用户名: 密码: 验证码:
河床式水电站厂房坝段横缝止水布置形式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河床式水电站水头比较低,而单机流量通常较大,这样水电站厂房的进水口、蜗壳和尾水管等尺寸较大。厂房结构主要由上游挡水墩墙、流道、下游挡水墩墙、排沙孔、主厂房上部和下部结构等组成,是由多个孔洞组成的复杂三维孔洞结构。作为挡水建筑物,厂房上、下游面要承受水压力,使河床式水电站厂房的内力分布较其它型式的厂房更加复杂。进水口、闸墩、蜗壳、尾水管等主要部位都处于高应力状态,厂房坝段横缝止水的合理布置对缓解以上部位的应力状态非常有利。但到目前为止,对于河床式水电站厂房坝段横缝止水布置形式还没有统一的规定,国内外在此方面的研究很少,设计中主要是根据工程经验布置。因此,通过理论分析和数值计算分析,提出合理的布置形式是十分必要的。
     本文结合实际工程,本着“从工程中来,到工程中去”的原则,以河床式水电站厂房坝段横缝止水布置形式研究为主导,建立了不同止水布置形式的河床式水电站厂房模型,分别进行了三维有限元静力和动力计算,对比分析了几种常见的厂房坝段横缝止水布置形式下厂房主要结构应力分布规律,通过厂房坝段横缝止水布置形式对厂房主要结构应力的敏感性分析,提出了合理的止水布置形式,为工程设计提供参考依据,对节省工程投资具有重要意义。
     通过计算分析得出:合理的横缝止水布置能有效改善厂房坝段进水口、蜗壳、尾水管、尾水出口等部位的应力状态。在满足运行要求的前提下,厂房坝段横缝上游止水尽可能向下游移,下游止水尽可能向上游移,使进水口和尾水出口处内、外水压力接近平衡,减小正常运行情况下该部位的拉应力;水平止水应该适当抬高,使流道内、外水压力接近平衡,减小正常运行情况下蜗壳和尾水管的拉应力。另外,由于厂-厂坝段和厂-坝坝段两横缝内止水位置不同,充水面积不同,水压力不平衡,常常使厂房坝段整体受扭,导致进水口或出水口角缘应力很大,应当尽可能调整厂房坝段两侧横缝内的止水布置,减小两侧的不平衡水压力,能有效改善以上部位的应力状态;对于单机流量较大的水电站厂房,横缝止水布置不能单纯从静力角度去考虑,还应进行动力校核计算,通过综合分析,选择满足各种运行工况的最佳横缝止水布置。
In general, the head pressure of power station in river channel is lower comparatively, but the unit discharge is always greater, in this way, the dimension of the hydropower house is usually larger. The mill construction is composed of retaining wall in upstream, flow passage, retaining wall in downstream, sand sluice, superstructure and substructure of main generator room, which is a 3D cavity structure. As water retaining structure, the upstream face and downstream face are direct-contacted with water, formed a heavenward face, bearing horizontal applied force of upstream and downstream, lead to the distribution of inner force is more complex than other type power house. The main parts of mill construction all are in high stress state such as pier, spiral case, draft tube etc. Reasonable water seal layout is beneficial for releasing stress state of those parts. Until the present time, there is no uniform regulation about water seal layout of power station in river channel. There is no report and study about this aspect, both here and abroad. The lay lout always based on engineering experience. Setting out the reasonable water seal layout on paper by computation is very necessary.
     With reference to the engineering project, in this paper, mainly study on water seal layout of power station in river channel, the 3-D finite element model is boiled and static and dynamic stress were calculated, contrasted stress distribution of differ water seal layout Setting out the reasonable water seal layout, offer reference for engineering design and save the investment.
     By computational analysis gotten out: the reasonable water seal layout is efficiency for modify the stress state of water inlet, pier, spiral case, draft tube, tail water outlet, etc. Satisfied operating requirement and other design specification, the water seal in upstream should be moved to downstream and the water seal in downstream should be moved to upstream as so far as possible, the level water seal should be drive up proper, lead to balance between inside and outside of channel. Because of water seal layout in the two transverse joint of power house monolith are different, the surface of water filled is different so, the water pressure is not balance, always lead to the whole power house monolith subjected to torsion, so the stress of corner brim at water inlet and tail water outlet is greater, thus, should adjust the water seal layout in the two transverse joint, making the water pressure approximate equilibrium in both side, that can modify the stress state effective. For the larger unit capacity power station, the water seal layout in joint should carry out dynamic stress check computation, can't just consider for static stress aspect.
引文
[1]潘家铮.中国水利建设的成就、问题和展望[J].中国工程科学.2002,4(2):42-51.
    [2]许百立.中国的坝工建设[J].水利水电科技进展.1999,19(5):2-6.
    [3]A.H.苏罗沃叶夫.在平原河段上修建低水头水利枢纽[J].水利水电快报.1998,19(6):13-15.
    [4]曾新民.对低水头河床式电站设计的体会[J].水力发电.2005,31(9):33-35.
    [5]陆宗磐.中国水电站厂房设计和展望[J].水利水电工程设计.2000,19(4):1-3.
    [6]练继建,王海军,王日宣.河床式水电站厂房结构动力特性研究[J].水利水电技术.2004,35(8):37-40.
    [7]董毓新,李彦硕.水电站建筑物结构分析[M].大连:大连理工大学出版社,1995
    [8]吴张清.河床式水电站厂房设计[J].水利科技,1998,76(3):48-51.
    [9]朱伯芳.有限单元法原理与应用.第二版[M].中国水利水电出版社,1998
    [10]王勖成,绍敏.有限单元法基本原理和数值方法[M].第二版.清华大学出版社,1997
    [11]谭建国.使用ANSYS 6.0进行有限元分析[M].北京大学出版社,2002.9
    [12]定安.工程结构数值分析方法及程序设计[M].天津大学出版社,1995
    [13]Lui E M,Chen W F.Frame Analysis with Panel Zone Deformation.Int[C].J.Solids Struct,1986,22:1599-1627
    [14]焦俊婷,刘立渠.结构力学的有限元分析[J].嘉应大学学报(自然科学版),2002,20(3):74-76.
    [15]王珊,蔚洪潮,宗鑫.钢框架变形分析——考虑节点板域剪切变形影响[J].北方工业大学学报,1995,7(3):88-96.
    [16]魏钢,卢清刚,王松涛.考虑剪切变形及连接刚度的半刚域杆单元及应用[C].房屋钢协会议专集,1998:3-6
    [17]许红胜,舒兴平,尚守平.考虑节点域剪切变形的空间钢框架结构分析[J].空间钢结构,2000,48(2):29-33.
    [18]唐兴荣.框架剪力墙结构考虑剪力墙剪切变形时的内力和位移[J].苏州城建环保学院学报,1996.9(3):20-29.
    [19]Shephard M S.Approaches to the automatic generation and control of finite element meshes[C].Appl,mech Rev,1988,41:169-185
    [20]沈可,张仲卿.水电站厂房楼板振动分析[J].人民长江.2003,34(1):52-54.
    [21]董毓新,李严硕.水电站建筑物结构分析[M].大连:大连理工出版社,1995.6
    [22]古宾[苏].水力发电站[M].北京:水利电力出版社,1983
    [23]朱伯龙,张琨联.建筑结构抗震设计原理[M].上海:同济大学出版社,2000.12.
    [24]J.K.Khanna and S.C.Bansal.Cavitation Characteristics and selecting criteria for bomb turbines[J].Waterpower&Damconstruction.1979,(5).
    [25]尹之潜,刘岩.高层建筑地震反应分析方法[C].地震工程研究文集,北京:地震出版社,1993.
    [26]胡聿贤.地震工程学[M].北京:科学出版社,1979
    [27]肖明葵.弹塑性反应谱研究综述[J].重庆建筑大学学报.1999,21(5):117-120.
    [28]王光远.建筑结构的振动[M].北京:科学出版社,1978
    [29]R.W.克拉夫.J著,彭津译.结构动力学[姗.北京:科学出版社,1981
    [30]林皋.水工结构工程中的动力相互作用研究[M].南京:河海大学出版社,1993.6
    [31]陈厚群.当前我国水工抗震中的主要问题和发展动态[J].振动工程学报.1997,10(3):253-257.
    [32]舒扬桨,王日宣.水电站厂房动力分析[M].北京:水利电力出版社,1987
    [33]范志良.结构工程科学中若干计算结构力学问题的研究展望[J].力学进展.1994,24(3):391-399.
    [34]陆伟民,刘雁等编著.结构动力学及其应用[M].上海:同济大学出版社,1996
    [35]罗定安.工程结构数值分析方法及程序设计[M].天津:天津大学出版社,1995
    [36]R.W.Clough and J.Penzien,王光远译.结构动力学[M].北京:科学出版社,1981
    [37]赵经文,王宏钮.结构有限元分析[M].第二版.北京:科学出版社,2001
    [38]Goel,Rakesh K.Seismic behaviour of asymmetric buildings with supplemental damping[J].Earthquake Engineering and Structural Dynamics.2000,(4)
    [39]刘大海等.高层建筑抗震设计[M].北京:中国建筑工业出版社,1993
    [40]Calderoni,Bruno.Static vs.modal analysis of asymmetric building Effectiveness of dynamic eccentricity formulations[J].Earthquake Spectra,2002,(18)
    [41]Housner.C.W.Limit design of stucture during Earthquaks,J.of the Engrg.Mech.Div.ASCE.
    [42]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999
    [43]谭建国.使用ANSYS6.0进行有限元分析[M].北京:北京大学出版社,2002.5
    [44]罗定安.工程结构数值分析方法及程序设计[M].天津大学出版社,1995
    [45]嘉木工作室.ANSYS5.7有限元实例分析教程[M].北京:机械工业出版社,2001
    [46]陈精一,蔡国忠.电脑辅助工程分析[M].ANSYS使用指南,北京:中国铁道出版社,2001
    [47]夸克工作室.有限元基础篇ANSYS与Matlab[M].北京:清华大学出版社,2002
    [48]左东启,王世夏,林益才.水工建筑物[M].南京:河海大学出版社,1995
    [49]ANSYS非线性分析指南[M].北京:美国ANSYS公司北京办事处,2000.1
    [50]ANSYS Theory Reference[D].ANSYS,Inc,2000.1
    [51]ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.1
    [52]龙驭球,包世华.结构力学教程[M].高等教育出版社,2000.4
    [53]武汉水利电力大学.结构力学[M].水利电力出版社,1984.12
    [54]赵巨才.理论力学[M].陕西科学技术出版社,1997.2
    [55]Kato B,Chen W F,Nakao M.Effects of Joint Panel Shear Deformation on Frame.J.Const.Steel Res.1988,10:269-320
    [56]Yanmad M.Elastic—plastic and collapse behavior of braced frames.Proc of the 8th WCEE,1984,6:273-280
    [57]Chiaki M.Inelastic behavior of high strength steel frames subjected to constant vertical and alternatives horizontal loads.Proc of the 6th WCEE,1976.3169-3174
    [58]揽生瑞,杨菊生,李守义,张俊发.河床式水电站结构分析与结构特性研究[J].西安理工大学学报,1994,10(4):284-289.
    [59]Lager P,Paultre P,Nuggi Halli R.Elastic Analysis of Frames Considering Panel Zones Deformations.Computers & Structural.1991,39(6):689-697
    [60]Fielding D J,Chen W F.Steel Frame Analysis and Connection Shear deformation.ASCE.Struct.Div.1973,99,:1-18
    [61]吴持恭.水力学[M].高等教育出版社,1979.3
    [62]杨进良.土力学(第二版)[M].中国水利水电出版社,1999.8
    [63]《水电站厂房设计规范(SL266-2001)》[M].中国水利水电出版社.2001
    [64]《水工建筑物荷载设计规范(DL5077-1997)》[M].中国电力出版社.1998
    [65]《水工建筑物抗震设计规范(SL203-97)》[M].中国水利水电出版社.1997
    [66]马震岳,陈婧,刘志明等.三峡水电站主厂房振动分析[J].三峡大学学报.2004,26(2):111-115.
    [67]宋建学,贾志尧.某火电厂主厂房地震反应分析[J].郑州工业大学学报.1998,19(1):39-46
    [68]丁小平.清水河床式小型水电站设计探讨[J].中国农村水利水电.2004年第9期:117-119.
    [69]侯攀,陈尧隆,邓瞻.用ANSYS对水电站厂房坝段进行抗震分析[J].西北水力发电2005,21(1):44-46.
    [70]王桂平,肖明.周宁水电站地下厂房结构振动与结构形式研究[J].长江科学院院报.2004,21(1):36-39.
    [71]杨宜文,薛芝龙.小湾水电站厂房进水口有限元动力分析[J].云南水力发电.2001,17(3):53-55
    [72]沈可,张仲卿.水电站厂房动力分析模型的选取比较[J].红水河.2003,22(1):30-33
    [73]Hilmy ST,Abel J F.Material and geometic nonlinear earthquake analysis of steel frames using compute graphics[J].Proc of the 8th WCEE,1984,4:527-534
    [74]SHENKe,ZHANGZhong-qing,LIANGZhen.Hydraulic Vibration Calculation of Yantan HydropowerHouse[J].WaterResourcesandPower.Vol.21,No.1,Mar,2003:73-76.
    [75]Thacker W C.A brief review of techniques for generating irregular computational grids.Int.J.Numer.Methods Eng,1980,15:1335-1341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700