用户名: 密码: 验证码:
三产品干扰床粗煤泥分选机及其数学模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗煤泥干扰床分选机作为一种新型的细粒煤分选设备,其应用越来越广泛。本文利用流化理论分析了干扰床中颗粒的流化状态,解释了干扰床的分选机理,在对传统干扰床进行单因素试验、正交试验的基础上,研制了三产品干扰床粗煤泥分选机。通过试验发现新型三产品干扰床对难选煤泥分选效果远好于传统干扰床分选机,对于易选煤可获得比传统干扰床更高的数量效率,对于难选煤可获得更低的精煤灰分。基于干扰沉降速度经验公式和有限差分法构建了传统干扰床分选的数质量平衡模型,并进一步构建了三产品干扰床的数学模型,为三产品干扰床分选机的深入研究和工业化奠定了良好基础。
As new equipment for fine coal separation, the application of TBS for coarse coal slime hasbeen more and more extensive. The fluidization statement of the particles in TBS has beenanalyzed using fluidization theory. Separation mechanism of TBS was explained. Based on thesingle factor and orthogonal experiments of traditional TBS, a new three-product TBS wasdeveloped. Single factor experiments of new machine were conducted. It was shown thatperformance of the new machine is better than traditional machine. Higher organic efficiency wasobtained for coal which is easy to process, and lower ash content of clean coal was obtained forcoal which is hard to process. A population balanced model has been developed to represent theseparation in a traditional TBS based on empirical formula for hinded-settling velocity andpopulation balance. Furthermore, a mathematical model of three-product TBS was developed.Validation of model using experimental data was conducted. The foundation for further researchand industrialization of the new equipment was established by mathematical model study.
引文
1.黄盛初.2010中国煤炭发展报告[R].北京:煤炭工业出版社,2010:4-6.
    2.刘炯天.煤炭应走低碳发展之路.中国矿业报,2011.3
    3.濮洪九.中国煤炭可持续开发利用及环境对策研究[M].徐州:中国矿业大学出版社,2010:1-7.
    4.陈清如,中国洁净煤战略思考.黑龙江科技学院学报,2004(05)
    5.陈清如,发展洁净煤技术推动节能减排.中国高校科技与产业化,2008(03)
    6.中华人民共和国科学技术部,国科发计〔2012〕196号,洁净煤技术科技发展“十二五”专项规划,北京:2012
    7.刘佳喜等.选煤工业现状及发展战略.煤炭科学技术,2011.5,89-92
    8.李延锋.细粒煤在液固流化态介质中高效分离研究[D].徐州:中国矿业大学,2004.
    9.欧泽深.煤炭洗选和脱硫的最佳工艺——重介质旋流器与微泡浮选柱的合理配合.内部资料.
    10.杨俊利.我国选煤技术现状及其发展方向[J].第十届煤炭分选及加工学术研讨会论文集,徐州:中国矿业大学出版社,2004:16-18.
    11.程敢,徐宏祥等.细粒煤分选技术与设备发展.矿山机械,2012,8:1-2
    12.王建军,焦红光,谌伦建.干扰床分选技术的发展与应用.选煤技术,2007,(3):70~72
    13. Zhou J, Walton K, Laskovski D, et al. Enhanced separation of mineral sands using the refuxclassifer. Minerals Engineering,2006,19:1573~1579
    14.舒长河,张小平,梁翾翾.液-固流化床回收印刷线路板中金属的研究.环境工程学报,2009,3(5):902~906
    15. Mankosa M J, Carver R. M. Processing of chopped wire waste material using the floatexdensity separator..3rd international symposium on recycling of metals and engineeredmaterials.1995:111-120
    16. Hyde, D.A., et al., Beneficiation of fine coal using the hydrosizer.. Mine and Quarry,1988.17(3): p.50-54.
    17. Galvin, K.P., Pratten S.J. and Nicol, S.K.. Dense Medium Separation Using a Teetered-BedSeparator[J].Minerals Engineering,1999(12):1059-1087.
    18. Maharaj, L. Pocock, J., Loveday, B.K..The effect of distributor configuration on thehydrodynamics of the teetered bed separator[J].Minerals Engineering,2007,20(11):1089-1098.
    19. K. P. Galvin, S. J. Pratten, N. Lambert, A. M. Callen, J. Lui.Influence of a jigging action onthe gravity separation achieved in a teetered bed separator[J].Minerals Engineering,2002,15(12):1199-1202.
    20. J.N. Kohmuench, M.J. Mankosa. Process engineering evaluation of the CrossFlowseparator[J].Minerals&Metallurgical Processing.2002,19(2):43-49.
    21. Kohmuench, J.N., Mankosa, M.J. etc. Industrial applications of the CrossFlowseparator[J].2005Heavy Minerals Conference Proceedings, HMC2005:189-195.
    22. Partha Venkatraman,Weng S.Kow..application of floatex/spiral circuit in processing silicasand[J].2000SME Annual Meeting. Preprint No00-162.
    23. G. Kapure, C. Kari, S.M. Rao and N.D. Rao.The feasibility of a slip velocity model forpredicting the enrichment of chromite in a Floatex density separator[J].International Journalof Mineral Processing,2007,82(2):86-95.
    24. K.P. Galvin, S. Pratten, G. Nguyen Tran Lam.A generalized empirical description for particleslip velocities in liquid fluidized beds[J].Chemical Engineering Science,1998,19(11):1045-1052.
    25. E. Doroodchi, J. Zhou a, D.F. Fletcher, K.P. Galvin.Particle size classification in a fluidizedbed containing parallel inclined plates[J].Chemical Engineering Science,2005,19(9):162–171.
    26. K.P. Galvin, E. Doroodchi, A.M. Callen, N. Lambert, S.J. Pratten.Pilot plant trial of the refluxclassifier[J].Minerals Engineering,2001:19-25.
    27. Nguyentranlam, G., Galvin, K.P..Particle classification in the reflux classi.er[J].MineralsEngineering,2001(14):1081–1091.
    28. J. Zhou, K. Walton, D. Laskovski, P. Duncan and K.P. Galvin.Enhanced separation of mineralsands using the Reflux Classifier[J].Minerals Engineering,2006,19(15):1573-1579.
    29. K.P. Galvin, A. Callen, J. Zhou, E. Doroodchi.Performance of the reflux classifier for gravityseparation at full scale[J].Minerals Engineering,2004,7(5):19–24
    30. Michael J. Mankosa Jaisen N. Kohmuench.In-plant testing of the hydrofloat separator forcoarse phosphate recovery final report[J].florida institute of phosphate research,July2002:8-38.
    31. M·曼科萨.水力浮选分选机的半工业试验研究[J].国外金属矿选矿,2001(5):40-44.
    32. Kohmuench, J.N., Luttrell, G.H., and Mankosa, M.J.. Coarse particle concentration using theHydroFloat Separator.Minerals&Metallurgical Processing,2001,18(2):187-195.
    33.《中国选矿设备手册》编委会.中国选矿设备手册[M].北京:科学出版社,2006:488-491.
    34.邹健,周鲁生,李锐,等.AFX-100复式流化分级机的开发及工业试验研究[J].金属矿山,2006(3):32-36.
    35. Snoby, R.J,Grotiohann,P. and Jungmann,Andreas, Allflux-New technology for separation ofcoal slurry in the size range of3to0.15mm,16th internation coal preparationconference,1999:126-139.
    36.陈子彤,干扰床分选机分选粗煤泥的规律研究.北京:中国矿业大学(北京),2005
    37.中国矿业大学(北京).基与重力和界面力的粗煤泥干扰床分选设备及方法及应用.发明人:刘文礼,陈子彤,符东旭. Int.Cl.B03B5/46(2006.01).中国,实用新型专利,200810225884.5.2009.4.
    38.刘文礼,陈子彤,位革老,等.干扰床分选机分选粗煤泥的规律研究.选煤技术,2007,(4):11~13
    39.刘文礼等,干扰床分选机分选粗煤泥的规律研究.选煤技术,2007(04).
    40.刘文礼,陈子彤,基于重力和界面力的粗煤泥干扰床分选设备及方法及应用.2008.
    41.位革老.干扰床分选机分选粗煤泥规律的研究.北京:中国矿业大学(北京),2008
    42.王威.干扰床分选机分选粗煤泥的半工业性试验研究.北京:中国矿业大学(北京),2009
    43.焦红光,惠兵,冯金涛,等.新型粗煤泥干扰床分选技术的研究.煤炭工程,2009,(2):85~87
    44.焦红光,惠兵,粗煤泥阻尼脉动干扰床分选机.2008.
    45.中国矿业大学.多产品液固流化床分选分级设备.发明人:李延峰,刘炯天.中国,实用新型专利,2009.9.9
    46. Mankosa, M.J., F.L. Stanley, and R.Q. Honaker, Combining Hydraulic Classification andSpiral Concentration for Improved Efficiency in Fine Coal Recovery Circuits, in HighEfficiency Coal Preparation, S.K. Kawatra, Editor.1995.
    47.涂必训.中马村选煤厂粗煤泥分选的试验研究.选煤技术,2008,(4):44~46
    48.王建军,焦红光,谌伦建.干扰床分选技术的发展与应用.选煤技术,2007,(3):70~72
    49.张志文, TBS干扰床及其在粗煤泥分选中的应用.中国煤炭,2006(12).
    50.路磊涛, TBS在梁北选煤厂的应用研究.煤,2008(08).
    51.朱妍,杨永峰.TBS干扰床在大武口洗煤厂金能分厂的应用.应用科学,2010年22期,160
    52.卫中宽, TBS在张双楼选煤厂的应用.中国煤炭,2008(03).
    53.卫中宽,干扰床分选机(TBS)在张双楼选煤厂的应用.煤炭加工与综合利用,2008(01).
    54.吴朝龙,李延峰等.液固流化床分级与分选联合工艺的研究与应用.选煤技术,2012,4:15-19
    55. Jean,R.H. and Fan, On the Criteria of solids layer inversion in liquid-solid fluidized bedcontaining a binary mixtuire of particles. Chem.Eng.Sci,412811-2821(1986)
    56. Mehrani,P. Segregation and Mixing in binary liquid fluidized beds.B.Sc. Thesis,Univ. ofBritish Colubia, Vancouver(1999)
    57. Mostoufi,N. Prediction of effective drag coefficient in fluidized beds. Chem. Eng.Sci,54851-858
    58. Grace,J.R.,Contacting modes and behaviour classification of gas-solid and other two-phasesuspensions,Can.J.Chem.Eng.,64353-363
    59. Yin, X. and D.L. Koch, Hindered settling velocity and microstructure in suspensions of solidspheres with moderate Reynolds numbers. Physics of Fluids,2007.19(9): p.093302.
    60. Van Schoor, J. Settling velocities of particles in a hindered settling device.2008. Carlton, VIC3035, Australia: Australasian Institute of Mining and Metallurgy.
    61. Long, Y., T. Dabros, and H. Hamza, Stability and settling characteristics of solvent-dilutedbitumen emulsions. Fuel,2002.81(15): p.1945-1952.
    62. Mazzolani, G., F. Pirozzi, and G. d'Antonoi, A generalized settling approach in the numericalmodeling of sedimentation tanks. Water Science and Technology,1998.38(3): p.95-102.
    63. Mercer, T., et al., Hindered settling of particulate dispersions. Journal of Magnetism andMagnetic Materials,1999.193(1-3): p.284-287.
    64. Mizrahi, J. and M. Goldberg, COMPUTER SIMULATION OF UNFLOCCULATEDHINDERED SETTLING.1969.7(5): p.385-92.
    65. Hofler, K., S. Schwarzer, and B. Wachmann, Simulation of hindered settling in bidispersesuspensions of rigid spheres. Computer Physics Communications,1999.122: p.268-269.
    66. Richardson, J.F. and W.N. Zaki, Sedimentation and Fluidization:Part I.. Transactions of theInstitute of Chemical Engineering,1954.39: p.32.
    67. Lockeet, M.J. and H.M. Al-Habbooby, Relative Particle Velocities in Two-Species Settling.Powder Technology,1974.10: p.5.
    68. lockeet, M.J. and H.M. Al-Habbooby, Differential Settling by Size of Two Particle Species in aLiquid. Transactions of the Institute of Chemical Engineering,1973.51: p.12.
    69. Al-Naafa, M.A. and M.S. Selim, Sedimentation of Polydisperse Concentrated Suspensions.Canadian Journal of Chemical Engineering,1989.67: p.12.
    70. Davis, R.H. and H. Gecol, Classification of concentrated suspensions using inclined settlers.International Journal of Multiphase Flow,1996.22(3): p.563-574.
    71. Davis, R.H. and H. Gecol, Hindered Settling Function with no Empirical Parameters forPolydisperse Suspensions. AIChE Journal,1994.40(3): p.6.
    72. Kohmuench, J.N., Improving Efficiencies in Water-Based Separators Using MathematicalAnalysis Tools, in Virginia Polytechnic Institute.2000. p.199.
    73. Honaker, R.Q. and K. Mondal, Dynamic modeling of fine coal separations in a hindered-bedclassifier. Coal Preparation,2000.21(2): p.211-232.
    74. Masliyah, Hindered Settling in a Multi-Species Particle System. Chemical EngineeringScience,1979.34: p.3.
    75. Galvin, K.P., DENSE MEDIUM SEPARATION USING A TEETERED BED SEPARATOR.Mineral Engineering,1999.12(9): p.23.
    76. Galvin, K.P., A generalized empirical description for particle slip velocities in liquid fulidizedbeds. Chemical Engineering Science,1999.54: p.8.
    77. Galvin, K.P., Measurement of Particle Velocity during Sediment Consolidation. ChemicalEngineering Science,1996.51(12): p.6.
    78. Bailey, Numerical Modeling of Multiphase Particulate Flow and Its Application toSedimentation. Particulate Science and Technology,1987.5: p.14.
    79. Y.T., S., Hydrodynamic of Sedimentation of Multisized Particles. Powder Technology,1987.55: p.15.
    80. Honaker, R.Q. and K. Mondal, Dynamic modeling of fine coal separations in a hindered-bedclassifier. Coal Preparation,2000.21(2): p.211-232.
    81. Honaker, R.Q., A.V. Ozsever, and B.K. Parekh. Gravity-based Separations using a HydraulicClassifier for Coal Cleaning. in SME Annual Meeting.2001. Denver, Colorado
    82. Kohmuench, J.N., Improving Efficiencies in Water-Based Separators Using MathematicalAnalysis Tools, in Virginia Polytechnic Institute.2000. p.199.
    83. Galvin, K.P., DENSE MEDIUM SEPARATION USING A TEETERED BED SEPARATOR.Mineral Engineering,1999.12(9): p.23.
    84. Galvin, K.P. and S.J. Pratten, Influence of a jigging action on the gravity separation achieved ina teetered bed separator. Mineral Engineering,2002.15: p.4.
    85. Galvin, K.P., et al., Pilot plant trial of the reflux classifier. Minerals Engineering,2002.15(1-2):p.19-25.
    86. Galvin, K.P., A generalized empirical description for particle slip velocities in liquid fulidizedbeds. Chemical Engineering Science,1999.54: p.8.
    87. Galvin, K.P., Measurement of Particle Velocity during Sediment Consolidation. ChemicalEngineering Science,1996.51(12): p.6
    88. Kim, B.H., modeling of hindered-settling column separations.
    89. Kim, B.H. and M.S. Klima, Simulation of hindered-settling column separations whenprocessing fine anthracite refuse. Coal Preparation,2004.24(5-6): p.261-275.
    90. Kim, B.H. and M.S. Klima, Development and application of a dynamic model forhindered-settling column separations. Minerals Engineering,2004.17(3): p.403-410.
    91. Kim, B.H. and M.S. Klima, Simulation of Hindered-Settling Column Separations for SoilRemediation. Journal of Environmental Science and Health-Part A Toxic/HazardousSubstances and Environmental Engineering,2004.39(1): p.19-33.
    92. Kim, J. and H. Cho, Recovering carbon from anthracite using a hindered-settling column.Minerals&Metallurgical Processing,2003.20(2): p.107-112.
    93. Xia, Y.K., Applications of computational fluid dynamics (CFD) tools for gravity concentratorsin coal preparation. Chemical Product and Process Modeling,2007.2(1): p.11.
    94. Xia, Y.K., CFD simulation of fine particle gravity separation in hindered-settling bedseparators. Chemical Product and Process Modeling,2007.2(3): p.11.
    95. Xia, Y.K. and PENG, Effect of structured plates on fine coal gravity separation in a liquidfluidized bed system. Engineering Applications of Computational Fluid Mechanics,2007.1(3):p.17.
    96. Kwon, J.H. and H.C. cho. simulation of hindered-settling column separation process usingDEM. in ⅩⅩⅣ international mineral processing Congress.2008. Beijing.
    97. Das, A. and B. Sarkar, Prediction of separation performance of Floatex Density Separator forprocessing of fine coal particles. International Journal of Mineral Processing,2009.91: p.9.
    98. Aihua Chen. Modeling of continuous particle classification in a liquid medium. Doctorthesis.2000,39-59
    99. HMaharaj L, Pocock J, Loveday B K. The effect of distributor configuration on thehydrodynamics of the teetered bed separator. Minerals Engineering,2007,20(11):1089~1098
    100.陈友良.粗煤泥干扰床分选理论与试验研究.北京:中国矿业大学(北京),2011
    101.化学工业部认识教育司.化学工业部教育培训中心.固体流态化与应用.化学工业出版社:北京:1997
    102.郭慕孙,李洪钟等。流态化手册。北京:化学工业出版社,2008.
    103.杨胜林,朱爱敏.入料粒度及床层密度对干扰床分选效果的影响.煤炭科学技术.2012Vol40No1,p126~128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700