuo-Kai Shyu et al. Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive[J]. Ultrasonics, Ferroelectrics and Frequency Control.2001,48(4):900-913.
    [31]陈丽萍.振动主动控制技术的研究进展[J].现代机械.2005,(2):52-55.
    [32]Vivek Gupta, Manu Sharma and Nagesh. Optimization Criteria for Optimal Placement of Piezoelectric Sensors and Actuators on a Smart Structure:A Technical Review[J]. Journal of Intelligent Material Systems and Structures.2010,21(12):1227-1243.
    [33]Bin, L., Yugang, L. and Xuegang, Y. Maximal Modal Force Rule for Optimal Placement of Piezoelectric Actuators for Plates[J]. Journal of Intelligent Material Systems and Structures.2000,11(7)-.512-515.
    [34]Zhang, J., he, L., Wang, E. and Gao, R. A LQR Controller Design for Active Vibration Control of Flexible Structures[J]. IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan.2008,1:127-132.
    [35]Barboni, R., Mannini,A., Fantini, E. and Gaudenzi. Optimal Placement of PZT Actuators for the Control of Beam Dynamics[J]. Smart Material and structure.2000,9(1):110-120.
    [36]Yang, Y., Jin, Z. and Soh, C. K. Integrated Optimal Design of Vibration Control System for Smart Beams Using Genetic Algorithms [J]. Journal of Sound and Vibration. 2005,282(3-5):1293-1307.
    [37]白冰,常军和刘正兴.梁振动控制中压电作动器的位置优化准则[J].上海交通大学学报.2005,39(2):288-292.
    [38]任建亭,闫云聚和姜节胜.振动控制传感器/作动器的数目和位置优化设计[J].振动工程学报.2001,14(2):237-241.
    [39]Peng, F., Ng, A. and Hu, Y. R. H.. Actuator Placement Optimization and Adaptive Vibration Control of Plate Smart Structure[J]. Journal of Intelligent Material Systems and Structures.2005,16(3):263-271.
    [40]Bruant, I. and Proslier, L. Optimal location of actuators and sensors in active vibration control[J]. Journal of Intelligent Material Systems and Structures. 2005,16(3):197-206.
    [41]Li, Z. N., Tang, J. and Li, Q. S.. Optimal sensor locations for structural vibration measurements[J]. Applied Acoustics.2004,65 (8):807-818.
    [42]Jingjun Zhang, Lili He, Ercheng Wang and Ruizhen Gao. Optimal position of piezoelectric elements in flexible structures active vibration control [J]. Second international symposium on intelligent information technology application.2008,3:895-900.
    [43]王成亮,陈勇.柔性板振动控制中压电元件的优化布置[J].中国测试技术.2003,4:10-12.
    [44]Han, J.-H. and Lee, I.. Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms[J]. Smart Material and Structure.1999,8(2):257-267.
    [45]王虎虎.基于自适应进化策略的舰船加筋结构动力优化[D].大连理工大学硕士论文.2010.
    [46]蒋腾旭.智能优化算法概述[J].人工智能及识别技术.2007,8:507-530.
    [47]严天宏,段登平和王建宇等.振动主动控制中传感器/作动器最优配置问题的模拟退火方法研究[J].振动与冲击.2000,19(2):1-4.
    [48]Isabelle Bruant, Laurent Gallimard and Shahram Nikoukar. Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm[J]. Journal of Sound and Vibration.2010,329(10):1615-1635.
    [49]K. D. Dhuri, P. Seshu. Multi-objective optimization of piezo actuator placement and sizing using genetic algorithm[J]. Journal of Sound and Vibration. 2009,323(3-5):495-514.
    [50]潘继,陈龙祥和蔡国平.柔性板压电作动器的优化位置与主动控制实验研究[J].振动与冲击.2010,29(2):117-120.
    [51]杨国利.压电驱动器的研究与应用进展[J].内蒙古煤炭经济.2009,(1):56-59.
    [52]陈凤.基于精细积分法的压电智能结构振动最优控制[D].大连理工大学硕士学位论文,2010.
    [53]蒋玉川,张建海,李章政.弹性力学与有限单元法[M].北京:科学出版社,2007.
    [54]洪明.分层损伤复合材料层合板振动与声特性研究[D].大连理工大学博士学位论文,2003.
    [55]Tiersten H. F. Linear piezoelectric plate vibrations[M]. New York:Plenum Press, 1969.
    [56]G. E. Stavroulakis, G. Foutsitzi, E. Hadjigeorgiou. Design and robust optimal control of smart beams with application on vibrations suppression [J]. Advances in Engineering Software,2005,36(11-12):806-813.
    [57]黄惟一,胡生清.控制技术与控制系统[M].北京:机械工业出版社.2002.
    [58]张亚辉,林家浩.结构动力学基础[M].大连:大连理工大学出版社.2007.
    [59]Wang Weiyuan, Wei Yingjie and Wang Cong et al. Modeling and optimal vibration control of conical shell with piezoelectric actuators [J]. High Technology Letters. 2008,14(4):418-422.
    [60]刑忠福.基于压电效应的结构振动主动控制研究[D].哈尔滨工业大学硕士学位论文,2007.
    [61]刘培玉,葛斌,王金城.最优控制系统设计[M].大连:大连理工大学出版社,2000.
    [62]钟万勰,吴志刚,谭述君.状态空间控制理论与计算[M].北京:科学出版社,2007.
    [63]古渊,陈伟民和雷跃明等.压电减振机敏柔性板上的布片位置优化研究[J].压电与声光.1999,21(1):32-36.
    [64]冯萍,谷文祥,曲爽.浅析遗传算法与进化策略[J].长春大学学报,2005,15(2):25-27.
    [65]Carlos A. Coello. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:a survey of the state of the art[J]. Computer methods in applied mechanics and engineering.2002,191(11-12):1245-1287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700