用户名: 密码: 验证码:
双轴式太阳自动跟踪系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳自动跟踪系统是开发并有效利用太阳能资源不可或缺的重要的组成部分,目前使用的太阳能电池光电转换率非常低,实验室约为24%,产业化约为15%。理论分析表明:在太阳能发电系统中,在相同条件下,跟踪式系统的能量接收率比非跟踪式系统的接收率提高37.7%。因此,为了提高太阳能利用率,本文研究设计了一种以AVR单片机为控制核心的双轴式太阳自动跟踪系统。
     在对国内外各种太阳跟踪装置的原理进行研究分析的基础上,本文设计了一种光电检测跟踪和太阳方位-高度角跟踪相结合的双轴式太阳跟踪系统。系统通过读取GPS时间信息,判断白天和黑夜。根据天气状况选择跟踪模式,晴天时,系统采用光电检测跟踪;阴天时,系统处于暂停等待状态,不盲目跟踪;阴天变为晴天瞬间系统选择太阳方位-高度角跟踪模式,调整到位之后则进入光电检测跟踪模式。通过AVR单片机计算输出步进脉冲,控制步进电机的转动,实现对太阳轨迹的自动跟踪,使之与太阳能电池板组合之后太阳能电池板表面始终对准太阳。当遇到破坏性大风天气时,通过风速风向传感器检测,使系统驱动太阳能电池板转到最佳倾斜角度,之后电机停止转动。为了更好的管理系统,采集模块采集太阳能电池的参数和传感器检测的数据以无线通信方式发送到PC机上显示。本文在ICC AVR软件开发环境下完成了系统的主程序模块、光电检测跟踪模块、太阳方位-高度角计算模块、ATmega64L单片机读取GPS数据信息模块、步进电机脉冲计算模块、无线通信模块以及其他相关功能模块的软件设计。
     本系统的硬件选型和配置,核心控制芯片选用AVR单片机ATmega64L,设计了ATmega64L的外围硬件电路,并对各部分的原理做出了详细的介绍。系统选用两个脉冲分配器PMM8713和一个功率放大器ULN2803组成两台步进电机的驱动电路;无线收发芯片选用Nanotron公司的基于IEEE 802.15.4a通信协议的NA1TR8,该芯片和CDDL 1804、150Q:50Ω平衡-不平衡转换器Balun、带通滤波器BPF组成无线收发模块;GPS模块选用GS-15B,风速风向检测选用wi29612数字风速风向传感器。在设计的过程中,对每个模块实现功能、硬件结构和电路原理做了详细说明。
     经过调试,本文设计的双轴式太阳自动跟踪系统是切实可行的。该系统具有跟踪精度高、运行可靠、抗干扰性强、实用性强等特点。
The solar automatic tracking system is an indispensable and important component in the field of developing and using solar energy. At present, photoelectric conversion rate of solar cell is very low, about 24% in lab, and about 15% in industrialization. Theory and analysis show that:at the same condition, the enery receiving rate of a tracked system is 37.7% higher than the non-tracking system in the solar power system. Therefore, in order to improve utilization rate of solar energy, a double-axis solar automatic tracking system which uses an AVR microcontroller as control core is researched and designed in this paper.
     On the basis of researching and analysing the principle of various international and domestic solar tracking devices, the double-axis solar automatic tracking system combines photoelectric detection tracking and solar altitude-azimuth tracking. Day and night are judged via reading GPS time information. Tracking modes are selected according to the weather condition. When it is sunny, the system adopts photoelectric detection tracking mode; When it is cloudy, the system is in temporarily wait state and not tracking blindly; At the moment of cloudy transforming into sunny, system selects solar altitude-azimuth tracking mode and adjusts in place then enters photoelectric detection tracking mode. The AVR microcontroller calculates and outputs stepping pulse to control the rotation of the stepping motor, and to realize automatic tracking the orbit of the solar. The solar energy cell which combines with the solar automatic tracking device can always point at the sun. When meeting the destructive windy day, the system detects the weather via wind speed-direction detection sensor to drive solar panel to twirl to the best dip angle, and then stepping motors stop runing. In order to manage the system better, solar cell's parameters are collected by acquisition modules and data are detected by sensors. These parameters and data are sent to PC via wireless communication. Based on the ICC AVR software development environment, we complete software design of the system. Software includes system main program module, photoelectric detection tracking module, solar altitude-azimuth calculation module, wireless communication module and other relevant function module.
     This system's hardware selection and configuration:The core control chip selects AVR ATmega64L, and design ATmega64L's peripheral hardware circuit, and make a detailed introduction for each parts'principle. Two pulse distributions PMM8713 and a power amplifier ULN2803 are choosed and connected to drive two stepping motors. A Nanotron's NA1TR8 based on IEEE 802.15.4a is selected to realize wireless communication. The wireless transceiver module contains NA1TR8, CDDL 1804,150Ω:50ΩBalun, BPF. A GS-15B provides GPS data. Wind speed--direction detection chooses wi29612 digital wind speed-direction detection sensor. During the design process, a detailed explanation is made for each module's function, hardware structure and circuit principle.
     Through the joint hardware and software debugging, double-axis solar automatic tracking system design is practical and feasible in this paper. This system has high tracking accuracy, reliable running, strong anti-jamming capability and strong practicability.
引文
[1]郑小年,黄巧燕.太阳跟踪方法及应用[J].能源技术,2003,24(4):149-151.
    [2]李敏.太阳光照明的关键技术研究[D].重庆:重庆大学,2008.
    [3]P. A. Davies. SUN-TRACHING MECHANISM USING EQUATORIAL AND ECLIPTIC AXES, Solar Energy,1993,50 (6):487-489.
    [4]William A. Lynch and Ziyad M. Salameh. SIMPLE ELECTRO-OPTICALLY CONTROLLED DUAL-AXIS SUN TRACKER, Solar Energy,1990,45 (2):65-69.
    [5]张迎胜.子午坐标双轴完合跟踪系统[J].太阳能学报,1992,13(3):298-302.
    [6]张顺心,宋开峰,范顺成.基于并联球面机构的太阳跟踪装置研究[J].河北工业大学学报,2003,32(6):44-49.
    [7]饶鹏,孙胜利,叶虎勇.两维程控太阳跟踪器控制系统的研制[J].控制工程,2004,11(6):532-535.
    [8]方玲李,晓波,廖兰兰,朱志华.提高太阳能电池板光电转化率的研究[J].中国新技术新产品,2008,16(11),3-3.
    [9]许颖.非晶体/单晶体异质结合电池的研究[J].中科院半导体所,2007,33(5):26-27.
    [10]张起勋,于海业.太阳能及提高其利用率方法综述[J].农机化研究,2010,1(10):241-244.
    [11]张常年,赵红怡,吕原.太阳能电池自动追踪系统的研制[J].计算机应用,2001,27(12),26-27
    [12]毛桂生.太阳能电池板自动追踪系统的研究[D].广州:华南理工大学,2010.
    [13]赵争鸣,刘建政,孙小瑛,袁立强.太阳能光伏发电及其应用[M].北京:北京科学出版社,2005:18-24.
    [14]朱飞,杨平.AVR单片机C语言开发入门与典型实例[M].北京:人民邮电出版社,2010:15-23.
    [15]耿德根,宋建国,马潮,叶勇建.AVR高速嵌入式单片机原理与应用[M].北京:北京航空航天大学出版社,2003:34-39.
    [16]孙运旺.传感器技术与应用[M].浙江:浙江大学出版社,2006:110-125.
    [17]广州市宏诚集业电子科技有限公司.中国环保设备展览网[EB/0L].http://www.hbzhan.com/Tech_news/Detail/3698.html.
    [18]曹婷婷,高玉.GPS中NMEA-0183协议的应用[J].电子工程师,2006,32(10):8-11.
    [19]黄丹青,费敏锐.IEEE 802.15.4a工业无线标准的研究与应用[J].自动化仪表,2010,31(1): 5-9.
    [20]侯维岩,杨傲雷.基于IEEE802.15.4a的无线测控网络协议[J].网络与通信,2009,35(16):101-103,106.
    [21]张锦,侯维岩,杨傲雷.基于IEEE802.15.4a的工业无线网络嗅探器[J].电子技术应用,2009,6:139-142.
    [22]汤竞南,沈国琴.51单片机C语言开发与实例[M].人民邮电出版社,2008:113-141.
    [23]赵琳娜.空心电抗器内表面检测仪传动和控制系统设计研究[D].长春:长春理工大学,2009.
    [24]王晓明.电动机的单片机控制[M].北京:北京航空航天大学出版社,2007:183-188.
    [25]林皓.基于步进式电机控制的四维机器人的研究与应用[D].上海:上海交通大学,2008.
    [26]坂本正文(日)著,王自强译.步进电机应用技术[M].北京:科学出版社,2010:97-107.
    [27]谭建成.电机控制专用集成电路[M].北京:机械工业出版社,1997:210-219.
    [28]杨刚,黎冠文.基于Labview的太阳能电池温度采集和数据保存系统[J].中国科技信息,2008,2:248-249.
    [29]赵争鸣,刘建政等.太阳能光伏发电及其应用[M].北京:科学出版社,2005:133-134.
    [30]吴文昭,吴志刚,王韬.自动高效太阳能最大功率跟踪系统的研究[J].电测与仪表,2010,47(7A):48-52.
    [31]赵争鸣.太阳能光伏发电及其应用[M].北京:科学出版社,2008:171-175.
    [32]胡新.太阳能光伏电源系统应用技术[R].太阳能充电器,2007.
    [33]Nanotron Technologies GmbH. nanoNET TRX Transceiver (NA1TR8) Datasheet, Nanotron Technologies, Version 2.09.
    [34]IEEE802.15.4a. IEEE standard for information technology-telecommunications and information exchange betweens ystems-local and metropolitan area networks-specific requirements part 15.4:Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks(WPANs)[S], IEEE,2007.
    [35]Luca De Nardis, Maria-Gabriella Di Benedetto. Overview of the IEEE 802.15.4a standards for low data rate wireless personal data networks[C]. Hannover, Germany:4th Workshop on Positioning, Navigation and Communication(WPNC'07),2007:285-289.
    [36]侯维岩,刘伟春,程俊锋.面向无线工业网络的数据链路层协议WICN-Z[J].仪器仪表学报,2008,29(3):638-643.
    [37]Kai-ru ZHANG, Lun-wei MO, Mei-yu TANG. Research of the Wireless Management System for Solar Street Lamp Based on NanoLOC AVR Module. Journal of Measurement Science and Instrumentation,2010,2 (1):55-59.
    [38]贺鹏飞.超宽带无线通信关键技术研究[D].北京:北京邮电大学,2007.
    [39]杨傲雷,侯维岩.基于IEEE802.15.4a标准的工业无线网络节点设计[J].嵌入式系统工程,2009,30(12):2834-2837.
    [40]张亚薇.一种高精度I/F变换器的研究[D].西安:西安工业大学,2010.
    [41]Zheng Xiaoqian, Huang Mingqi. Design and Implement of Master and Slave Communication of PROFIBUS-DP[J].2007,1 (21):145-147.
    [42]Fei Zhongcheng, Wang Qinruo, Cao Guoyong. The High-speed Hydraulic Control System Design Based on Microprocessor[J]. Machine Tool & Hydraulics,2009,37 (8):163-164,209.
    [43]YAO Nan, WU Ming-li. Coordination of line detection with automatic re-closing in DC traction power supply systems[J]. Microcomputer Information,2009,19 (1):94-96.
    [44]Larry OCull Richard Barnett Sara.嵌入式C编程与Atmel AVR[M].清华大学出版社,2003:75-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700