用户名: 密码: 验证码:
快堆燃料组件抗震分析二维流固耦合理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浸没在液钠中的快堆堆芯燃料组件在地震作用下发生振动,可能导致堆内构件的损坏失效,从而影响反应堆结构完整性和安全性。堆内冷却剂流体使该振动表现为强烈的非线性,因此,研究地震引起的流固耦合效应对快堆抗震分析十分重要。本文主要通过流固耦合振动试验研究,模拟燃料组件在流体环境下的振动响应,观察流体对燃料组件振动的相互影响,得到流体对组件固有频率、阻尼、附加质量和附加阻尼的影响。并在本文中建立了与振动试验相对应的新的燃料组件流固耦合计算模型,最后通过理论值与试验值的比较证明该理论计算模型是准确的,可工程化应用。这为数值化分析快堆燃料组件的流固耦合效应提供试验数据和理论依据。
Fuel assemblies of fast breeder reactor core (FBR) submerged in the liquid sodium may vibrate during the earthquake, which possibly leads components of the core to structural failure and affects structural integrity and safety qualification of the core. Coolant fluid of the reactor make the vibration of the assemblies to appear nonlinear. So, It is great important to study the seismic-induced fluid-structure interaction for seismic capability of FBR core. This paper first will be through the study of fluid-structure interaction vibration test to simulate vibraton responses of fuel assemblies under fluid environment, to observe the fluid force on the fuel assemblies, abtaining the effects of fluid on the frequency, damping, added mass and added damping. And also in this paper will propose some new and corresponding the test fluid-structure interaction calculation model of FBR fuel assemblies. The last, through the theoretical values of the calculation model compared with the experimental values to prove that fluid-structure interaction calculation model of FBR fuel assemblies is accurate, can be applied engineering. The basic work will provide experimental datas and theoretical basis for the numerical method on seismic behavior research of fast reactor fuel assembly.
引文
[1]H. Chung, S. S. Chen. Hydrodynamic mass, Components technology division Argonne National Laboratory, Rapport CONF/840647/9
    [2]Wilson D E. Added Mass and Damping Coefficients for a Hexagonal Cylinder[J]. Journal of Fluids and Structure,1991,5:503-519
    [3]Fujita K. Vibration characteristics and seismic response of column groups in liquids[J]. Bulletin of the Japanese Society of Mechanical Engineers,1981, 24:1994-2002
    [4]Gyeong Hoi Koo, Jae Han Lee. Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid[J]. KSME International Journal,2003,17(3):457-466
    [5]Sasaki Y, Muto T. Experimental Studies on Seismic Vibration Phenomena of FBR core Components.7-SMiRT,1983
    [6]Buland P, et al. Expeimental determination of a LMFBR seismic equivalent core model.13-SMiRT,1995
    [7]Buland P, et al. Symphony experimental mock-up.13-SMiRT, F7/1,1995
    [8]Fontaine B, et al. Seismic analysis of LMFBR core-Symphony mock up. 14-SMiRT, C06K/3,1997
    [9]Toshihiko Horiuchi, Masaki Nakagawa, Hiroaki Kasai. Development of SAFA, a seismic analysis program for FBR core components[J]. Nuclear Engineering and Design,1995,157:37-48
    [10]Horiuchi T. Development of SAFA, a seismic analysis program for FBR core component.12-SMiRT, E13/2,1993
    [11]Morishita M. Seismic response analysis of FBR core by FINAS codes. 14-SMiRT, C06K/1,1997
    [12]Asayama T, Kitamura S, Morishita M, Bruno Fontaine. JNC/CEA Collaborative work on core seismic study-SYMPHONY simulation of one-row mock-up tests with restrained configuration. Proceedings of SMiRT-15,1999
    [13]Kitamura S, Asayama T, Morishita M, Bruno Fontaine. JNC/CEA Collaborative work on core seismic study-SYMPHONY simulation of three-row mock-up tests with restrained configuration. Proceedings of SMiRT-15,1999
    [14]Fontanie B. Intercomparison of LMFBR seismic analysis codes-CEA contribution.14-SMiRT, C05K/2,1997
    [15]Jean-Francois Sigrist, Daniel Broc. Homogenisation method for the modal analysis of a nuclear reactor with internal structures modeling and fluid-structure-interaction coupling[J]. Nuclear Engineering and Design,2007, 237:431-440
    [16]Gantenbein T, et al, Seismic Behavior of a Fast Reactor Core Application on SUPER PHENIX 1.7-SMiRT, F7/1,1983
    [17]Morishita Main features and results of the IAEA coordinated research program on intercomparsion of LMFR seismic analysis codes.14-SMiRT, C05K/1, 1997
    [18]鲁亮.中国试验快堆堆本体抗震性能试验研究与分析[R].上海:同济大学土木工程学院,2003
    [19]李海龙.快堆堆芯抗震模型的研究[D].北京:中国原子能科学研究院.2006
    [20]文静,陆道纲.快堆堆芯水平抗震分析的单组件预分析[J].原子能科学技术,2007,41(2):148-152
    [21]文静.中国实验快堆堆芯单方向水平抗震分析研究[D].中国原子能科学研究院,2006
    [22]王万惠,陆道纲.快堆燃料组件抗震分析流体附加质量计算方法研究[J].原子能科学技术,2008,42(Suppl):228-234
    [23]王万惠.快堆燃料组件抗震分析新的流体附加质量计算方法研究[D].华北电力大学,2008
    [24]快堆研究[M],北京:快堆研究编辑部,1982
    [25]Sarpkaya T, Isaacson M. Mechanics of wave forces on offshore structures[M]. New York:Van Nostrand Reinhold,1979
    [26]Brebbia C. A, Walker S. Dynamic Analysis of Offshore Structures[M]. London:Newnes Butterworths,1979
    [27]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2005
    [28]Blevins R. D. Applied Fluid Dynamics Handbook[M]. New York:Van Nostrand Reinhold,1984
    [29]戴光清,LAM KM圆柱振荡流中的斜向涡街[J].水动力学研究与进展,2003,18(2):224-232
    [30]杨翊仁,张继业,马建中等.不可压缩粘性流中板状梁的振动附加质量及阻尼[J].核动力工程,2008,19(5):443-449
    [31]鲁丽,杨翊仁.板状结构上的流体附加质量、附加刚度和附加阻尼系数[J].科学技术与工程,2006,6(11):1479-1481
    [32]中川宪治等著,夏生荣译.工程振动学[M].上海:科学技术出版社,1981
    [33]刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,2003
    [34]张令弥.振动测试与动态分析[M].北京:航天工业出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700