用户名: 密码: 验证码:
RGD介导脑靶向阿魏酸脂质体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炎症在许多神经退行性疾病的发病机理中起着关键性的作用,其中包括局部脑缺血、帕金森病、阿尔茨海默病以及与艾滋病相关的脑水肿。炎症反应过程主要是白细胞(单核细胞和中性粒细胞)通过细胞渗出和趋化性作用跨过血脑屏障(BBB)向炎症部位迅速大量的迁移。在白细胞表面,具有高度表达的整合素受体,RGD肽可以与之特异性地结合。利用这一性质,可将RGD肽与脂质体偶联,使RGD-脂质体被携带跨过BBB并到达脑部的病灶部位。据此,本研究以抗氧化药物阿魏酸(FA)为模型药,通过羧基胆固醇将RGD肽偶联到FA脂质体表面,利用RGD肽与白细胞表面的整合素受体特异性地结合,不仅实现了脑靶向给药,而且将药物直接输送到脑部的病灶区,显著提高了FA的抗氧化效果,达到预期设计目的。相关研究工作的主要内容及结果如下:
     采用醋酸钙梯度法制备阿魏酸脂质体(FAL),包封率80.2±5.20%,5h药物释放80%。应用电子顺磁共振技术、电位滴定技术从分子水平研究了药物与磷脂之间的作用,对醋酸钙载药的机理进行初步的探讨。提出从pH梯度和电势梯度两个方面解释其载药机理。选用与FA分子结构相似的水杨酸(SA)为模型药物,制备不同盐梯度脂质体,测定不同盐溶液中FA及SA饱和溶解度,发现内水相中高溶液度也可以获得高包封率。
     通过胆固醇衍生物将RGD偶联到脂质体表面,以体外细胞亲和力为指标,筛选了RGD与脂质体的连接臂,结果由羧基胆固醇连接的RGD脂质体与白细胞具有更高的亲和力,并确定RGD在脂质体表面的连接密度为2.5%。在人全血中,偶联RGD的脂质体与白细胞结合率达72.4%。考察了羧基胆固醇与RGD偶联工艺的温度、pH值、磷脂浓度等因素对结合率的影响。结果表明98%以上的RGD肽可在2h内反应完全,且催化剂没有引起脂质体的聚集。对偶联RGD的FAL(RGD-FAL)及FAL进行了理化性质评价,冷冻蚀刻电镜观察其显微形态。电镜观察结果为单室脂质体,两种脂质体获得的包封率分别为80.2±5.20%和81.0±3.7%,稳定性良好。
     采用脑部微量注射IL-1β建立大鼠脑部炎症模型,考察了RGD-FAL脂质体在炎症大鼠体内的分布。结果表明由RGD介导的脑靶向脂质体可以在炎症大鼠的脑组织中以高于FA溶液组6倍,高于FA普通脂质体3倍的浓度分布。且由于RGD脂质体在血中与白细胞的结合,避免了被肝、脾组织的吞噬,与溶液组相比,其半衰期延长了2.6倍,与普通脂质体比较半衰期延长了1.43倍,消除速率明显下降。此外,将荧光标记的RGD脂质体注射入脑部炎症的大鼠体内,不同时间点采用荧光显微镜观察了其脑组织切片,研究RGD脂质体在脑内的分布。荧光照片显示,在炎症反应期脑组织切片的荧光强度持续增加,且出现了荧光脂质体聚集的光斑,证实RGD脂质体在炎症大鼠体内不仅可以随白细胞通过BBB,而且可聚集在脑部的炎症反应病灶。
     建立U937细胞株氧化损伤模型,以细胞活度、细胞线粒体膜电位的改变及形态学改变为指标评价了RGD-FAL的体外抗氧化活性。结果表明,将FA制成脂质体后,其体外抗氧化能力显著高于FA溶液。
     建立大鼠脑缺血/再灌注损伤模型,以超氧化物歧化酶、丙二醛以及总抗氧化能力为指标,以川芎嗪为阳性对照药物,评价RGD-FAL在体内的抗氧化效果。结果表明,RGD-FAL在体内抗氧化效果明显高于FA溶液、普通FA脂质体组、阳性对照药物组。结果表明体内药效的结果与体内分布结果具有良好的相关性。
Inflammatory response plays an important role in the pathogenesis of neurodegenerative diseases such as ischemia in the brain, Alzheimer's and Parkinson's. Leukocytes including monocytes and neutrophils can cross an intact blood-brain barrier (BBB) and be delivered to the site of injury or infection in the brain. RGD peptide (Arg-Gly-Asp) can combine with integrin receptors which are expressed on the surface of leukocytes (neutrophils and monocytes). Then, RGD-liposomes can be devised for selective and preferential presentation to blood monocytes/neutrophils, and taken into the brain in response to the inflammation recruitment. Thus, in the present study, FA was used as model drug and loaded into liposomes. RGD peptide was coupled with FA liposomes for binding to monocytes and neutrophils in peripheral blood for brain targeting in response to leukocyte recruitment. The pharmacodynamic of FA in vivo was greatly enhanced and brain targeted delivery was achieved.
     FA was loaded into liposome via calcium acetate gradient with 80.2% entrapment efficiency (EE) and 80% FA released form liposomes within 5h. However, the application of the pH gradient theory to account for the remote loading of the calcium acetate gradient did not appear to be satisfactory. Hence, the potentiometric technique and EPR were used to investigate the interactions between drugs and liposomes. The chemical potential gradient and electrical potential were used to account to the mechanism of loading drugs. The EEs of salicylic acid liposomes via a variety of salt gradients was determined to verify the explanation. It was found that high solubility in interior could contribute to high EE.
     The CHS was used as coupling arm according to the affinity ability to leukocytes with 2.5% coupling density. 72.4% of RGD-liposomes could combine with integrin receptors which were expressed on the surface of leukocytes. The temperature, pH, lipid concentration were studied where it was found that 98% of RGD peptide was coupled with liposomes within 2h. The drug leakage and liposome aggregation were not observed. The physicochemical properties of RGD-liposome were valued and morphology was observed by freeze-fracture electron microscopy. A good stability and high EEs were obtained and unilamellar vesicles were present in the micrographs.
     The rats were subjected to intrastriatal microinjections of 100μl of human recombinant IL-1βto produce brain inflammation to study the body distribution. For RGD coated liposomes, the concentration of FA in brain was 6-fold higher than that of FA solution and 3-fold higher than that of uncoated liposomes. The half life was prolonged with 2.6-fold compared to FA solution and 1.43-fold in comparison with FA liposome. Thus, the uptake of RGD FA liposome into liver and spleen was avoided. Furthermore, the rats were subjected to an administration of fluorescence-labeled RGD-liposome. The result of fluorescent microscopy showed that RGD-liposome could be mediated into brain and accumulated in the focus of infection.
     Mitochondrial transmembrane potential alternation, cell viability assay and morphology were assayed to value the antioxidant activity of RGD-FAL. It was found that FA liposomes exhibited greater antioxidant activity than FA solution on U937 cell.
     Animal model of ischemia/reperfusion was set up to value the antioxidant activity in vivo and the activity of SOD, T-AOC and the content of MDA were used as index. The results of pharmacodynamic studies had a good correlation with that of body distribution. The antioxidant activity in vivo of RGD-FAL was significantly greater than that of FA injection, liposomal FA and Ligustrazine. Thus, this strategy is a promising approach due to it can deliver drug directly to the inflammatory site in the brain following the recruitment of leukocytes and allow a better protective effect in vivo.
引文
[1] Yoshikawa T, Sekaeda T, Sugawara T. A novel chemical delivery system for brain targeting. Adv Drug Deliv Rev. 1999, 36: 255-275.
    [2] Prokai L, Prokai Tatrai K, Ouyang X. Metabolism-based brain-targeting system for a thyrotropin-releasing hormone anatogue. J Med Chem. 1999, 42: 4563-4571.
    [3] Coloma MJ, Lee HJ, Kurihara A. Transport across the primate blood-brain barrier of genetically engineered chinmeric monoclonal antibody to the human insulin receptor. Pharm Res. 2000, 17: 266-273.
    [4] Hwa JL, Britta E, Tayne L. Targeting rat anti-Mouse transferrin receptor monoclonal antibodies through blood-Brain barrier in mouse. J Pharm Exp Ther. 2000, 292: 1048-1052.
    [5] Pardridge WM. Gene targeting technology and gene therapy of the brain. Drug Discov Today. 2001, 6: 125-126.
    [6] Pardridge WM. BBB-Genomics: creating new openings for brain drug targeting. Drug Discov Today. 2001, 6: 381-383.
    [7] Zhang Y, Lee HI, Boada RJ. Receptor-mediated delivery of an antisense gene to human brain cancer Cell. 2002, 4: 183-194.
    [8] Aaron LO, John DM, Donald FS, Robert WS. Correlation between breakdown of the blood-brain barrier and disease outcome of viral encephalitis in mice. Antiviral Res. 2007, 75(2): 104-112.
    [9] Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R., Hulette CM, Vitek MP, Hovanesian V, Stopa EG. Microvascular injury and blood-brain barrier leakage in Alzheimer's disease. Neuro. Aging. 2007, 28, (7): 977-986.
    [10] Wu SH, Cheng G, Review on brain-targeting drug delivery system. Chin J Pharm. 2002, 33: 247-251
    [11] Perry VH, Anthony DC, Bolton SJ, Brown HC. The blood-brain barrier and the inflammatory response. Mole Medi Today. 1997, 8: 335-341.
    [12] Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Md Med. 1996, 2(3): 106-113.
    [13] Spector R. Drug transport in the central nervous system: role of carriers. Pharmacol. 1990, 40(1): 1-7
    [14] Tian XD. Review on brain targeting drug delivery system. Excel Disc on China Med. 2004, 1(1): 61-63.
    [15] Wan DH, Zhou JP. The Development of drug delivery system to cross the blood-brain barrier. Prog Pharm Sci. 2001, 25(5): 260-265.
    [16] Zhang Y, Zhu C, Pardridge WM. Antisense gene therapy of brain cancer with an artificial cirus gene delivery system. Mol. 2002, 6(1): 67-72.
    [17] Zhao XG, Chen GG. Major categories of drug delivery system for brain targeting and their applications. Chin J New Drugs. 2003, 12: 93-97.
    [18] Bodor N, Prokai L, Wu W. A strategy for delivery peptidea into the central nervous system by sequential metabolism. Science. 1992, 257: 1698-1700.
    [19] Chen P, Bodor N, Wu WM. Strategies to targeting kyotor-phin analogue to the brain. J Med Chem. 1998, 41: 3773-3781.
    [20] Sbi N, Boado RJ, Pardridge WM. Receptor mediated gene target to tissues in vivo following intravenous administration of pegylated immunofiposomms. Pharm Res 2001, 18(8): 1091-1095.
    [21] Ikumi T, Akira T. Transporter. mediated perm eation of drugs acrossthe blood-brain barrier. J Pharm Sci. 2000, 89: 1371-1388.
    [22] Wu W, Pardridge WM. Central nervous system pharmacologic effect in conscious rats after intravenous injection of a hiotinytated vasoactive intestinal peptide analog coupled to a bood-brain barrier drug delivery system. J Pharm Exp Ther. 1996, 279: 77-83.
    [23] Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain. 2001, 889: 49-56.
    [24] Friden PM, Wains LR. Watson P. Blood brain barrier penetration and in vivo activity of an NGF conjugate. Science. 1993, 259: 373-377.
    [25] Shin SU, Friden P, Moran M. Transferrin-antibody fusion protein are effective in brain targeting. Proc Natl Acad Sci USA. 1995, 92: 2820-2824.
    [26] Pardridge WM Non. invasive drug delivery to the human brain using endogenous blood-brain barrier transport systems. Pharm Sci Technol Today. 1999, 2: 49-59.
    [27] Xia CF, Liu JP. Advances in liposome used as the carriers of cardio-cerebral-vascular drug. Prog Pharm Sci. 2004, 28(3): 116-120.
    [28] Fresta M, Puglisi G, Giacomo CD, Russo A. Liposomes as in vivo carriers for citicoline: effects on rat cerebral post-ischemic reperfusion. Pharm Pharmacol. 1994, 46: 974-982.[29] Wang JY, Xu YR, Huang K. Proliposome targeting to rabbit brain tissue. J Pharm Pharmacol, 1995, 47(12a): 1053-1062.
    [30] Sinha J, Das N, Basu MK. Liposomal antioxidants in combating ischemia-reperfusion injury in rat brain. Biomed Pharmacother. 2001, 55: 264-271.
    [31] Michelson AM, Puget K. Cell penetration by exogenous superoxide dismutase. Acta Physiol Scand. 1980, 492: 67-72.
    [32] He YY, Hsu CY, Ezrin AM, Miller MS. Conjugated superoxide dismutase in focal cerebral ischemia reperfusion. Am J Physiol. 1993, 265: 256-257.
    [33] Siegal T, Horowitz A. Gabizon A. Doxorubicin encapsulated in sterically stabilized liposome for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg. 1995 Dec; 83(6): 1029-1037.
    [34] Huwyler J. Wu DF, Pardriage WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA. 1996, 93: 14164-14179.
    [35] Borchard G, Audus KI, Shi F. Uptake of surfactant coated poly(methyl methacrylate) nanoparticles by bovine brain microvessel endothelial cell monolayers. Int J Pharm.. 1994, 110(1): 29-35.
    [36] Kreuter J, Petroy VE, Kharkevich DA. Influence of the type of surfactant on the analgesic elects induced by the peptide dalarin after its delivery across the blood-brain barrier using surfactant-coated nanoparticles. J Control Release. 1997, 49: 81-87.
    [37] Gulyaev AE, Gelperina SE, Skidan IN. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res. 1999, 16: 1564-1569.
    [38] Alyautdin R, Gothier D, Petrov V. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80 coated poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 1995, 41: 44-48.
    [39] Ramge P, Unger RE, Ohrogge JB. Polysorbate 80 coating enhances uptake of polybutyl-cyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci. 2000, 12: 1931-1940.
    [40] Hassan EE, Gallo M. Targeting anticancer drugs to the brain I: Enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres. J Drug Target. 1993, 1: 7-16.
    [41] Pilipovic GJ, Maysinger D, Jalsenjad I. Microparticles with neuroactive agents. J Microencapasulation. 1995, 12: 343-362.
    [42] Shi N, Pardridge WM. Non invasived gene targeting to the brain. Proc Natal Acad Sci USA. 2000, 97, 13: 7567-7572.
    [43] Friden PM. Utilization of an endogenous celluar transport system for the delivery of therapeutics across the blood-brain barrier. J Contro Release. 1997, 46: 117-128.
    [44] Tamai I, Tsuji A. Drug delivery through the blood-brain barrier. Adv Drug Del Rev. 1996, 19: 401-402.
    [45] Begley D, Kreuter J. Drug defivery and targcting to the CNS. J Drug Target 2002, 10(4): 261-262.
    [46] Lee HJ, Engelhardtl B, Lesley J. Targeting rat antimouse transferring receptor monoclonal an antibodies through blood-brain barrier in mousc. J Pharmacol Exp Ther. 2000, 292: 1048-1052.
    [47] Jain S, Mishra V, Singh P. RGD-anchored magnetic liposomes for monocytes/neutrophils mediated brain targeting. Inter J Pharm. 2003, 261: 43-55.
    [48] Pan H, Liu M, Lu WY. Progress in sterically stabilized immunoliposome for brain targeting. Prog Pharm Sci. 2003, 27: 131-134.
    [49] Pierschbacher MD, Ruoslahti E. The cell attachment activity of fibroneetin can be duplicated by small fragments of the molecule. Nature. 1984, 309: 30-36.
    [50] Allen CM, Sharman W M, La Madeleine C. Attenuation of photodynamically induced apoptosis by an RGD containing peptide. Photochem Photobiol SCi. 2002, 1: 246-252.
    [51] Du GC, Wu CY. Research Advances on RGD peptides in diagnosis and treatment of Neoplasms. Chin J Bases Clin General surg. 2004, 11: 558-560.
    [52] Jimenez B, Volpert OV. Mechanistic insights on the inhibition of tumor angiogenesis. J Mol Med. 2001, 78(12): 663-672.
    [53] Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vase Biol. 2002, 22: 887-893.
    [54] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000, 407(6801): 249-257.
    [55] Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995, 1: 27-31.
    [56] Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev. 2000, 52(2): 237-268.
    [57] Raymond MS, Gerben AK, Timo LM. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release. 2003, 91: 115-122.
    [58] Dechantsreiter MA, Planker E, Matha B. N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem. 1999, 42: 3033-3040.
    [59] Harvie P, Wong FM, MB Bally. Use of poly(ethyleneglycol)-lipid conjugates to regulate the surface attributes and transfection activity of lipid-DNA particles. J Pharm Sci. 2000, 89: 652-663.
    [60] Xiong XB, Huang Y, Lu WL. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic. J Control Release. 2005, 107: 262-275.
    [61] Kok RJ, Schraa AJ, Bos EJ. Preparation and functional evaluation of RGD-modified proteins as alpha (v)beta (3) integrin directed therapeutics. Bioconjug Chem. 2002, 13: 128-135.
    [62] Wu C, Chen G, Hsiao C. Mechanisms involved in the inhibition of neointimal hypcrplasia by abciximab in a rat model of balloon angioplasty. Thromb Res. 2001, 101: 127-138.
    [63] D'Souza SE, Haas TA, Piotrowicz RS. Ligand and cation binding are dual functions of a discrete segment of the integrin β_3 subunit: cation displacement is involved in ligand binding. Cell. 1994, 79: 659-667.
    [64] Labhasetwar C, Song RL. Nanoparticle drug delivery system for restenosis. Adv Drug Deliv Rev. 1997, 24: 63-85.
    [65] Sousa JE, Costa MA, Abizaid A. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: a quantitative coronary angiography and three-dimensional in travascular ultrasound study. Circulation. 2001, 103: 192-195.
    [66] Fishbein I, Chorny M, Rabinovich L. Nanoparticulate delivery system of a tyrophostin for the treatment ofrestenosis. J Control Release. 2000, 65: 221-229.
    [67] Torchilin VP, Omelyanenko VG, Papisov, MI. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta. 1994, 1195: 11-20.
    [68] Woodle MC. Controlling liposome blood clearance by surface-grafted polymers. Adv. Drug Deliv Rev. 1998, 32: 139-152.
    [69] Brian JL, Sharon MS, Zhong X. Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J. Control Release 2002, 78: 235-247.
    [70] Chopp WM, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke. 1994, 25: 869-875.
    [71] Clark WM, Madden KP, Rothlein R, Zivin JA. Reduction of central-nervous-system ischemic-injury by monoclonal-antibody to intercellular-adhesion molecule. J Neurosurg. 1994, 75: 623-627.
    [72] Gendeiman HE, Lipton SA, Tardieu M, Bukrinsky MI, Nottet HSLM. The neuropathogenesis of HIV-1 infection. J Leukocyte Biol. 1994, 56: 389-398.
    [73] Kuby J. Immunology, 2nd ed. W. H. Freeman and Co., New York 1994, 112-130.
    [74] Levinson, W. E., Jawetz, E., Medical Microbiology and Immunology, 3rd ed. Appleton and Lange, USA 1994, 334-345.
    [75] Gyongyossy-Issa MI, Muller W, Devine DV. The covalent coupling of Arg-Gly-Asp-containing peptides to liposomes: purification and biochemical function of the lipopeptide. Arch Biochem Biophys 1998, 353(1): 101-108.
    [76] Kao WJ, Lee D, Schense JC, Hubbell JA. Fibronectin modulates macrophage adhesion and FBGC formation: the role of RGD, PHSRN, and PRRARV domains. J Biomed Mater Res. 2001, 55(1): 79-88.
    [77] Kao WJ, Yiping Liu, Rathna Gundioori, Jing Li, Damian Lee, Nicole Einerson, Jeanine Burmania, Kelly Stevens. Engineering endogenous inflammsatory cells as delivery vehicles. J Control Release 2002, 78, 219-233.
    [78] Gururaj J, Marzia P, Rukhsana S, Ravagna A, Vittorio C, Butterfield DA. In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2, 2-azobis(2-amidino-propane) dihydrochloride (AAPH) or Fe~(2+)/H_2O_2: Insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders. Neurochem Int. 2006, 48: 318-327.
    [79] Srinivasan M, Ram SA, Raveendran PK, Kumarc PR, Sudhakaran PR, Menon VP. Influence of femlic acid on gamma-radiatiun induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes. Toxicology 2006, 228: 249-258.
    [80] Tapia A, Rodriguez J, Theoduloz C. Free radical scavengers and antioxidants from Baccharis grisebachii. J Ethnopharmacology. 2004, 95: 155-161.
    [81] 林迎晖,陈为文.阿魏酸钠的药理作用及分子改造前景.药学学报1994,29:717-720.
    [82] Germano MP, Angelo VD, Biasini T. Evaluation of the antioxidant properties and bioavailability of free and bound phenolic acids from Trichilia emetica Vahl. J Ethnopharmacology. 2006, 105: 368-373.
    [83] Ju HS, Li X. J, Zhao BL, Hou JW, Han ZW, Xin WJ. Scavenging effects of sodium ferulate and 18h-glycyrrhetic acid on oxygen free radicals. Acta Pharmacol Sin. 1990, 11: 466-470.
    [84] Zhang ZH, Wei TT, Hou JG. Iron-induced oxidative damage and apoptosis in cerebellar granule cells: attenuation by tetramethylpyrazine and femlic acid. Euro J Pharmacol. 2003, 467: 41-47.
    [85] Kim HS, Cho JY, Kim DH, Yah JJ, Lee HK Sub. HW, Song DK. Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of beta-amyloid peptide(1-42) in mice. Biol Pharm Bull. 2004, 27: 120-121.
    [86] Boyd-Kimball D, Sultana R, Poon HF, Mohmmad-Abdul H, Lynn BC, Klein JB, Butterfield DA. Gamma-glutamylcysteine ethyl ester protection of proteins from Abeta(1-42)-mediated oxidative stress in neuronal cell culture: a proteomics approach. J Neurosci Res. 2005, 79: 707-713.
    [87] Dan QL, Yong MB, Yang L, Cheng FW, Yuxin L, Li-Jia A. Catalpol modulates the expressions of Bcl-2 and Bax and attenuates apoptosis in gerbils after ischemic injury. Brain Res. 2006, 1115: 179-185.
    [88] Hu HJ, Hang BQ, Wang PS. Antiinflammatory effects of ferulic acid. J Chin Pharm Univ. 1990, 21: 279-282.
    [89] Hu HJ, Hang BQ. Effect of ferulic acid on allergic reaction. J Chin Pharm Univ. 1991, 12: 426-430.
    [90] Li F, Jin LJ. Sinomeuine and sodium ferulate prevent complement-induced granulocyte aggregation. Chin J Pathophys. 1990, 16: 19-23.
    [91] 欧仕益,包惠燕,蓝志东.FA及其衍生物的药理作用研究进展.中药材2001,3:220-221.
    [92] 黄丰阳,徐秋萍.中药有效成分的抗血小板作用研究进展.北京中医药大学学报 1999,21(2):28-30.
    [93] Vanhulle O, Radman R, Parra R., Cui T, Bols CM, Tron T, Sannia G, Keshavarz T. Effect of mannan oligosaccharide elicitor and ferulic acid on enhancement of laccases production in liquid cultures of basidiomycetes. Enzyme Microbial Technology 2007, 40(7): 1712-1718.
    [94] Kall EA. Effects of diet aryphenolic compounds on tocopherol, cholesterol, and fatty acids in rats. Lipids. 2000, 35: 427-435.
    [95] 张明发.阿魏酸抗动脉粥样硬化研究进展.中草药,1990,21(1):41-43.
    [96] Wargovich MJ. Carcinogenesis. Jimenez A, McKee K, et al. Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis. 2000, 21: 1149-1155.
    [97] Devi RR, Arumughan C. Phytochemical characterization of defatted rice bran and optimization of a process for their extraction and enrichment. Bioresource Techno. 2007, 98(16): 3037-3043.
    [98] Taniguchi H, Hosoda A, Tsuno T, Maruta T, Nomura E: Preparation of ferulic acid end its application to center chemopreventive agents. Anticancer Res. 1999, 19: 3757-3861.
    [99] Kawabata K. Yamamoto T, Hara A. Modifying effects of ferulie acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett. 2000, 157: 15-21.
    [100] 胡益勇,徐晓玉.阿魏酸的化学和药理研究进展.中成药2006,28,(2):253-255.
    [101] 常明向.大鼠体内阿魏酸的代谢及药代动力学研究.中国中药杂志1993,18:300-303.
    [1] Dos SN, Cox A, Kelly, MA, Cheryl, VB. Floris, Gallagher C, Ryan, Karlsson G, Edwards K, Mayer D. Lawrence, Allen C, Bally B. Marcel. pH gradient loading of anthracyclines into cholesterol-free liposomes: enhancing drug loading rates through use of ethanol. Biochim Biophys Acta. 2004, 1661: 47-60.
    [2] Gry S, Sverre A, Sande, Solveig K, Gro S. Formulation and characterisation of primaquine loaded liposomes prepared by a pH gradient using experimental design. Int J Pharm. 2000, 198: 213-228.
    [3] Haran G, Rivka C, Liliana KB, Yechezkel B. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993, 1151: 201-215.
    [4] Andreas F, Felicitas H, Andrea K, Rolf S, Regine PS. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta. 2006, 1758: 1633-1640.
    [5] Benny CL, Cheung, Tyler HT, Sun, Johanna M. Leenhouts and Pieter R. Cullis. Loading of doxorubicin into liposomes by forming Mn~(2+)-drug complexes. Biochim Biophys Acta. 1998, 1414: 205-216.
    [6] Clerc S, Barenholz Y. Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim Biophys Acta. 1995, 1240: 257-265.
    [7] Thomas D, Madden P, Richard H, Linda CL, Tai, Marcel BB, Lawrence DM, Tom E. Redelmeier, HC, Loughrey, Colin PS, Tilcock, Lawrence W. Reinish, Pieter RC. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids. 1990, 53: 37-46.
    [8] Xingong Li, Donald JH, Donna CL, Achim Z, Sol MG, Andrew SJ, Walter RP. Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. Biochim Biophys Acta. 1998, 1415: 23-40.
    [9] Lorin A, Charloteaux B, Fridmann-Sirkis Y, Thomas A, Shai Y, Brasseur R. Mode of membrane interaction and fusogenic properties of a de novo transmembrane model peptide depends on the length of the hydrophobic core. J Biol Chem 2007, 24(in press)
    [10] Fung VWH, Chiu Gigi NC, Mayer LDM. Application of purging biotinylated liposomes from plasma to elucidate influx and effiux processes associated with accumulation of liposomes in solid tumors. Biochim. t Biophysi Acta. 2003, 1611: 63-69
    [11] Deamer D, Bangham AD. Large volume liposomes by an ether vaporization method. Biochim Biophys Acta. 1976, 443(3): 629-634.
    [12] Masahiro Y, Kyoko T, Masayuki ABE, Yoichi U, Masashi N, Nobom A. Release. of drugs from liposomes varies with particle size. Biol. Phann. Bull. 2007, 30(5): 963-966.
    [13] Sternberttg B. Freeze-fracture electron microscopy of liposomes, vol. I, CRC Press, Boca Raton, FL, 1993. p. 363-383.
    [14] 索绪斌,邓英杰,井水泉.HPLC-ELSD-大孔吸附树脂分离法测定黄芪皂苷脂质体的包封率.中国药学杂志2004,39(9):680-682.
    [15] 陆彬.药物新剂型与新技术2版.北京人民卫生出版社2002,p.111-112.
    [16] Ruso JM, Besada L, Pablo ML. Interactions between liposomes and cations in aqueous solution. J Liposome Res. 2003, 13: 131-145.
    [17] Sulkowski WW, Pentak D, Nowak K. The influence of temperature, cholesterol content and pH on liposome stability. J Mole Stru. 2005, 747-752.
    [1] Avdeef A, Comer JEA, Thomson SJ. pH-Metric log P. 3. Glass electrode calibration in methanol-water, applied to pKa determination of water-insoluble substances. Anal Chem.: 993, 65: 42-49.
    [2] Avdeef A. Box KJ, Takacs NK. pH-metric log P. 6. Effects of sodium, potassium, and N-CH3-D-glucamine onthe octanol-water partitioning of prostaglandins E1 and E2, J. Pharm. Sci. 1995, 84: 523-529.
    [3] Danyi Quan, Howard IM. An electroa spin resonance study: I. Effect of azone of 5-doxyl stearic acid-labeled human stratum corneum. Int J Pharm.. 1994, 104: 61-72.
    [4] Avdeef A. pH-metric logP. Part 1. Difference plots for determining ion-pair octanol-water partition coefficients of multiprotic. Quant. Struct. -Act. Relat. 1992, 11: 510-517.
    [5] Ottiger C, Allenspach HW. Parition bihaviour of acids and bases in a phosphatidylcholine liposome-buffer equilibrium dialysis system. Eur J Pharm Sci 1997, 5: 223-231.
    [6] Coderch L, Fonollosa J, Pera MD, Estelrich J, Maza ADL, Parra JL. Influence of cholesterol on liposome fluidity by EPR: Relationship with percutaneous absorption, J. Control. Release 2000, 68: 85-95.
    [7] Vishnyakova EA, Ruuge AE, Golovina EA, Hoekstra FA, Tikhonov AN. Spin-labeling study of membranes in wheat embryo axes. 1. Partitioning of doxyl stearates into the lipid domains. Biochim Biophys Acta, 2000, 1467: 380-394.
    [8] Goto M, Sunamoto J. Effect of artificial boundary lipid on the membrane dynamics of human glycophorin-containing liposome. Bull Chem Soc Jpn, 1992 65: 3331-3334.
    [9] Gry S, Sverre AS, Solveig K, Gro S. Formulation and characterisation of primaquine loaded liposomes prepared by a pH gradient using experimental design. Int J Pharm. 2000, 198: 213-228.
    [10] Gilad H, Rivka C, Liliana KB, Yechezkel B. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993, 1151: 201-215.
    [11] Andreas F, Felicitas H, Andrea Kr, Rolf S, Regine PS. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta. 2006, 1758: 1633-1640.
    [12] Benny CL, Cheung, Tyler H, Sun, Johanna ML, Pieter RC. Loading of doxorubicin into liposomes by forming Mn~(2+)-drug complexes. Biochim Biophys Acta. 1998, 1414: 205-216.
    [13] Avdeef A, Box KJ, Comer JEA, Hibbert C, Tam KY. pH-Metric logP 10 Determination of liposomal membrane-water partition coefficients of ionizable drugs, Pharm. Res. 1998, 15: 209-215.
    [14] Clerc S, Barenholz Y. Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim Biophys Acta. 1995, 1240: 257-265.
    [15] Sung HH, Yoshie M, Xian-Rong Qi, Kozo T, Tsuneji N. Remote loading of diclofenac, insulin and fluorescein isothiocyanate labeled insulin into liposome by pH and acetate gradient methods. Int J Pharm. 2004, 179: 85-95.
    [16] Lau A, McLaughlin A, Stuart M. The adsorption of divalent cations to phosphati-dylglycerol bilayer membranes. Biochim Biophys Acta, 1981, 645: 279-292.
    [17] B. C EH, D. D. Lasic. A rigorous theory of remote loading of drugs into liposomes: transmembrane potential and induced pH-gradient loading and leakage of liposomes. J Coil Inter Sci. 1997, 185: 9-18.
    [18] Sharon JA, Cafiso, DS. A. voltage-dependent conductance, for alamethicin in vesicles:, a test. for the mechanism of gating. Biophys. J. 1991, 60: 380-388.
    [19] Harrigan PR, Hope MJ, Redelmeier TE, Cullis PR. Determination of transmembrane pH gradients and membrane potentials in liposomes. Biophys. J. 1992, 63: 1336-1345.
    [20] Juan MR, Lina B, Pablo ML, Laura S, Gerardo P, Felix S. Interactions between liposomes and cations in aqueous solution. J Liposome Res. 2003, 13: 131-145.
    [21] David WD, John B. Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids. 1986, 40: 167-188.
    [22] Thomas DM, Richard H, Linda CL, Marcel BBy, Lawrence DM, Tom ER, Helen CL, Colin PS, Tilcock, Lawrence WR, Pieter RC. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids. 1990, 53: 37-46.
    [23] Xingong Li, Donald JH, Donna CL, Achim Z, Sol MG, Andrew SJ, Walter RP. Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. Biochim Biophys Acta. 1998, 1415: 23-40.
    [24] Lasic DD, Ceh B, Smart MC, Guo L, Frederik PM, Barenholz Y. Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochim Biophys Acta. 1995, 1239: 145-156.
    [1] Xia CF, Liu JP. Advances in liposome used as the carriers of cardio-cerebral-vascular drug.. Prog Pharm Sci. 2004, 25(3): 116-120.
    [2] B. Ceh, Winterhalter PM, Frederik, JJ, Vallner DD. Lasic, Stealth liposomes: from theory to product, Adv. Drug Deliv. Rev. 1997, 24: 165-177.
    [3] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Control. Release. 2000, 65: 271-284.
    [4] Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peter AM, Vile RG, Stewart JS. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes, Clin. Cancer Res. 2001, 7: 243-254.
    [5] Harvie P, Wong FM, Bally MB. Use of poly(ethylene glycol) lipid conjugates to regulate the surface attributes and transfection activity of lipid-DNA particles, J. Pharm. Sci. 2000, 89: 652-663.
    [6] Vertut-Doi A, Ishiwata H, Miyajima K. Binding and uptake of liposomes containing a poly (ethylene glycol) derivative of cholesterol(stealth liposomes) by the macrophage cell line J774: influence of PEG content and its molecular weight. Biochim. Biophys. Acta. 1996, 1278: 19-28.
    [7] Hu YP, Henry-Toulme N, Robert J, Failure of liposomal encapsulation of doxorubicin to circumvent multidrug resistance in an in vitro model of rat glioblastoma cells. Eur J Cancer. 1995, 31(3): 389-394.
    [8] Park JW, Kirpotin DB, Hong K, Shalaby R, Shao Y, Tumor targeting using anti-her2 immunoliposomes, J. Control. Release, 2001, 74(1-3): 95-113.
    [9] Hu HY, Chen DW, Liu YF, Deng YH, Yang SJ, Qiao MX, Zhao J, Zhao XL. Target ability and Therapy efficacy of Immunoliposomes using a humanized anti-hepatoma disulfide-stabilized Fv fragment on tumor cells. J Pharm S 2006, 95, (1): 192-195.
    [10] Dennis H, Ling G, Shimian Q, Christopher S, Todd G, Edwin D, Xiang G, Jeff C. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 2003, 3(1): 63-74.
    [11] Saiki I, Koike C, Obata A, Fuji H, Murata J, Kiso M, Hasegawa A, Komazawa H. Functional role of sialyl Lewis X and fibronectin derived RGDS peptide analogue on tumor cell arrest in lungs followed by extravasation. Int. J. Cancer. 1996, 65: 833-839.
    [12] Richard G, LeBaron RV, Hernandez JE, Orfila JL, Martinez Jr. An integrin binding peptide reduces rat CA1 hippocampal long-term potentiation during the first few minutes following theta burst stimulation. Neurosci. Lett. s. 2003, 339: 199-202.
    [13] Jain S, Mishra V, Singh P, Dubey PK, Saraf DK, Vyasa SP. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm. 2003, 261: 43-55.
    [14] Kao WJ, Lee D, Scheme JC, Hubbell JA. Fibronectin modulates macrophage adhesion and FBGC formation: the role ofRGD, PHSRN, and PRRARV domains. J Biomed Mater Res. 2001, 55(1): 79-88.
    [15] Kao WJ, Liu YP, Gundloori R, Li J, Lee D, Einerson N, Burmania J, Steveas K. Engineering endogenous inflammatory cells as delivery vehicles. J Control Release 2002, 78: 219-233.
    [16] Chopp WM, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke. 1994, 25: 869-875.
    [17] Clark WM, Madden KP, Rothlein R, Zivin JA. Reduction of central-nervous-system ischemic-injury by monoclonal-antibody to intercellular-adhesion molecule. J Neurosurg 75: 623-627.
    [18] Gendeiman, HE, Lipton, SA, Tardieu, M, Bukriusky, MI, Nottet, HSLM. The neuropathogenesis of HIV-1 infection. J Leukocyte Biol. 1994, 56: 389-398.
    [19] Perry VH, Bell MD, Brown HC, Matyszak MK. Inflammation in the nervous system. Curr. Opin. Neurobiol. 1995, 5: 636-641.
    [20] Perry VH, Anthony, DC, Bolton SJ, Brown HC. The blood-brain barrier and the inflammatory response. Mol. Medi. Today. 1997, 8: 335-341.
    [21] Aoki Y, Hosaka S, Kawa S, Kiyosawa K. Potential tumortargeting peptide vector of histidylated oligolysine conjugated to a tumor-homing RGD motif, Cancer Gene Ther. 2001, 8: 783-787.
    [22] Kurohane K, Namba Y, Oku N. Liposomes modified with a synthetic Arg-Gly-Asp mimetic inhibit lung metastasis of B16BL6 melanoma cells. Life Sciences. 2000, 68: 273-281.
    [23] Hosseinkhani H, Tabata Y. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin, J. Control. Release. 2004, 97: 157-171.
    [24] Matsumoto T, Numata M., Anada T, Mizu M, Koumoto K, Sakurai K, Nagasaki T, Shinkai S. Chemically modified polysaccharide schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake efficiency, Biochim. Biophys Acta. 2004, 1670: 91-104.
    [25] Mather S J, Ellison D. Reduction-mediated Tc-99m labeling of monoclonal antibodies. J Nucl Med. 1990, 31(5): 692-698.
    [26] Tesic M, Sheldon KM, Ballinger JR. Labeling small quantities of monoclonal antibodies and their F(Ab)2 fragments with technetinm-99m. Nucl Meal Biol. 1995, 22(4): 451-462.
    [27] Schwartz DA, Abrams MJ, Hauser MM. Preparation of hydrazino-modified proteins and their use for the synthesis of Tc-99m-protein conjugates. Bioconjuate Chem. 1991, 2(5): 333-342.
    [28] Bisunadan MM, Blower PJ, Clarke SEM. Synthesis and characterization of [Re-186] rhenium (V) dimercaptosuccinic acid-a possible tumor-radiotherapy agent. Appl Radiat Isot. 1991, 42(2): 167-179.
    [29] Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 1990, 185: 131-135.
    [30] Richer L, Schneider A, Vantier D, Vodouhe C, Jessel N, Payan E, Schaaf P, Voegel JC, Picart C. Imaging cell interactions with native and crosslinked polyelectrolyte multilayers. Cell Biochem Biophys. 2006, 44(2): 273-85.
    [31] Jia Fang, Meng Zhaoxing, Jiang Yan, Wang Hua, Liu Boli. A study on indirect method for.~(99m)Tc labeling monoclonal antibody. J. Beijing Normal University. 2000, 36: 225-229.
    [32] Fretz MM, Hogset A, Koning GA, Jiskoot W, Storm G. Cytosolic delivery of liposomally targeted proteins induced by pPhotochemical internalization. Pharm Res. 2007, 31(in press).
    [33] Martin FJ, Heath TD, New RRC. Covalent attachment of proteins to liposomes. In: New, R. R. C. (Ed.), Liposomes: A Practical Approach. Oxford University Press, Oxford, 1990, p. 163-182.
    [34] Aznavoorian S, Stracke ML, Krutzsch H, Schiffmann E, Liotta LA. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol. 1990, 110: 1427-1438.
    [35] Hanzenberger D, Kleminek J, Stmdqvist KG. Functional specialization of fibronectin-binding beta 1-integrins in T lymphocyte migration. J. Immunol. 1993, 153: 960-971.
    [36] Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, Kalluri R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA. 2003, 100: 4766-4771.
    [37] Wickstrom SA, Alitalo K, Keski O. Endostatin Associates with Integrin-5-1 and Caveolin-1, and Activates Src via a Tyrosyl Phosphatase-dependent Pathway in Human Endothelial Cells 1 Cancer Res. 2002, 62: 5580-5589.
    [38] Rehn M, Veikkola T, Kukk-Valdre E, Nakamura H, Ilmonen M, Lombardo C, Pihlajaniemi T, Alitalo K, Vuori K. Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl. Acad. Sci. USA. 2001, 98: 1024-1029.
    [39] Malin S, Yuki H, Hikaru S, Akulapalli S, Mary S, Udaya Y, Laura EB, Jack L, Mark K, Amish S,
    Raghu K. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci U S A. 2005, 102(8): 2934-2939.
    [1] Wen AD, Jiang YP, Huang X, Fan YX, Zhang LH. Pharmacokinetics of ferulic acid in rabbits with blood stasis. J Chin Pharm Sci 1995, 4(4): 199-204.
    [2] 常明向,徐莲英,陶建生,冯怡.大鼠体内阿魏酸的代谢及药代动力学研究.中国中药杂志.1993,18(5):300-302.
    [3] Betz AL, Schielke GP, Yang GY. Interleukin-1 in cerebral ischemia. Keio J. Meal. 1996, 45: 230-237.
    [4] Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Luccbesi BR. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation. 1983, 67: 1016-1023.
    [5] Wong D, Dorovini ZK. Upregulation of intercellular adhesion molecule-1-ICAM-1. expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide, J. Neuroimmunol. 1992, 39: 11-22.
    [7] Kimura H, Gules I, Meguro T. Cytotoxicity of cytokines in cerebral microvascular endothelial cell. Brain Res. 2003, 990(1-2): 48-156.
    [8] Gibson CI, Jones NC, Prior MJ. G-CSF suppresses edema formation and reduces interleukin-1 beta expression after cerebral iscbemia in mice. J Neuropathol Exp Neurol. 2005, 64: 763-769.
    [9] Wang ZQ, Chen XC, Yang GY. U0126 prevents ERK pathway phosphorylation and interleukin-1 beta mRNA production after cerebral ischemia. Chin Med. Sci .J. 2004, 19: 270-275.
    [10] Wang ZQ, Wu DC, Huang FP. Inhibition of MEK/ERK 1/2 pathway reduces proinflammatory cytokine interleukin-lexpression in focal cerebral ischemia. Brain Res. 2004, 996: 55-66.
    [11] Hara H, Fink K, Endres M, Friedlander RM, Gagliardini V, Yuan J, Moskowitz MA. Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein, J. Cereb. Blood Flow Metab. 1997, 17: 370-375.
    [12] Relton JK, Martin D, Russell D. Effects of peripheral IL-1ra treatment after focal cerebral iscbemia in the rat. Soc. Neurosci. 1993, 19: 6732-6741.
    [13] Loberg EM, Hassel B. Fonnum F, Torvik A. Early entry of plasma proteins into damaged neurons in brain infarcts. An immuno-histochemical study on experimental animals, Apmis. 1994, 102: 771-776.
    [14] Dinarello CA,Thompson RC. Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro, Immunology Today. 1991, 12: 404-410.
    [15] Farooqul AA, Horrocks LA. Excitatory amino acid receptors, neuronal membrane phospholipid metabolism and neurological disorders. Brain Res Rev. 1992, 16: 171-191.
    [16] Blamire AM, Anthony DC, Rajagopalan B, Sibson NR. Perry VH, Styles P. Interleukin-1 induced changes in blood-brain barrier permeability, apparent diffusion coefficient and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci. 2000, 20: 8153-8159.
    [1] Lasek W, Wankowicz A, Kuc K, Feleszko W, Golab J, Giermasz A, Wiktor-Jedrzejczak W, Jakobisiak M. Potentiation of antitumor effects of tumor necrosis factor alpha and interferon gamma by macrophage-colony-stimulating factor in a MmB16 melanoma model in mice. Cancer Immunol. Immunother. 1995, 40: 315-21.
    [2] Zhu YG, Chert XC, Chen ZZ, Zeng YQ, Shi GB, Su YH, Peng X. Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol Sin. 2004, 25(5): 1606-1612.
    [3] Guidarelli A, Cattabeni F, Cantoni O. Mechanism of the antimycin A-mediated enhancement of t-butylhydroperoxide-induced single-strand breakage in DNA. Free Radic. Res. 1997, 26: 537-547.
    [4] Alia M, Ramos S, Mateos R, Bravo L, Goya L, Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line(HepG2). J Biochem Mol Toxicol. 2005, 9: 119-128.
    [5] Peichev M, Naiyer AJ, Pereira D. Expression of VEGFR-2 and AC1 33 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000, 95: 952-956.
    [6] Hao H, Iiu GQ. Strategies against oxidative stress for therapy of ischemic cerebrOVascular diseases. Chin Pharmacol Bull. 2004, 20(1): 19-24
    [7] 于德红 魏朝良 包永明.阿尔茨海默病与氧化应激.生物医学工程杂志.2006,23(5):1142-1144.
    [8] Zhao H, Zhan G, Wei TT, Hou J, Li G, Yu S, Xin W. Iron-induced oxidative damage and apoptosis in cerebellar granule cells: attenuation by tetramethylpyrazine and ferulic acid. Euro J Pharmacol. 2003, 467: 41-47.
    [9] Castelluccio C, Paganga G, Melikian N. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. Febs Lett. 1995, 368: 188-192.
    [10] Garcia FJ, Guidarelli A, Periago MJ. Phenolic-rich juice prevents DNA single-strand breakage and cytotoxicity caused by tert-butylhydroperoxide in U937 cells: the role of iron chelation. J. Nutr. Biochem. 2006, 17(in press)
    [11] Oh TY, Lee JS, Ahn BO, Cho H, Kim WB, Surch YJ, Cho SW, Hahm KB. Oxidative damages are critical in pathogenesis of reflux esophagitis implication of antioxidants in its treatment. Free Radical Biol. Med. 2001, 30: 905-915.
    [12] 孙福生,刘赛,鞠传霞,王海桃.扇贝裙边糖胺聚糖对U937泡沫细胞形成过程中抗氧化酶、NO和细 胞内Ca的影响.中国药房.2007,18(4):256-258.
    [13] Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998, 281(5381): 1309-1312.
    [14] Fall C, Bennefl JJ. Visualization of eyelosporion A and Ca2 sensitive cyclical mitoehondfial depolarization in cell culture[J]. Biochim Biophys Aeta. 1999, 1410(1): 772-784.
    [15] Zoratti M, Szabo I. The mitoehondfial permeability transition. Biochim Biophys Aeta. 1995, 1241(2): 139-176.
    [16] Fontalne E, Eriksson O, Ichas F. Regulation of the permeability transition pore in skeletal muscle mitoehondrial. J Biol Chem. 1998, 273(20): 12662-12668.
    [17] 周春喜,牛蕴蕴,梁学颖.早期细胞凋亡的流式细胞术分析.军医进修学院学报.2004,25(1):10-11.
    [18] 谭迎春,陈子江,卢少明,高选.用荧光探针JC-1检测氧化应激对精子线粒体膜电位的影响.山东大学学报(医学版).2006,44(5):447-450.
    [1] 徐俊英,冯霞,冯秀玲,王嘉陵.异莲心碱对实验性前脑缺血/再灌注损伤的保护机制.华中科技大学学报(医学版).2006,35(2):231-233.
    [2] 张均田.现代药理实验方法(下册).北京:北京医科大学中国和医科大学联合出版社.2000:1243-1244.
    [3] Longa EZ, Weinstein PR, Carlson S. Reversible middle cerebral artery occlusion without craniectomy in rats. Stoke. 1989, 20: 84-91.
    [4] Cazevielle C, Muller A, Meynier F, Borme C. Superoxidde and nitric oxide cooperation in hypoxia/reoxygeneration-indueed neuron injury. Free Radic Biol Med. 1993, 14(4): 389-395.
    [5] Bipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994, 330(9): 613-622
    [6] Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M. NF-KB is activated and promotes cell death in focal cerebral ischemia. Nat Med 1999, 5(5): 554-559.
    [7] Mattson MP, Camandola S. NF-KB in neuronal plasticity and neurodegenerative disorders. J Chin Invest. 2001, 107(3): 247-254
    [8] 洪浩,刘国卿.缺血性脑血管疾病治疗的抗氧化应激策略.中国药理学通报.2004,20(1):19~24.
    [9] 欧仕益,包惠燕,蓝志东.FA及其衍生物的药理作用研究进展.中药材.2001,3:220-221.
    [10] Deng Zhi-Feng, Bi Ming, Wang Yang, Song Shu-Xin. Protection of sodium ferulate on cerebral ischemic reperfusion injury in rats after ischemic preconditioning. Chin J Clinical Rehabibitation. 2006, 10(8): 177-179.
    [11] Zhang ZH, Yu SZ, Bi CS. Influence of sodium femlate on human neutrophils-defived oxygen metabobites. Chin Pharmacol Bull. 2001, 17: 515-517.
    [12] Biu SP, Dang WD, Wu DF. Effects of sodium femlate on nitric oxide synthase and cyclooxygenase in colon of cobitis rats. Chin Pharmacol Bull. 2003, 19: 571-574.
    [13] Xie L, Yang LH, Bi XH. Resareh on the pharmacologic effects of Angebica Sinensis. Res. Traditional. Chin Med. 2000, 16: 56-58.
    [14] Kikuzaki H, Hisamoto M, Himse K. Antioxidant properties of ferubic acid and its related compounds. J Asnc Food Chem. 2002, 50: 2161-2168.
    [15] Imaizumis, Woolworht V, Fishman RA. Liposome entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats. Stroke. 1990, 21(9): 1312-1317.
    [16] Wnenack TM, Curran GI, Poduslo JF. Postischemic systemic adminitration of polyamine-modified superoxide dismutase reduce hippocam pal CA1 neurodegeneration in rat global cerebral ischemia. Brain Res. 1997, 754(1-2): 46-54.
    [17] Zhi-Qiu Wang, Du-Chu Wu, Feng-Ping Huang, Guo-Yuan Yang. Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia Brain Research. 2004, 996: 55-66.
    [18] Relton JK, Martin D, Russell D. Effects of peripheral IL-1ra treatment after focal cerebral ischemia in the rat. Soc. Neurosci. 1993, 19: 6732-6741.
    [19] Hara H, Fink K, Endres M, Friedlander RM, Gagliardini V, Yuan J, Moskowitz MA. Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein, J. Cereb. Blood Flow Metab. 1997, 17: 370-375.
    [20] Botha AJ, Moore FA, Moore EE, Sauaia A, Banerjee A, Peterson VM. Early neutrophil sequestration after injury: a pathogenic mechanism for multiple organ filure. J Trauma. 1995 39(3): 411-417.
    [21] Botha AJ, Moore FA, Moore EE, Kim FJ, Banerjee A, Peterson VM. Postinjury neutrophil priming and activation: an early vulnerable window. Surgery. 1995, 118(2): 358-364.
    [22] Perry VH, Bell MD, Brown HC, Matyszak MK. Inflammation in the nervous system. Cuff. Opin. Neurobiol. 1995, 5: 636-641.
    [23] Perry VH, Anthony DC, Bolton SJ, Brown HC. The bood-brain barrier and the inflammatory response. Mol. Medi. Today. 1997, 8: 335-341.
    [24] Li-FenChen, Chang BinHu, Yun-LanXie. Protection of compound fembic acid against cerebral Ischemic reperfusion injury in experimental rats. Chinese Journal of Clinical Rehabibitation. 2004, 8 (7): 1337-1339.
    [25] Weigand MA, Laipple A, Plaschke K, Eckstein HH, Martin E, Bardenheuer HJ. Concentration changes of malondialdehyde across the cerebral vascular bed and shedding of L-selectin during carotid endarterectomy. Stroke. 1999, 30(2): 306-311.
    [26] Hallenbeck JM, Dutka AJ. Background review and current concepts of repcrfusion injury. Arch Neurol. 1990, 47: 1245-1252.
    [27] Dyker AG, Lees KR. Duration of neuroprotective treatment for ischemic stroke. Stroke. 1998, 29(2): 535-542.
    [28] Fisher M, Takano K. Thepenumbra therapeutic time window and acute ischaemic stroke. Bailbieres Cbin Neurol. 1995, 4(2): 279-295.
    [29] 郑玉,熊利泽,朱正华.参附注射液对大鼠短暂性局灶性脑缺血损伤的治疗时间窗.第四军医大学学报2002,23(15):1353-1356.
    [30] 朱萧玲,熊利泽,陈绍洋,王强,徐宁,曾毅.川芎嗪注射液治疗大鼠脑缺血/再灌注损伤的时间窗.中华神经外科疾病研究杂志.2006,5(4):334-337.
    [31] Feuerstein GZ. Wang X. Animal models of stroke. Mol. Med. Today. 2000, 6: 133-135.
    [32] Gao Chang-yue, Zhou Hua-dong, Deng Juan, Pu Xing-fu. Effect of bigustrazine on cell adhesion after cerebral isehemia-reperfusion injury. Chinese Jouran of Cbinical Rehabibitation. 2006, 10(35): 178-192.
    [33] 孟庆年.川芎嗪注射液加补阳还五汤治疗急性脑梗塞38例.中西医结合实用临床急救.1999,6(1):12-14.
    [34] Gao CY, Zhou HD, Deng J, Pu XF. Effect of bigustrazine on cell adhesion after cerebral ischemia-reperfusion injury. Chinese Jouran of Clinical Rehabibitation. 2006, 10(35): 178-192.
    [35] Zhang ZH, Yu SZ, Wang ZT. Scavenging effects of tetramethylpyrazine on active oxygen free radicals. Acta Pharmacol Sin. 1994, 159(3): 229-231.
    [36] 陈洁文,汤湘江,万文成.川芎嗪对大鼠脑急性缺血缺氧损伤的保护作用.广州中医药大学学报.1998,15(1):60-63.
    [37] 马玉羡,孙保全,乔鹏.川芎嗪对缺氧致大鼠大脑皮层细胞质过氧化的影响.同济医科大学学报.1998,27(1):59-61.
    [38] 刘众,史荫绵,陈仁达.川芎嗪对急性实验性脑缺血大白兔血浆和脑脊液强啡肽Al-13含量的影响.中西医结合杂志.1990,10(3):160-163.
    [39] 赵建军,刘勇,陈新林,等.川芎嗪对大鼠局部脑缺血后空间学习和记忆的影响.西安交通大学学报:医学版,2006,27(2):127-131.
    [40] 邱芬,刘勇,张蓬勃,田英芳,赵建军,康前雁,祁存芳,陈新林.川芎嗪对成体大鼠局灶性脑缺血后皮质和纹状体半暗带细胞增殖的作用.中药材.2006,29(11):1196-1197.
    [41] 李建生,李建国,郭盛典,赵君玫.川芎嗪和参麦注射液对脑缺血再灌注肾脏损伤老龄大鼠自由基代谢的影响.中国药理学通报.2001,17(4):421-423.
    l) Bfightman M. W., Reese T. S., J. Cell Biol., 40, 649-677(1969).
    2) Reese T. S., Karnovsky M. J., J. Cell Biol. 34, 207-217(1967).
    3) Perry V. H., Anthony D. C., Bolton S. J., Brown H. C., Mole. Medi. Today, 8, 335-341(1997).
    4) Jain S., Mishra V., Singh P., Dubey P. K., Saraf D. K., Vyasa S. P., Int. J. Pharm., 261, 43-55(2003).
    5) Chopp W. M., Zhang R. L., Cben H., Li Y., Jiang N., Rusche J. R., Stroke, 25, 869-875(1994).
    6) Clark W. M., Madden K. P., Rothlein R., Zivin J. A., J. Neurosurg., 75, 623-627(1994).
    7) Oendeiman H. E., Lipton S. A., Tardieu M., Bukrinsky M. I., Nottet H. S. L. M., J. Leukocyte Biol., 56, 389-398(1994).
    8) Perry V. H., Mike D. B., Heidi C. B., Malgosia K. M., Curt. Opin. Neurobiol., 5, 636-641(1995).
    9) Hauzenberger D., Klominek J., Sundqvist K. G., J. Immunol., 153, 960-971(1993).
    10) Saiki I., Koike C., Obata A., Fuji H., Murata J., Kiso M., Hasegawa A., Komazawa H., Int. J. Cancer, 65, 833-839(1996).
    11) Richard G. L., Ruben V. H., James E. O., Joe L. M. J., Neurosci. Lett., 339, 199-202(2003).
    12) Senior R. M., Gresham H. D., Griffin G. L., Brown E. J., Chung A. E., J. Clin. Invest., 90, 2251-2257(1992)
    13) Kao W. J., Liu Y., Oundlood R., Li. J., Lee D., Einerson N., Burmania J., Stevens K., J. Control. Release, 75, 219-233(2002)
    14) Ming G., Xingye S., Liang K., Xin L., Hanfa Z., Anal. Chim. Acta, 556, 183-188(2006).
    15) Butterfield D., Castegna A., Pocernich C., Drake J., Scapagnini G., Calabrese V., J. Nutr. Biochem., 13, 444-447(2002).
    16) Gururaj J., Marzia P., Rukhsana S., Ravagna A., Vittodo C., Butterfield D. A., Neurochem. Int., 48, 318-327(2006).
    17) Kanski J., Aksenova M., Stoyanova A., Butterfield D. A., J. Nutr. Biochem., 13, 273-251. 2002.
    18) Kim H. S., Cho J. Y., Kim D. H., Yah J. J., Lee H. K., Suh H. W., Song D. K., Biol. Pharm. Bull., 27, 120-121(2004).
    19) Srinivasan M., Ram S. A., Raveendran P. K., Kumarc P. R., Sudhakaran P.R., Menon V. P., Toxicology, (in press) 2006.
    12) Ogiwara T., Satoh K., Kadoma Y., Murakami Y., Unten S., Atsumi T., Sakagami H., Fujisawa S., Anticancer Res., 22, 2711-2717(2002).
    21) Castelluccio C., Paganga G., Melikian N., Bolwell G. P., Pridham J., Sampson J., Rice-Evans C., Febs. Lett., 368, 158-192(1995).
    22) Rice E. C. A., Miller N. J., Paganga G., Free Radical. Bio. Med., 20, 933-956 (1996).
    23) Cben J. H., Ho C. T., J. Agr. Food Chem., 45, 2374-2378(1997).
    24) Boyd K. D., Sultana R., Pooh H. F., Mohmmad A. H., Lynn B. C., Klein J. B., Butterfield D. A., J. Neurosei. Res., 79, 707-713(2005).
    25) Kikuzaki H., Hisamoto M., Hirose K., Akiyama K., Taaiguchi H., J. Agr. Food Chem., 50, 2161-2168(2002).
    26) Yi W. R., Guang Y. L., Jing L. Z., Zao C. X. Brain Res., 982, 228-240(2003).
    27) Dan Q. L., Yong M. B., Yang L., Cheng F. W., Yuxin L., Li J. A., Brain Res., 1115, 179-185(2006).
    28) Butterfield D. A., Free Radical. Res., 36, 1307-1313(2002).
    29) Butterfield D. A., Castegna A., Lauderback C. M., Drake J., Neurobiol. Aging, 23, 655-664(2002).
    30) Butterfield D. A., Drake J., Pocemich C., Castegna A., Trends Mol. Med., 7 (548-554).
    31) Butterfield D. A., Lauderback C. M., Free Radical. Biol. Med., 32, 1050-1060(2002).
    32) Katzman R., Saitoh T., Faseb. J., 5, 278-286(1991).
    33) Chang X. M., Xu Y. L., Tao J. S., Feng Y., J. Chin. Material Med., 18, 300-302(1993).
    34) Hwang S. H., Maitani Y., Qi X. R., Takayama K., Nagai T., Int. J. Pharm., 179, 85-95(2004).
    35) Szoka F. J., Papahadjopoulos D., Proe. Natl. Acad. Sci., USA 75, 41944198(1978)
    36) Pons M., Foradada M., Estelrich J., Int. J. Pharm., 95, 51-56(1993)
    37) Paolo F., Maeromol. Chem., 182, 2183-2219(1981).
    38) Sternberg B., G. Gregodadis(Ed.), Liposome Technology, vol. I, CRC Press, Boca Raton, FL, (1993)
    39) Anthoy D. C., Bolton S. J., Fearn S. J., Fearn S., Perry V. H., Brain, 120, 435-444(1997).
    40) Lasek W., Wankowicz A., Kuc K., Feleszko W., Golab J., Giermasz A., Wiktor-Jedrzejczak W., Jakobisiak M., Cancer Immunol. Immun., 40, 315-321(1995).
    41) Zhu Y. G., Chen X. C., Chen Z. Z., Zeng Y. Q., Shi G. B., Su Y. H., Peng X., Acta Pharmacol. Sin., 25, 1606-1612(2004).
    42) Clerc S., Barenholz Y., Biochim. Biophys. Acta, 1240, 257-265(1995).
    43) Haran G, Cohen R., Bar L.K., Barenholz Y., Biochim. Biophys. Acta, 1151, 201-215(1993).
    44) Schiffelers R. M., Koning G. A., Timo L. M., Hagen ten, Fens M. H. A. M., Sehraa A. J., Janssen A. P. C. A., Robbert J. K., Molema G., Storm G., J. Control. Release, 91, 115-122(2003).
    45) Sudhakar A., Sugimoto H., Yang C., Lively J., Zeisberg M., Kallud R., proc Natl Acad Sci USA, 100, 4766-4771.
    46) Wickstro, S. A., Alitalo, K. & Keski-Oja, Cancer Res. 62, 5580-5589(2002).
    47) Rehn M., Veikkola T., Kukk-Valdre E., Nakamura H., Ilmonen M., Lombardo C., Pihlajaniemi T., Alitalo K., Vuori K. Proe. Natl. Acad. Sci. USA, 98: 1024-1029(2001).
    48) Senior R. M., Gresham H. D., Griffin G. L., Brown E. J., Chung A. E., J. Clin. Invest., 90, 2251-2257(1992).
    49) Oh T. Y., Lee J. S., Ahn B. O., Cho H., Kim W. B., Sureh Y. J., Cho S. W., Hahm K. B., Free Radical. Bio. Med., 30, 905-915(2001).
    50) Guidarelli A., Cattabeni F., Cantoni O., Free Radic. Res., 26, 537-47(1997).
    51) Alia M., Ramos S., Mateos R., Bravo L., Goya L., J Biochem Mol Toxicol 19, 119-128(2005).
    52) Garcia-Alonso F. J., Guidarelli A., Periago M. J., J. P., J. Nutr. Biochem., 17, (in press) 2006.
    1) Brightman M. W., Reese T. S., J. Cell Biol., 40, 649-677(1969).
    2) Reese T. S., Karnovsky M. J., J. Cell Biol. 34, 207-217(1967).
    3) Perry V. H., Mike D. B., Heidi C. B., Malgosia K. M., Curt. Opin. Neurobiol., 5, 636-641(1995).
    4) Perry V. H., Anthony D. C., Bolton S. J., Brown H. C., Mole. Medi. Today, 8, 335-341(1997).
    5) Chopp W. M., Zhang R. L., Chen H., Li Y., Jiang N., Rusche J. R., Stroke, 25, 869-875(1994).
    6) Clark W. M., Madden K. P., Rothlein R., Zivin J. A., J. Neurosurg., 75, 623-627(1994).
    7) Gendeiman H. E., Lipton S. A., Tardieu M., Bukrinsky M. I., Nottet H. S. L. M., J. Leukocyte Biol., 56, 389-398(1994).
    8) Jain S., Mishra V., Singh P., Dubey P. K., Saraf D. K., Vyasa S. P., Int. J. Pharm., 261, 43-55(2003).
    9) Saiki I., Koike C., Obata A., Fuji H., Murata J., Kiso M., Hasegawa A., Komazawa H., Int. J. Cancer, 65, 833-839(1996).
    10) Richard G. L., Ruben V. H., James E. O., Joe L. M. J., Neurosci. Lett., 339, 199-202(2003).
    11) Hauzenberger D., Klominek J., Sundqvist K. G., J. Immunol., 153, 960-971(1993).
    12) Gururaj J., Marzia P., Rttkhsana S., Ravagna A., Vittorio C., Butterfield D. A., Neurochem. Int., 48, 318-327(2006).
    13) Kanski J., Aksenova M., Stoyanova A., Butterfield D. A., J. Nutr. Biochem., 13, 273-281(2002).
    14) Kim H. S., Cho J. Y., Kim D. H., Yah J. J., Lee H. K., Sub H. W., Song D. K., Biol. Pharm. Bull., 27, 120-121(2004).
    15) Srinivasan M., Ram S. A., Raveendran P. K., Kumarc P. R., Sudhakaran P. R., Menon V. P., Toxicology, in press(2006).
    16) Ogiwara T., Satoh K., Kadoma Y., Murakami Y., Unten S., Atsumi T., Sakagami H., Fujisawa S., Anticancer Res., 22, 2711-2717(2002).
    17) Anthoy D. C., Bolton S. J., Fearn S. J., Fearn S., Perry V. H., Brain, 120, 435-444(1997).
    18) Wen A. D., Jiang Y. P., Huang X., Fan Y. X., Zhang L. H., J. Chin. Pharm. Sci., 4, 199-204 (1995).
    19) Senior R. M., Gresham H. D., Griffin G. L., Brown E. J., Chtmg A. E., J. Clin. Invest., 90, 2251-2257(1992).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700