用户名: 密码: 验证码:
北一区三元复合驱采出液的乳化与破乳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元复合驱是一种重要的三次采油技术,在提高采收率的同时,由于化学剂在驱油过程中的乳化作用和协同作用,造成采出液油水乳化严重,破乳十分困难,需要研究针对三元复合驱采出液的有效破乳方法。
     大庆油田北一区三元复合驱矿场试验,是国内规模最大的国产化表面活性剂强碱体系三元复合驱大型工业性现场试验。本课题针对北一区三元复合驱采出液乳化严重、油水分离困难的问题,研究了驱油剂对乳状液稳定性的影响规律,驱油剂和固体颗粒对油水分离特性的影响规律,评价研究了化学破乳、重力沉降、离心分离、超声波处理、微波辐射等的破乳效果,优选出了对采出液具有良好破乳效果的破乳剂XJ-1,确定了破乳剂、热化学沉降、离心分离对采出液破乳脱水的适应性,得到了适合不同驱油剂浓度的北一区三元复合驱采出液的最佳破乳参数。
     本文得出的主要研究结论包括:
     (1)三元复合驱采出液油水界面上带有过剩的负电荷,Zeta电位随着表面活性剂含量的增高而降低,随着碱含量的增高而升高。三元复合驱采出液的油水动态界面张力随着表面活性剂和碱含量的增高而降低,聚合物对动态界面张力的影响不明显。
     (2)表面活性剂和聚合物比碱对三元复合驱采出液油水乳化程度的影响显著。在不含碱和聚合物的情况下,随着表面活性剂含量的增高,油珠粒径明显变小,油水乳化程度增大。在表面活性剂低含量情况下,聚合物和碱含量的增加使油水乳化程度增大。
     (3)石英砂和钙基蒙脱石固体颗粒在油水界面上有吸附,对油珠之间的聚结有显著的阻碍作用,影响了采出液的油水分离特性。
     (4)适合北一区三元复合驱采出液的破乳剂的RSN值范围是15~19。XJ-1破乳剂对三元复合驱采出液具有良好的破乳效果,在加药量不大于150mg/L的情况下,使三元复合驱采出液经过静置沉降(90min)后的水相油含量和油相水含量降低到2000mg/L左右和5%以下。对于驱油剂含量为低、中、高的三种三元复合驱采出液,破乳剂的最佳加药量分别是50mg/L、75mg/L、150mg/L。
     (5)在投加适量XJ-1破乳剂的情况下,北一区三元复合驱采出液的最佳游离水脱除温度为40℃,沉降时间为30min,较适宜的热化学脱水温度为65℃。65℃下,经过热化学沉降(24h)的油相水含量可达到0.5%的商品原油含水量控制指标。
     (6)离心处理对北一区三元复合驱采出液具有显著的油水分离效果,在投加了适量破乳剂XJ-1的情况下,最适宜的离心加速度为984G,离心处理时间为10min,离心处理温度为40℃,经过离心分离后的水相油含量和油相含水量可分别降低到200mg/L和1%以下。
     (7)机械振荡聚结对北一区三元复合驱采出液的油水分离效果有明显的改善作用,适宜的机械聚结作用时间为0.5min。超声波处理和微波辐射对北一区三元复合驱采出液的油水分离效果没有明显的影响。
The alkali-surfactant-polymer (ASP) flooding is an important tertiary oil recovery technology. As a result of chemical agent emulsification and synergy during oil displacement process, the serious oil-water emulsification is evolved followed enhanced recovery ratio. Owing to difficult demulsification, it is necessary to develop effective demulsification method in accordance with ASP flooding produced liquid.
     The lease test of ASP flooding in N1 Block of Daqing oilfield, is a strong base ASP flooding industry field trial with the largest scale localization of surfactant manufactures in domestic. This paper aims at the extremely difficult oil-water separation of the ASP flooding produced liquid in N1 Block. The influence law of oil displacement agent on emulsion property, oil displacement agent and solid particles on oil-water separation are studied. Based on the evaluation for demulsifying effect of chemistry demulsification, gravity settling, centrifugation, ultrasonic treatment and microwave radiation, XJ-1 demulsifier with fine demulsifying effect on produced liquid is optimized. Then the adaptability of demulsifier, thermal chemical settlement and centrifugation on demulsification is determined. Thus the optimum demulsification parameter suit for different oil displacement agent content of ASP flooding produced liquid in N1 Block is got.
     The main research conclusions drawn in this paper include:
     (1) Superfluous negative charge is left on the oil-water interface of ASP flooding produced liquid. Zeta potential decreases with the increase of surfactant content, and increases with the increase of alkali content. The dynamic tension of oil-water interface for ASP produced liquid decreases with the increase of surfactant and alkali content, while polymer affects the dynamic interfacial tension little.
     (2) Surfactant and polymer affect the emulsification degree of ASP produced liquid more notable than alkali does. Bead size of oil droplets decreases significantly with the increase of surfactant content in the case of no polymer and alkali, and the emulsification degree increases. Emulsification degree increases with the increase of polymer and alkali content at the low content of surfactant.
     (3) Quartzite and Calcium base montmorillonite particles can be adsorbed on the oil-water interface, so it has remarkable hinder effect for the coalescence of oil droplets and it influences the oil-water separation features of produced liquid.
     (4) The RSN value range of demulsifier suit for the ASP produced liquid in N1 Block is 15~19. XJ-1 demulsifier has fine demulsifying effect on ASP produced liquid. While dosage less than 150mg/L, the oil content of water phase and water content of oil phase for ASP produced liquid can respectively be reduced to 2000mg/L and 5% during the static settlement of 90 minutes. For three kinds of ASP flooding produced fluid with low, medium and high oil displacement agent content, the optimum demulsifier dosage is respectively 50mg/L,75mg/L and 150mg/L.
     (5) Under the condition of adding proper XJ-1 demulsifier, the best removal temperature of free water for ASP flooding produced fluid in N1 Block is 40℃, with the settling time 30min, and the suitable thermo-chemical dehydrating temperature is 65℃. The water content of oil phase can achieve to below 0.5%, which is the water content control index of crude oil for external transport, after 24h thermal chemical settlement with 65 "C temperature.
     (6) Centrifugal processing has significant effect on water-oil separation of ASP produced liquid in N1 Block. Under the condition of adding proper XJ-1 demulsifier, the optimum centrifugal acceleration is 984G, with centrifugal processing time of 10min and centrifugal processing temperature of 40℃. The oil content of water phase and water content of oil phase can respectively be reduced to below 200mg/L and 1% after centrifugal separation.
     (7) Mechanical oscillation coalescence obviously has improved effect on water-oil separation of ASP produced liquid in N1 Block. The suitable effect time of mechanical coalescence is 0.5min. Ultrasonic wave processing and microwave radiation do not have apparent effect on water-oil separation of ASP produced liquid in N1 Block.
引文
[1]李杰训.聚合物驱油地面工程技术[M].北京:石油工业出版社,2008,1-8,133-137.
    [2]李干佐,翟利民,郑立强等.我国三次采油进展[J].日用化学品科学,1999,(1):1-9.
    [3]陈大钧.油气田应用化学[M].北京:石油工业出版社,2006,325-327.
    [4]Meyers J. J., Pitts M. J., Kon Wyatt.. Alkaline-Surfactant-Polymer Flooding of The West Kiehl, Minnelusa Unit[J]. SPE/DOE 24144.
    [5]Jay Vargo, Jim Turner, Barrett Resources, et al.. Alkaline-Surfactant-Polymer Flooding of The Cambrige Minnelusa Field [J]. SPE 55633.
    [6]Clark S. R.. Design and Application of an Alkaline-Surfactant-Polymer Recovery Systerm to the West Kiehl Field[J]. SPE 17538,1988.
    [7]Leonard J.. Increased Rate of EOR Brighten Outlook [J]. Oil & Gas,1985, (15): 71-73.
    [8]Han Dakuang. The oil Industry of China [J]. China oil & Gas,1994, (3):11.
    [9]Wang Demin, Cheng jiecheng, Wu junzheng et al.. An Alkali/Surfactant/Polymer Field Test in A Reservoir with A long-term 100% Water Cut[J]. SPE 49018,1998.
    [10]冈秦麟.我国三次采油技术现状与发展[J].化学驱油论文集(上册).北京:石油工业出版社,1998,1-9.
    [11]张景存.三次采油[M].北京:石油工业出版社,1995,90-116.
    [12]Shuler P. J., Kuehne D. L., Lerner R. M.. Improving Chemical Flood Efficiency with Micellar/Alkali/Polymer Processes [J]. JPT,1989, (1):80-88.
    [13]Broome, J. H.. The 1984 National Petroleum Council EOR study: Overiew[J]. SPE13239,1984.
    [14]Krumine P. H., Falcone J. S. Jr.. Surfactant, Polymer and Alkali Interactions in Chemical Flooding Processes[J]. SPE 11778,1983.
    [15]高树棠.美国化学采油综述[J].大庆石油地质与开发,1989,(1):45~52.
    [16]骆小虎,林梅钦,吴肇亮,李明远.三元复合驱中原油乳化作用研究[J].精细化工,2003,(12):731~733.
    [17]Mankin Chan, Fu Yen. A Chemical Equilibrium Model for Interfacial Activity[J]. The Canadian Journal of Chemical Engineering,1982, (60):305.
    [18]杨振宇,陈广宇.国内外复合驱技术研究现状及发展方向[J].大庆石油地质与开发,2004,(5):94~96.
    [19]王凤兰,伍晓林,陈广宇等.大庆油田三元复合驱技术进展[J].大庆石油地质与 开发,2009,(5):154~162.
    [20]Chenglong Wang, Xulong Cao. Design and Applicationg of ASP Systerm to the Close Well Spacing, Gudong Oilfield[J]. SPE 38321,1997.
    [21]朱友益.三次采油复合驱用表面活性剂集合成、性能及应用[M].北京:石油工业出版社,2002,1~9,107-111,183-207.
    [22]袁庆峰,赵世远,赵国忠等.油气藏工程常用词汇[M].北京:石油工业出版社,2005,55.
    [23]叶庆全,袁敏.油气田开发常用名词解释[M].北京:石油工业出版社,2002,330.
    [24]吴迪.化学驱油采出液油水分离机理研究[D].博士学位论文,4-5.
    [25]王志武,刘恒,高树棠等.三次采油技术及矿场应用[M].上海:上海交通大学出版社,1995,179~197.
    [26]Taber J. J.. Dynamic and Static Forces Rquired to Remove a Discontinuous Oil Phase from Porous Media Cbntaining both oil and Water[J]. SPE Reprint Series No.24, Surfactant/Polymer Flooding-1, SPE, Richardson, Tx,1988:42-45.
    [27]Abram A.. The Influence of Fluid Viscosity, Interfacial Tension and Fluid Viscosity on Residual oil Saturation Left by Waterflood[J]. SPE Reprint Series No.24, Surfactant /Polymer Flooding-1, SPE, Richardson, Tx,1988:52-62.
    [28]Burk J. H.. Comparison of Sodium Carbonate, Sodium Hydroxide, and Sodium Ortho Silicate for EOR[J], SPE Reservoir Engineenng,1987, (2):9-16.
    [29]程杰成.廖广志,杨振宇等.大庆油田三元复合驱矿场试验综述[J].大庆石油地质与开发,2001,(2):46-49.
    [30]Pitts M. J., Surreal. H. and Wyatt. K.. Design and Field Implementation of Alkaline-Surfactant-Polymer Flood Chemical Enhanced Oil Recovery Systems [J]. Presented at the 6th International Conference on Heavy Crude and Tar Sands, Houston, Feb.12-17,1995.
    [31]Xulong Cao, Yang Li, Hengxiang Jiang et al.. A Study of Dilational Rheological Properties of Polymer at Interfaces [J]. Journal of Colloid and Interface Science,2004, (2):295-298.
    [32]唐钢,李华破,苏敏.复合驱界面张力与驱油效率的关系研究[J].大庆石油地质与开发,2005,(3):81-83.
    [33]贾忠伟,杨清彦,侯占捷等.油水界面张力对三元复合驱驱油效果影响的实验研究[J].大庆石油地质与开发,2005,(5):79-81.
    [34]鹿守亮,田燕春,王明宏等.原油组分对驱油体系界面性质影响的研究[J].大庆石油地质与开发,2005,(6):82-83.
    [35]韩培慧,么世椿,李治平.聚合物与碱/表面活性剂交替注入物理模拟实验研究[J].大庆石油地质与开发,2006,(1):95-97.
    [36]白执松,董福洲,李林等.三次采油工程[M].北京:中国科学技术出版社,1997,167-168,197-199.
    [37]王景良.ASP复合驱机理的研究与展望[J].国外油气田地面工程,2001,(8),15-19.
    [38]Schuler P. J. Lerner R. M. and Kuehne D. L.. Improving Chemical Flood Effieiency with Micellari Alkailne Polymer Processes[J]. SPE/DOE 14934,1986.
    [39]卢祥国,牛金刚.化学驱油理论与实践[M].哈尔滨:哈尔滨工业大学出版社,2000,35-37.
    [40]李新功,孙利德,高晓勇等.钙镁离子影响原油与ASP驱配方产生超低界面张力的机理[J].油气采收率技术,1999,(2):1~4.
    [41]Taylor K. C., B. F. Hawkins and M. R. Islam.. Dynamic Interfacial Tension in surfactant Enhanced Alkaline Flooding[J]. Journal of Canadian Petroleum Technology,1990, (1):50-55.
    [42]Nasr-el-din H. A., B. F. Hawkins and K. A. Green. Recovery of Residual Oil Using the Alkali/Surfactant/Polymer Process, Effect of Alkali Concentration[J]. Journal of Petroleum Science and Englneerling,1992, (6):348-401.
    [43]Lin F. F. J., G. J. Besserer and M. J. Pitts. Laboratory Evaluation of Crosslinded Polymer and Alkaline Polymer Surfactant Folld[J]. Journal of Canadian Petroleum Technology,1987, (2):54-65.
    [44]Schuler P. J., Kuehne D. L. and Lerner R. M.. Improving Chemical Flood Effieiency with Micellari/Alkailne/Polymer Processes[J]. JPT,1989, (1):80-88.
    [45]Rudin J.. Surfactant-enhanced alkaline flooding at intermediate pH [J]. Enhanced Oil Rescovery,1991, (2):80-89.
    [46]韩冬,沈平平.表面活性剂驱油原理及应用[M].北京:石油工业出版社,2001,159-162,192-212,240-289.
    [47]Pitts M. J.. Alkaline-Surfactant-Polymer Flooding Prepared for Daqing Petroleum Institute[R]. June 1999.
    [48]Tong Z. X., Yang Ch. Z. Wu G. Q. et al.. A Study of Microscopic Mechanism of Surfactant/Alkli/Polymerr[J]. SPE39662,1998.
    [49]杨清彦,宫文超,贾忠伟.大庆油田三元复合驱驱油机理研究[J].大庆石油地质与开发,1999,(3):24-26.
    [50]Syed Abid Hussain, Sahinde Demirci, and Gulhan Ozbayoglu. Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation[J]. Journal of Colloid and interface Science,1996, (184):535-541.
    [51]Jonathan Ennis and Lee R. White. Dynamic Stern Layer Contribution to the Frequency-Dependent Mobility of a Spherical Colloid Particle:a Low-Zeta-Potential Analytic Solution[J]. Journal of Colloid and Interface Science,1996, (178):446-459.
    [52]Jong-Yun Kim, Myung-Geun Song, and Jong-Duk Kim. Zeta Potential of Nanobubbles Generated by Ultrasonication in Aqueous Alkyl Polyglycoside Solutions[J]. Journal of Colloid and Interface Science,2000, (223):285-291.
    [53]Jyh-ping Hsu and Ming-Tsan Tseng. An Integral Expression for the Electrical Potential Distribution for Charged Surface in Electrolyte Solutions[J]. Journal of Colloid and Interface Science,1997, (181):193-200.
    [54]J. J. Lopez-Garcia, J. Homo, C. Grosse, and A. V. Delgado. Dynamics of the Electrolyte Double Layer:Analysis in the Frequency and Time Domain[J], Journal of Colloid and Interface Science,2000, (228):95-104.
    [55]J. A. Erker and J. C. Baygents. The Equilibrium Electric Potential and Surface Charge Density of Spherical Emulsion Drops with Thin Double Layers[J]. Journal of Colloid and Interface Science,1996, (179):76-88.
    [56]魏竹波.原油破乳剂的种类和进展[J].日用化学工业,1995,(3):19-22.
    [57]康万利.大庆油田三元复合驱化学剂作用机理研究[M].北京:石油工业出版社,2001,82-99.
    [58]丁德磐,孙在春,杨国华等.原油乳状液的稳定与破乳[J].油田化学,1998,(1):82-86.
    [59]F(?)rdedal H., Nodland E., Sjoblom J., et al.. A multivariate-analysis of W/O emulsions in high external electricfields as studied by means of dielectric time-domain spectroscopy[J]. Journal of Colloid and Interface Science,1995, (2):396-405.
    [60]F(?)rdedal H., Midttun Sjoblom J., et al.. A multivariate screening analysis of W/O emulsions in high external electric fields as studied by means of dielectric time domain spectroscopy:II. Model emulsions stabilized by interfacially active fractions from crude oils[J]. Journal of Colloid and Interface Science,1996, (1):117-125.
    [61]P.贝歇尔著.北京大学化学系胶体化学教研室译.乳状液理论与实践[M].北京:科学出版社,1978.
    [62]Rajinder Pal. Shear Viscosity Behavior of Emulsions of Two Immiscible Liquids[J]. Journal of Colloid and Interface Science,2000, (225):359-366.
    [63]Hyang Mok Lee, Jin Woo Lee, and O Ok Park. Rheology and Dynamics of Water-in-Oil Emulsions under Steady and Dynamic Shear Flow[J]. Journal of Colloid and Interface Science,1995, (185):297-305.
    [64]Palanuwech J., Coupland J. N.. Effect of surfactant type on the stability of oil-in-water emulsions to dispersed phase crystallization. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2003,223(1-3):251-262.
    [65]Sjoblom J., Johnsen E. E., Westvik A., et al.. Demulsifiers in the oil industry, Encyclopedia Handbook of Emulsion Technology [J]. Marcel Dekker, New York, pp, 2000,595-619.
    [66]Palanuwech J., Potineni R., Roberts R. F.& Coupland J. N. A method to determine free fat in emulsions[J]. Food Hydrocolloids,2003(1):55-62.
    [67]Pongsawatmanit R., Miyawaki O.. Measurement of temperature dependent ice fraction in frozen foods[J]. Bioscience Biotechnology and Biochemistry,1993 (10): 1650-1654.
    [68]康万利,董喜贵.三次采油化学原理[M].北京:化学工业出版社,1997,69-127.
    [69]McLean J. D, Kilpatrick P. K.. Effects of asphaltene aggregation in model heptane-toluene mixtures on stability of water-in-oil emulsions[J]. Colloid Interface Sci,1996 (1):23-34.
    [70]冯叔初,郭揆常.油气集输与矿场加工[M].山东:中国石油大学出版社,2006,278-319.
    [71]李时宣.西峰原油化学破乳脱水特性研究[J].油气田地面工程,2004,(10):10~12.
    [72]于涛,丁伟,罗洪君.油田化学剂[M].北京:石油工业出版社,1999,2-21,70-72,110-117.
    [73]王树丰,董珂.加强脱水技术研究提高设备设计水平[J].油气田地面工程,2005,(24): 62.
    [74]底国彬,李少平,王晓勇等.冀中南部油田脱水工艺优化研究[J].石油规划设计,2005,(16):10~12.
    [75]F. S. Manning, R. E. Thompson. Oilfield Processing Volume Two:Crude Oil[M]. PennWell Books,1995.
    [76]王银舟,戴同德,杜君萍等.YQS—Ⅱ型分离器沉降脱水技术研究[J].石油规划设计,2003,(3):21~22.
    [77]乔建江,詹敏,张一安等.油水界面张力对破乳效果的影响[J].石油学报,1999,(2):1~5.
    [78]周洁.陶粒脱水器在大港油田的应用[J].油田地面工程,1986,(3): 7-11.
    [79]孙宝江,颜大椿,乔文孝.乳化原油的超声波脱水研究[J].声学学报,1999,(3):327~331.
    [80]孙宝江,乔文孝,付静.三次采油中水包油乳状液的超声波破乳[J].石油学报,2000,(6):97~101.
    [81]王光然.油气集输[M].北京:石油工业出版社,2006,40-63.
    [82]庄建远,王国丽,翁维珑.国外油气田地面工艺技术发展动向[J].石油规划设计,2003,(1):45~53.
    [83]洪品杰,戴树珊,冯慧芳.微波用于破乳的研究[J].化学研究与应用,1993,(1):83~86.
    [84]杨强.微波技术在环境保护中的应用[J].环境保护,2001,(2):41~43.
    [85]方洪波,邢爱忠,郭长会等.胜利油田三次采油地面工艺技术进展[J].中国东部主力油田三次采油技术论文集,北京:石油工业出版社,2007,159-179,182-200.
    [86]张红,李少平,韩戎.磁处理原油脱水试验研究[J].油气田地面工程,2000,(1):35-37.
    [87]王鸿膺,李自力,冯叔初.稠油蒸发脱水研究[J].油气储运,2001,(3):41-45.
    [88]吴迪.化学驱采出液破乳剂的研究和应用进展[J].精细化工,2009(1):2-12.
    [89]吴迪.艾广智等.聚合物驱和三元复合驱采出水流变性和采出液稳定性研究[J].日用化学品科学,2000(23):110-115.
    [90]邓述波.三元复合驱含油污水稳态及失稳机理研究[D].北京:清华大学博士后研究报告,2001.
    [91]张付生,张雅琴,程杰成等.三元复合驱和聚合物驱采出原油组成和破乳脱水的关系[J].石油学报,2008(1):117-121.
    [92]Deng Shubo, Bai Renbi, Chen J Panl, et al.. Effects of alkaline/surfactant/polymer on stability of oil droplets in produced water from ASP flooding[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2002(211):275-284.
    [93]Shen Minghuan, Xu Xiaohui, Wang Yilin, et al.. Relationship between the polymer structures and destabilization of polymer containing water-in-oil emulsions [J]. Journal of Dispersion Science and Technology,2007(28):1178-1182.
    [94]张付生,张雅琴,谢慧专等.驱油剂对三元复合驱采出液破乳脱水的影响[J].精细石油化工进展,2005(10):1-4.
    [95]侯国新,文中新,陈文海等.三元复合驱采出液破乳技术研究[J].油气田地面工程,1997(3):33-37.
    [96]Wu Di, Meng Xiangchun, Zhao Fengling, et al.. Emulsification and stabilization of ASP flooding produced liquid[J].2001 SPE international Symposium on Oilfield Chemistry. USA:Houston,2001,13-16 February.
    [97]Wu Di, Ai Guangzhi, Chen Yan, et al.. Rheology and stability of IOR produced liquid in Daqing oilfield[J].1999 SPE Asia Pacific Improved Oil Recovery Conference. Malaysia:Kuala Lumpur,1999,25-26 October.
    [98]张瑞泉,梁成浩,刘刚等.三元复合驱采出液视黏度和乳状液类型测试[J].油气田地面工程,2007,(1):57-58.
    [99]张维,李明远,林海钦等.聚合物、表面活性剂两元驱界面性质对乳状液稳定性影响[J].大庆石油地质与开发,2007,(6):110-118.
    [100]王宝瑜,曹绪龙,王其伟等.孤东小井距三元复合驱现场实验采出液相态变化及组分浓度测定[J].油田化学,1994,(4):327-330.
    [101]吴晶,曾红霞,李之平等.聚丙烯酰胺对克拉玛依复合驱采出液破乳过程的影响 [J].油田化学,2000,(3):272-275.
    [102]Zhang Ruiquan, Liang Chenghao, Wu Di, et al.. Charaterization and demulsification of produced liquid from weak base ASP flooding[J]. Colloids and Surfaces A: Physicochem Eng Aspects,2006, (290):164-171.
    [103]康万利,岳湘安,胡靖帮.聚合物对乳状液及液膜的稳定性[J].石油学报,1997,(4):122-125.
    [104]Wang Huiyun, Li Mingyuan, Wu Zhaoliang, et al.. Effect of petroleum sulphonate on interfacial property and stability of crude oil emusions[J]. Chinese Journal of Chemical Engineering,2005, (5):691-695.
    [105]徐明进,李明远,彭勃等.Zeta电位和界面膜强度对水包油乳状液稳定性影响[J].应用化学,2007,(6):623-627.
    [106]郭继香,李明远,林海钦等.大庆原油与碱作用机理研究[J].石油学报(石油加工),2007,(4):20-23.
    [107]杜胜伟,陈振瑜,吕宇玲等.界面张力与乳状液稳定性试验研究[J].油气田地面工程,2003,(4):63-64.
    [108]于德水.水包油乳状液的反相破乳剂选择与制备[J].油气田地面工程,2008,(7):31-33.
    [109]吴迪,孟祥春,赵凤玲等.油水分离剂的研制及其在化学驱采出液和采出水处理中的应用[J].三次采油技术文集,北京:石油工业出版社,2005,55-57.
    [110]吴迪,余刚,孟祥春.三元复合驱采出水油水分离剂的研制[J].工业水处理,2003,(1):24-26.
    [111]李学军.大庆油田三次采油地面工艺配套技术[J].大庆石油地质与开发,2009(5):174-179.
    [112]张建.高压脉冲直流电场影响原油乳状液破乳的机理[J].油气田地面工程,2004,(1):13-15.
    [113]周文俊,刘水兵,曹顺安.高压电脉冲原油脱水试验及机理探讨[J].高电压技术,1995,(2):24-26
    [114]王凤巢,余一刚,赵忠杰.复合驱采出液电脱水技术研究[J].油气田地面工程,2002,(4):57.
    [115]陈海燕,漆新民.高压原油脉冲电脱水试验[J].油气田地面工程,2000(1):28.
    [116]李时宣.西峰原油乳状液流变性研究[J].油气田地面工程,2004,(9):18-19.
    [117]蒋洪,刘武.原油集输工程[M].北京:石油工业出版社,2006,100-137.
    [118]Taylor. Resolving Crude Oil Emulsions[J].. Chemistry & Industry,1992(19): 770-773.
    [119]李明远,顾惕人.原油乳状液稳定性研究Ⅱ.原油成分对原油乳状液稳定性的影响[J].石油化工,1993,(9):585.
    [120]王霞.O/W型稠油乳状液的静态稳定性评价研究[J].油气田地面工程,2009,(8):5-6.
    [121]Sjoblom Li M., Hoiland, et al.. Water-in-Crude Oil Emulsions from the Norwegian Continental shelf Part Ⅲ. A Comparative Destabilization of Model Systems[J]. Colloids and Surfaces,1990, (46):127-139.
    [122]Borwankar R. P., Lobol A., et al.. Emulsion Stability-Kinetics of Flocculation and Coalescence[J]. Colloids and surfaces,1992, (69):135-141.
    [123]Johansen E. J., Skjarvo I. M., Lund T., et al.. Water-in-Crude Oil Emulsions from the Norwegian Continental shelf Part Ⅰ. Formation, Characterization and Stability Correlation[J]. Colloids and Surfaces,1988, (34):354.
    [124]杨小莉,陆婉珍.有关原油乳状液稳定性的研究[J].油田化学,1998,(2):87-96.
    [125]夏立新.原油乳状液稳定性和破乳研究[J].化学研究与应用,2002,(6):623-627.
    [126]李平,郑晓宇,朱建民.原油乳状液的稳定与破乳机理研究进展[J].精细化工2001,(2):89~93.
    [127]雒贵明.复合驱采出乳状液稳定性及破乳理论研究[D].浙江:浙江大学博士学位论文,2006,11-13.
    [128]康万利,李金环,赵学花.界面张力和乳滴大小对乳状液稳定性的影响[J].油气田地面工程,2005,(1):11-12.
    [129]Strasser J. E. et al.. The Risk of the Hemolytic-Uremic Syndrome after Antibiotic Treatment of Escherichia [J]. Petrol Technol,1968, (3):303-312.
    [130]Jones T. J. et al.. Compaction and fluid migration:practical petroleum geology [J]. Petrol Technol,1978, (17):100-108.
    [131]Mohammed R. A. et al.. Dewatering of crude oil emulsions. Ⅱ:Interfacial properties of the asphaltic constituents of crude oil[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993, (80):237-242.
    [132]Singh B. P.. Dynamic performance of a permanent magnet brushless DC motor powered by a PV array for water pumping[J]. Energy Sources,1994(16):377-385.
    [133]董培林,方洪波.新型二元驱采出液综合处理剂的研制[J].油气田地面工程,2008,(9): 7-8.
    [134]Weiss W. W.. Performance review of a large-scale polymer flood[J]. SPE24145, 1992.
    [135]P. D. Moffitt. Long-Term Production Results of Polymer Treatments in Producing Wells in Western Kansas[J]. JPT,1993, (4),356-362.
    [136]Ranjbar M.. Quantification and Optimization of Viscoelastic Effect of Polymer Solutions for Enhanced Oil Recovery [J]. SPE 24154,1992.
    [137]Koning E. J. L. and Mentzer E.. Evaluation of a pilot polymer flood in the Marmul Field Oman [J]. SPE 18092,1988.
    [138]RylesR. G.. New polymers for EOR applications [J]. SPE 14947,1986.
    [139]葛广章,王勇进,王彦玲.聚合物驱及相关化学驱进展[J].油田化学,2001,(3):282~284.
    [140]张景存.对大庆油田聚合物驱若干问题的认识[J].化学驱油论文集(上册).北京:石油工业出版社,1998,60-70.
    [141]胡博仲,刘恒,李林.聚合物驱采油工程[M].北京:石油工业出版社,1997,335-344.
    [142]冯家潮,赵健森,陈绍炳.聚合物驱采出液油水分离特性[J].化学驱油论文集(上册).北京:石油工业出版社,1998,436-444.
    [143]周立娟,林梅钦,李明远,郭继香.聚合物类型对油水界面性质影响研究[J].大庆石油地质与开发,2006,(6):87-90.
    [144]廖广志,王启民,王德民.化学复合驱原理及应用[M].北京:石油工业出版社,1999,18-28.
    [145]Labrid J. and Bazin B.. Alkaline Preflush in a Low Permeability Clayey Sandstone [J]. J. Pet. Sci. Eng.,1989(3):111-120.
    [146]Dauben P. L., Easertly R. A and Westen M. M.. An Evaluation of the Alkaline Waterflooding Deminstration Project, Ranger Zone Wilmington Field, California[J]. DOE/BC/10830-51,1987.
    [147][苏]格尔布洛夫,布钦柯夫著.崔耀南,金衍泰译.碱水驱[M].石油工业出版社,1995,11-46,110-177.
    [148]杨承志.化学驱提高石油采收率[M].北京:石油工业出版社,1999,157-164.
    [149]王云峰,张春光,侯万国等.表面活性剂及其在油气田中的应用[M].北京:石油工业出版社,1995,1-19,283-285.
    [150]赵福麟.采油化学[M].北京:石油大学出版社,1989,101-105.
    [151]姜继水,宋吉水.提高采收率技术[M].北京:石油工业出版社,1999,46-50.
    [152]侯吉瑞,刘中春,岳湘安.复合体系超低界面张力和碱在驱油过程中的实际作用[J].大庆石油地质与开发,2006(6):82-86.
    [153]张国印,徐艳姝,刘庆梅等.新型烷基苯磺酸盐表面活性剂在大庆油田三次采油中的应用[J].三次采油技术文集.北京:石油工业出版社,2005,374-380.
    [154]李华斌.三元复合驱新进展及矿场试验[M].北京:科学出版社,2007,1-28,218-233,366-374.
    [155]洪冀春,王凤兰,刘奕等.三元复合驱乳化及其对油井产能的影响[J].大庆石油地质与开发,2001(2):27-29.
    [156]李世军,杨振宇,康万利.三元复合驱中乳化作用对提高采收率的影响[J].石油学报,2003(5):74-76.
    [157]王孝平,李宗琦,钱越英.复合驱油过程中原油乳化聚并机理探讨[J].油田化学, 1999(4): 63-66.
    [158]李洋,王海峰,白文广等.大庆油田三元复合驱技术发展现状[J].中国东部主力油田三次采油技术论文集.北京:石油工业出版社,2007,61-75.
    [159]于宝新,陈刚.油田三元复合驱油知识[M].北京:石油工业出版社,2007,55-61.
    [160]杜丹,陈忠喜,王宝辉等.酸、碱及无机盐对三元复合驱采出液悬浮固体含量的影响[J].油气田地面工程,2009(2):26-27.
    [161]吴迪,孟祥春,张瑞泉等.大庆油田三元复合驱采出水的稳定性及其反相破乳剂的应用[J].精细化工,2001(2):86-88.
    [162]许辛淑,王庆生,孙东方等.化学剂对复合驱乳状液液膜强度的影响[J].油气田地面工程,2000(3):40-49.
    [163]于德水.水包油乳状液的反相破乳剂选择与制备[J].油气田地面工程,2008(7):31-33.
    [164]鄂金太,李佰广,孙琦.二元复合驱油技术室内研究进展[J].中国东部主力油田三次采油技术论文集.北京:石油工业出版社,2007,76-84.
    [165]吴迪,孟祥春,赵凤玲等.油水分离剂的研制及其在化学驱采出液和采出水处理中的应用[J].三次采油技术文集.北京:石油工业出版社,2005,55-57.
    [166]谢成君.三元采出液对地面工程的影响因素和处理措施[J].油气田地面工程,2008(11):78.
    [167]王德民,程杰成,吴军政等.大庆油田三元复合驱矿场试验综述[J].大庆油田科技论文精选.黑龙江:大庆油田有限责任公司,2009,170-176.
    [168]李萍,程祖锋,王贤君等.三元复合驱油井中硅垢的形成机理及预测模型[J].石油学报,2003(5):66-69.
    [169]刘卫东,李立众,童正新.碱表面活性剂聚合物驱采出液中微量铝的定量分析[J].油田化学,2000(2):93-95.
    [170]李金玲,刘东升,李天德等.三元复合驱结垢对机采井的影响及解决措施[J].三次采油技术文集.北京:石油工业出版社,2005,275-278.
    [171]李柏林,程杰成.二元无碱驱油体系研究[J].油气田地面工程,2004(6):16.
    [172]徐典平,薛家锋,包亚臣等.三元复合驱油井结垢机理研究[J].大庆石油地质与开发,2001(2):98-100.
    [173]王贤君,谢朝阳,王庆国.三元复合驱采油井结垢物质组成分析方法[J].油田化学,2003(4):14-16.
    [174]F(?)rdedal H., Schildberg Y., Sjoblom J., et al.. Crude oil emulsions in high electric fields as studied by dielectric spectroscopy. Influence of interaction between commercial and indigenous surfactants[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,1996(1):33-47.
    [175]Awad T., Sato K.. Effects of hydrophobic emulsifier additives on crystallization behavior of palm mid fraction in oil-in-water emulsion. Journal of the American[J]. Oil Chemists Society,2001, (8):837-842.
    [176]Awad T., Sato K.. Acceleration of crystallisation of palm kernel oil in oil-in-water emulsion by hydrophobic emulsifier additives[J]. Colloids and Surfaces B: Biointerfaces,2002, (1):45-53.
    [177]Barford N. M., Krog N.. Destabilization and fat crystallization of whippable emulsions (toppings) studied by pulsed NMR[J]. Journal of the American Oil Chemists Society, 1987, (1):112-119.
    [178]Marquez M. L., Rogel E., Reif I.. Molecular Dynamics Simulation of Isopropylnaphthalene Sulphonare at The Water/Heptane Interace[J]. Colloids and Surface A:Physicochemical and Engineering Aspects,1996, (106):135-136.
    [179]Mason S. L., May K, Hartland S.. Dropsize and Concentration Profile Determination Petroleum Emulsion Separation[J]. Colloids and Surface A:Physicochemical and Engineering Aspects,1995, (96):85.
    [180]Urdahlo M., Vik A. E., Sjoblom J.. Water-in-Crude Oil Emulsions from Norwegian Continental Shelf 8. Surfactant and Macoromolecular Destabilization [J]. Colloids and Surface A:Physicochemical and Engineering Aspects,1993, (74):293-302.
    [181]王学会,朱春梅等.原油破乳剂研究发展综述[J].油田化学,2002,(4):379-381.
    [182]Svetlana Bratskaya, Valentin Avramenko, Simona Schwarz, et al.. Enchanced flocculation of oil-water emulsions by hydrophobically modified chitosan derivatives [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006,275(1-3):168-176.
    [183]曹晓春,王忠信.原油破乳剂的研制现状及应用[J].大庆石油学院学报,2002,(3):34-38.
    [184]马峰华,詹敏,徐心茹等.新疆原油深度脱盐的研究:破乳剂分子结构对脱盐的影响[J].华东化工学院学报,1993,(6):712~717.
    [185]詹敏,马峰华,徐心茹,等.胜利黄岛原油深度脱盐研究:破乳剂组成的影响[J],华东理工大学学报,1995(1):37~41.
    [186]何庆奎.复配破乳剂的应用研究[J].油田地面建设工程,1985,(1):16-21.
    [187]赵国玺.表面活性剂复配原理[J].石油化工,1987,(1):45-52.
    [188]Taylor. Resolving Crude Oil Emulsions [J]. Chemistry & Industry.1992, (19):770-773.
    [189]Abolrazl Ezzatl, Elhem Gorouhr, Toraj Mohammadi. Separation of water -in -oil emulsion using microfiltration[J]. Desalination,2005,185(1-3):371-382.
    [190]Tsuneki Ichikawa, Tatsuneri Dohda, Yoji nakajima. Stability of oil-in-water emulsion with moble surface charge[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,279(1-3):128-141.
    [191]McClements D. J., Dungan S. R., German J. B., et al.. Droplet size and emulsifier type affectery stallization and melting of hydrocarbon-in-water emulsions [J]. Journal of Food Science,1993.58(5):1148-1151,1178.
    [192]Sjoblom J, Li M., Christy A. A., et al.. Water-in-crude Oil Emulsions from Norwegian Continental Shelf 7. Interfacial Pressure and Emulsion Stability [J]. Colloids and surfaces,1992, (66):55-62.
    [193]Das P. K., Hartland S.. Effect of demulsifiers on the Separation of water-in-oil Emulsions [J]. Chern. Eng. Comm.,1990,92.
    [194]Cordiez J. P., Grange G, Mutaftschiev B.. Droplet freezing experiments in stearic acid-water emulsions role of the dropletmedium interface[J]. Journal of Colloid and Interface Science,1982, (2):431-441.
    [195]Fainerman V. B., Lucassen-Reynders E. H., Miller R.. Description of the adsorption behaviour of proteins at water/fluid interfaces in the framework of a two-dimensional solution model [J]. Advances in Colloid and Interface Science,2003, (106):237-259.
    [196]Novokhatny V., Ingham K.. Thermodynamics of maltose binding protein unfolding[J]. Protein Science,1997, (1):141-146.
    [197]McClements D. J., Dungan S. R, German J B, et al.. Factors which affect oil exchange between oil-in-water emulsion droplets stabilized by whey-protein isolate—Protein-concentration, droplet size and ethanol[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,1993, (1):203-210.
    [198]Saito H., Kawagishi A., Tanaka M., et al.. Coalescence of lipid emulsions in floating and freeze-thawing processes:Examination of the coalescence transition state theory[J]. Journal of Colloid and Interface Science,1999, (1):129-134.
    [199]M. L. Powers. Analysis of Gravity Separation in Free-Water Knockouts [J]. SPE18205,1988.
    [200]王文才,蔡嗣经,黄万抚.液膜乳化液的离心一脉冲电场连续破乳[J].北京科技大学学报,2005,(5):524~527.
    [201]沈耀亚,赵德智,许凤军.功率超声在化工领域中的应用现状和发展趋势[J].现代化工,2000,(1):14~15.
    [202]张玉梅,束长好,吕效平.超声破乳脱水处理污油[J].南京工业大学学报,2004,(4):67~70.
    [203]郑大中,刘红英.微波辐射在化工领域应用的新进展与发展趋势[J].四川化工与腐蚀控制,2001,(2):26~30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700