用户名: 密码: 验证码:
颗粒增强铝基复合材料精密切削技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强铝基复合材料由于具有高比强度和比刚度、耐磨、耐腐蚀、耐疲劳、低热膨胀系数、低密度、高微屈服强度、抗辐射及良好的尺寸稳定性和导热性等许多优异的力学性能和物理性能,在航空航天、兵器等国防工业和汽车、电子等民用工业具有广泛的应用前景,成为当今金属基复合材料研究和发展的主流。但由于增强颗粒的存在,切削过程中刀具磨损剧烈,表面质量差成为阻碍其实际应用的难题之一。因而研究其切削机理,降低刀具磨损,提高表面质量显得尤其重要。
     为了促进颗粒增强铝基复合材料的应用,本文以SiCp/Al和Al2O3p/Al复合材料为研究对象,针对切削过程中的刀具磨损和加工表面质量进行了相关的理论分析与试验研究。
     首先进行了刀具磨损的主要影响因素及影响规律的研究。采用硬质合金、聚晶金刚石(PCD)、立方氮化硼(CBN)三种刀具,进行了不同类型(SiC、Al2O3)、不同组份(增强颗粒含量及颗粒尺寸)的复合材料的刀具磨损切削试验。利用光学显微镜、扫描电子显微镜等对刀具磨损区的形态、微观组织结构和成份进行了检测分析,研究了刀具材料的性能、工件材料的组份、切削工艺参数等对刀具磨损的影响程度,给出了切削颗粒增强铝基复合材料时刀具的主要磨损形式及产生磨损的主要原因。
     在上述研究的基础上,采用PCD刀具对不同复合材料进行了精密切削试验,研究了切削用量、刀具几何参数、工件材料的性能等因素对已加工表面表面粗糙度的影响,并利用扫描电镜对颗粒增强铝基复合材料已加工表面形貌进行了观测分析。
     最后,进行了颗粒增强铝基复合材料的超声波振动切削试验。实测了超声波振动切削不同工件材料时的刀具磨损值,并与普通切削试验结果进行了对比;同时研究了超声振动切削时刀具前角和刀尖圆弧半径对切削表面粗糙度的影响。试验结果表明,超声波振动可减小刀具磨损。
     上述研究结果表明,颗粒增强铝基复合材料切削时刀具磨损较严重,表现出较差的切削加工性,聚晶金刚石是切削该类材料的较为理想的刀具材料。超声振动切削在提高刀具寿命方面具有明显的效果。
Particle reinforced aluminum metal matrix composites have many excellent mechanical properties and physical properties such as high specific strength and specific stiffness, resistant wear, resistant corrosion, anti-fatigue, low thermal coefficient of expansion, low density, high micro-yield strength, resistant radiation, favorable dimensional stability and thermal conduction, etc…They will increasingly be used in many fields such as aeronautics and astronautics, weapon, automobile and electron and so on, which makes them become one of the main topics of research and development in the field of metal matrix composites. However, one of the substantial clauses that restrict extensive use of this composite is that its tool wear rate is too high and surface quality is too low in the process of cutting. Therefore, research on mechanism of cutting particle reinforced aluminum matrix composite to reduce tool wear and increase surface quality is of important.
     To promote the application of aluminum metal matrix composite, relative theory analysis and experiment research of tool wear and machined surface quality during cutting process are performed to the SiCp/Al and Al2O3 composites.
     Firstly the research of main influencing factors and influencing rules of tool wear have been executed. Tool wear cutting experiments with different types (SiC, Al2O3) and different components (reinforced particle content and particle size) of composites have been carried out using sintered-carbide, PCD, CBN. The pattern, microstructure and components of wear zone have been tested and analyzed through optical microscope and SEM etc, and the influencing degree on tool wear of tool material properties, work-piece components, cutting process parameters etc have been researched, also the main wear pattern and main causes tool wear during cutting of particle reinforced aluminum metal matrix composites have been put forward.
     Based on the above, precision cutting experiments of different composites are executed by PCD, and the influence of cutting parameters, tool geometric parameters and properties of work-piece on machined surface roughness has been researched, then the machined surface configuration of composites has been tested and analyzed using SEM.
     Finally, ultrasonic vibration cutting of particle reinforced aluminum metal matrix composites has been performed. The value of tool wear in ultrasonic vibration cutting of different work-piece has been tested and compared with the experimental results in conventional cutting; Also the influence of tool rake angle and tool nose radius on machined surface roughness in ultrasonic vibration cutting has been researched. Experimental results indicate that too wear is decreased by applying ultrasonic vibration.
     The above research results indicate that, the tool wear during cutting particle reinforced aluminum metal matrix composites is severe, the machinability of which is lower, and PCD is the relative ideal tool material to cutting this kind of work-piece materials. Also ultrasonic vibration cutting embodies obvious effects in promoting tool life.
引文
1 Krivov, G A, Chayun A G. Optimization of Design-production Solutions for Welded Joints in Aircraft Engines. Welding Research Abroad. 1995, 41(6~7): 23~30
    2中国机械工程学会焊接学会.焊接手册.第2版.机械工业出版社, 2001: 941~949
    3乐永康,张迎元.颗粒增强铝基复合材料的研究现状.材料开发与应用. 1997, 12(5): 33~39
    4樊建中,姚忠凯,李义春等.颗粒增强铝基复合材料研究进展.材料导报. 1997, 11(3): 48~51
    5 Klimowicz T F. The Large Scale Commercialization of Al-matrix Composites. JOM, 1994, 46(11): 49~53
    6陈茂爱,吴人洁,陆皓等.金属基复合材料的焊接性研究.材料开发与应用. 1997, 12(3): 34~40
    7刘政,刘小梅.国外铝基复合材料的开发与应用.轻合金加工技术. 1994, 22(1): 7~13
    8桂满昌,王殿斌,张洪等.颗粒增强铝基复合材料的制备及应用.材料导报. 1996, 11(3): 65~71
    9张国定,赵昌正.金属基复合材料.上海交通大学出版社, 1996, 67: 175~176
    10陈华辉,邓海金,李明等.现代复合材料.中国物资出版社, 1998: 232
    11 Allison J E, Cole G S. Metal-Matrix Composites in the Automotive Industry: Opportunities and Challenges. JOM, 1993, 45(1): 19~24
    12国家高技术新材料领域专家委员会.新材料发展预测与对策.材料导报. 1999, 13(1): 1~5
    13 Hong Zhang. Plastic Deformation and Chip Formation Mechanisms during Machining of Copper, Aluminum and an Aluminum Matrix Composite. Doctor Dissertation, the University of Windsor. Canada. 2000
    14 Yan Ming Quan et al, Tool Wear and Its Mechanism for Cutting SiC Particle-Reinforced Aluminum Matrix Composites. Journal of Materials Processing Technology. 2000, ( 100): 194~199
    15 Ibrahim Ciftci, Mehmet Turker, Ulvi Seker. CBN cutting tool wear during machining of particulate reinforced MMCs. Wear. 2004, ( 257 ): 1041–1046
    16 X. Ding, W.Y.H. Liew, X. D. Liu. Evaluation of machining performance of MMC with PCBN and PCD tools. Wear. 2005, ( 259 ): 1225–1234
    17 W. Pedersen, M. Ramulu. Facing SiCp/Mg metal matrix composites with carbide tools. Journal of Materials Processing Technology. 2006, ( 172 ): 417–423
    18韩荣第等. SiCp/2024复合材料切削力与刀具磨损的试验研究.复合材料学报. 1997, 14(2): 71~75
    19王大镇等. SiCp增强铝基复合材料切削加工中刀-屑摩擦模型及其磨损特性研究.摩擦学学报. 2000, 20(2): 85~89
    20 J. Paulo. Davim et al. Relationship between Cutting Force and PCD Cutting Tool Wear in Machining Silicon Carbide Reinforced Aluminum. Journal of Materials Processing Technology. 2000, (103): 417~423
    21 J. Paulo. Davim. Diamond Tool Performance in Machining Metal-Matrix Composites. Journal of Materials Processing Technology. 2002, (128): 100~105
    22 J. L. Henshall, et al. The Wear of Polycrystalline Diamond Tools Used in the Cutting of Metal Matrix Composites. Journal of Refractory Metals & Hard Materials. 1999, (17): 103~109
    23 J. T. Lin, et al. Machinability of a Silicon Carbide Reinforced Aluminum Metal Matrix Composite. Wear. 1995, (181-183): 883~888
    24 J. Paulo. Davim et al. Design of Optimization of Cutting Parameters for Turning Metal Matrix Composites on the Orthogonal Arrays. Journal of Materials Processing Technology. 2003, (132): 340~344
    25章文峰,潘晓南. PCD刀具加工SiC颗粒增强基复合材料的合理切削速度.材料工程. 1999, 1: 14~19
    26颜炳华. SiC粒子强化ァルミニウム合金基复合材料の被切削性.轻金属. 1993, 43(4): 187~193
    27 Xiao Ping Li et al. Tool Wear Acceleration in Relation to Work-piece Reinforcement Percentage in Cutting of Metal Matrix Composites. Wear. 2001, (247): 161~171
    28韩荣第,李汉国. SiCp/AL、SiCw/AL复合材料加工的切削温度与刀具磨损的试验研究.宇航材料工艺. 1997, 3: 36~39
    29王瑾. SiCp/ZL201复合材料切削加工性能研究.陕西工学院学报. 1999, 15(4): 5~8
    30 M. El-Gallab et al. Machining of Al/SiC Particulate Metal Matrix Composites Part 1: Tool Performance. Journal of Materials Processing Technology. 1998, (83): 151~158
    31 M. El-Gallab et al. Machining of Al/SiC Particulate Metal Matrix Composites Part 2: Work-piece Surface Integrity. Journal of Materials Processing Technology. 1998, (83): 277~285
    32 L. luliano et al. High-speed Turning Experiments on Metal Matrix Composites. Composites Part A. 1998, (29A): 1501~1509
    33加藤数良,时末光,井上稔朗. SiCp/A383ァルミニゥム合金复合材料旋削被削性.軽金属, 1998, 48(2): 83~87
    34全燕鸣,周泽华.硬脆颗粒增强铝基复合材料的已切削加工表面形貌及影响因素.中国机械工程. 1998, 9(7): 10~84
    35全燕鸣,周泽华.不同颗粒增强铝基复合材料的切削性能与适用刀具.材料科学与工程. 1996, 14(4): 59~64
    36韩荣第等.颗粒增强SiCp/2024铝复合材料切削力特性研究.高技术通讯. 2001, 7: 94~96
    37全燕鸣,周泽华. SiC/ZL复合材料的切削力.华南理工大学学报(自然科学版). 2000, 28(5): 1~6
    38长谷川正,章丽萍,三浦恒正.メカニカルァロィンゲ法にょるァルミニゥム—セラミック粒子复合材料の切削にぉける超硬工具の摩耗.軽金属. 1994, 44(6): 359~364
    39全燕鸣等.硬脆颗粒增强金属基复合材料切削区的变形.华南理工大学学报. 1998, 26(4): 27~32
    40 L. T. Lin etal. Chip Formation in the Machining of SiC-Particle-Reinforced Aluminum-Matrix Composites. Composites Science and Technology. 1998, (58): 285~291
    41 S. S. Joshi et al. Analysis of Chip Breaking during Orthogonal Machining of Al/SiCp Composites. Journal of Materials Machining Technology. 1999, (88): 90~96
    42夏靖宇,朱训生,徐可伟等.超声振动切削金属基复合材料的刀具磨损.航空精密制造技术. 2002, 38(4): 1~4
    43毛善峰,汤铭权.超声振动切削时硬质合金刀具的磨损研究.东南大学学报. 1995, 25(3): 50~54
    44王扬,杨立军,齐立涛. Al2O3颗粒增强铝基复合材料激光加热辅助切削的切削特性.中国机械工程. 2003, 14(4): 344~346
    45周泽华.金属切削理论.机械工业出版社, 1992: 34~60
    46韩荣第,周明,孙玉洁.金属切削原理与刀具.第2版.哈尔滨工业大学出版社, 2004: 94
    47李祥林等.振动切削及其在机械加工中的应用.北京科学技术出版社, 1985: 26
    48杨智勇.光学玻璃超声振动脆性转变临界条件的研究.哈尔滨工业大学硕士论文. 2006: 21~25
    49 Jin M, Murakawa M. Development of a Practical Ultrasonic Vibration Cutting Tool System. Journal of Materials Processing Technology. 2001,(113): 342~347
    50 Moriwaki T, Shamoto E. Ultra-precision Diamond Turning of Stainless Steel by Applying Ultrasonic Vibration. Annals of CIRP. 1991,(40): 559~562
    51肖民,吴海华,王晓威,王庆明.振动切削中刀尖圆弧半径对难切削材料加工的影响.制造技术与机床. 2007, 1: 27~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700