用户名: 密码: 验证码:
低温复合产絮菌去除铁离子的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地下水资源中富含铁离子,为了提高对地下水的利用率,需要对其进行去除。
     本试验利用从活性污泥和低温生物反应器中筛选得到的四株低温产絮菌,H8、H13、DN1、DG2对水中的几种金属离子进行去除研究,发现这四株菌对铁离子的去除效果最好。经过进一步菌种复配,得到由四株产絮菌组成的复合菌对水中铁离子的去除率达到75%以上。
     为了得到对铁离子去除高效的复合絮凝菌,对其培养条件进行优化,结果表明当向pH8.0的培养液中接种2%的复合菌后,在20℃,100r·min-1的摇床中连续培养72h,培养出的复合菌对铁离子的去除效果最好,去除率达到80%以上。
     对培养得到的复合絮凝菌进行去除铁离子的静态试验研究,研究结果表明:试验水样pH值为6.5至7.0时,向含有10mg·L-1铁离子的试验水样中投加4%的复合絮凝菌,DO3.0mg·L-1,曝气5h后,复合絮凝菌对水中铁离子的去除率可达到80%以上。
     进行除铁动态试验研究过程中,为了避免复合絮凝菌的流失,需要对复合菌进行固定化。固定化试验研究后得到的最佳固定化条件为:海藻酸钠包埋剂的浓度为4%,低温复合絮凝菌与包埋剂的重量比为1:2,用直径为5mm的医用针头将混合液滴入浓度为1%CaCl2交联剂中,交联18h,得到的凝胶小球能够满足试验和应用要求。
     将复合絮凝菌固定化小球投加到除铁试验装置中,进行装置运行参数和效果优化,试验表明:试验装置中的水样pH为6.5-7.0,向其中投加5%的复合絮凝菌固定化小球,DO3.0mg·L-1条件下运行,复合菌对铁离子的去除率可达到80%以上。
     运行30d时,复合絮凝菌对铁离子的去除率达到84%以上。由此可以推断,本试验的动态运行系统在经过较长时间的运行后,运行效果良好,对铁离子的去除能力较强,可为除铁工艺工程化进程奠定一定的理论和实践基础。
In China the groundwater resources contains abundant of iron, which needs to be removed in order to improve the utilization of ground water.
     In this experiment, four bacteria strains of low-temperature flocculant-producing (strain H8, H13, DN1, and DG2).which were screened from activated sludge and low temperature bioreactor were investigated in removing several metal ions in water. The study found that the iron ions could be removed effectively by four bactria strains. After the further rematch these four strains, obtained the compound flucculanting bacteria, which is constituted by H8, H13, DN1, and DG2. By using the compound flocculant-producing bacteria, the removal rate of iron in the water was over 75%.
     In order to improve the iron removal efficincy, the culturing conditions were optimized, including culturing temperature, pH, culturing time, and vaccinating amount.. The results showed that the best culturing condition was:after vaccinated 2% of compound flocculant-producing bacterium into the culture solution which is pH8.0, and cultivated 72h at 20℃, rotating 100r·min-1. The effective of removing iron is best by using the compound flocculant-producing bacterias cultrued under the best conditions; the removal rate of iron was over 80%.
     Investigating the iron removing conditions by static test, the results showed the best removing effect was:vaccinated 4% of compound flocculant-producing bacterium into the water, the water contained 10mg·L-1 iron which pH is from 6.5 to 7.0. After 5h aeration, DO3.0 mg·L-1, the removal rate of iron was over 80%.
     In order to avoid the bacteria running off, compound flocculant-producing bacteria were needed to be immobilized. The condition of immobilization was studied and was determined that the concentration of sodium alginate embedding medium was 4%, the proportion of the low temperature compound flocculant-producing bacterium and embedding medium was 1:2, dropping the mixed liquor into CaCl2 linker which concentration was 1%, cross linking 18 hours. The gel glocule of compound flucculanting-producing bacteria was obtained which was able to apply to iron removal.
     The immobilized globule of compound flocculant-producing bacteria was applied into the deferrization test facilities designed for iron removal treatment. Running parameter of the treatment was optimized and the results indicated that by putting 5% fossilize globule of compound flocculant-producing bacterium into the water, pH was 6.5-7.0, DO3.0mg·L-1, the removal rate of iron was over 80%.After 30 days running, the removal rate of iron reached to 84% by using the compound flocculant-producing bacteria. The iron removal effect was proved high effiency by compound flocculant-producing bacteria after immobilization and the treament effect could last for long time. The results above can settle the theory and practice foundation in deferrization technology project.
引文
[1]郑怀礼,张海彦,钱力.微生物絮凝剂的研究进展[J].现代化工,2003,23(10),22-24.
    [2]张一卉,朱迟,梁慧芳,杨动.微生物絮凝剂概况及发展前景[J].生命科学研究,2005,7(2),35-38.
    [3]湛雪辉,湛含辉,姜涛,等.影响微生物絮凝剂生成的条件研究[J].环境科学与技术,2002,25(6):61-63.
    [4]杨延梅,周富春.微生物絮凝剂-絮凝剂发展的新方向[J].重庆交通学院学报,2002,21(1):129-132.
    [5]He Ning, Li Yin, Chen Jian.et al. Identification of a novel bioflocculant from a newly isolated Corynebacterium glutamicum Bioch [J]. Biochemical Engineering Journal,2002,11:137-148.
    [6]余容升,徐龙君.徽生物架凝荆现状与前景分析[J].环境污染与防治,2003,25(2):77-79.
    [7]张育新,康勇.絮凝剂的研究现状及发展趋势[J].化工进展.2002,21(11):799-804.
    [8]Ma F, Wang B, Fan C, et al. Security evaluation of compounded microbial flocculant [J]. Journal of Harbin Institute of Technology (New Series).2004, 11(1):38-42.
    [9]Salehizadeh H, Shojaosadati S A.Extracellular biopolymeric flocculants recent trends and biotechnological importance [J].Biotechnology Advances,2001, 19(5):371-385.
    [10]张悦周,吴耀国,胡思海等.微生物絮凝剂的研究与应用进展[J].化工进展2008,27(3):340-346.
    [11]马放,李淑更,金文标等.微生物絮凝剂的研究现状及发展趋势[J].工业用水与 废水,2002,33(1):7-9.
    [12]张昕,郑广宏,乔俊莲,顾国维.微生物絮凝剂的絮凝机理初探[J].江苏环境科技,2007,20(2):104-110.
    [13]樊艳春,林波.微生物絮凝剂絮凝机理研究进展[J].江西化工,2006,(3):1-4.
    [14]马放,刘俊良,李淑更等.复合型微生物絮凝剂的开发[J].中国给水排水.2003,19(4):1-4.
    [15]康建雄,白云山.生物絮凝剂(普鲁兰)处理渗滤液的试验研究[J].环境科学与技术,2005,28(6):12-21.
    [16]朱富坤,刘彬彬等.微生物絮凝剂PF_2的成分分析及絮凝机制研究[J].环境污染与防治,2008(2):37-42.
    [17]陈井影,宋宪臣.生物絮凝剂的絮凝活性与絮凝条件研究[J].吉林农业大学学报,2008,30(2):180-183.
    [18]关毅,张娟.EM复合菌群产絮凝剂的絮凝性能[J].水处理技术,2006,32(7):42-46.
    [19]方明中.复合型微生物絮凝剂制备及絮凝性能的研究[D].广东工业大学,2008.
    [20]张志强.复合菌群的构建及其所产MBF絮凝活性的影响因素研究[J].江西科学,2006.24(1):17-37.
    [21]张玉玲,姚军等.复合型微生物絮凝剂产生菌YL3的优化条件[J].吉林大学学报,2008,38(5):864-868.
    [22]李强.放射状土壤杆菌M_503产生物絮凝剂的制备_纯化及应用研究[D].山东大学,2005
    [23]张娜,尹华等.微生物絮凝剂的稳定性及其对城市污水厂浓缩污泥的絮凝脱水[J].微生物学报,2008,35(5):685-689.
    [24]朱亮,金贤.复合菌群处理城市污染水体的试验研究[J].水资源保护.2005,21(3):1-3.
    [25]房芳.复合型微生物絮凝剂吸附重金属离子的研究[D].吉林大学,2006.
    [26]曾昭华,曾雪萍.地下水中铁元素的形成及其与人群健康的关系[J].贵州环保科技,2001(1):17-24.
    [27]曾琦斐.微量元素与人体健康[J].中国科技信息,2008(3):158-159.
    [28]禹丽娥.含铁地下水的危害及治理对策与展望[J].科技信息(学术研究),2007(23):279.
    [29]周鹏.地下水中铁和锰的危害及去除方法[J].山西建筑,2008,34(23):189.
    [30]栾岚,詹健,贾俊松.地下水除铁除锰技术的分析及其发展方向初探[J].江西化工,2006(1):40-42.
    [31]陈宇辉,余健,谢水波.地下水除铁除锰研究的问题与发展[J].工业用水与废水,2003,34(3):1-4.
    [32]田滨,部恒珍.地下水除铁除锰技术评析[J].湖南城市学院学报(自然科学版),2007,16(1):18-20.
    [33]Mouchet pierre. From conventional to biological removal of iron and manganese in France [J]. JAWWA,1992,84(4):158-167.
    [34]张吉库,傅金样.地下水除铁除锰技术与发展趋势[J].沈阳建筑工程学院学报(自然科学版),2003,19(3):212-214.
    [35]张翰林.接触氧化法处理高铁锰地下水的研究[D].吉林大学,2009.
    [36]薛罡,邹联沛,刘建勇等.接触氧化法除地下水铁锰时不同滤料性能的对比研究.中国给水排水,2001,17(10):16-19.
    [37]邓慧萍.改性滤料过滤除铁的动力学方程.同济大学学报,2002,32(8):969-972.
    [38]王长平,李武.曝气-两级过滤工艺用于地下水除铁除锰.工业安全与环保,2002,28(12):19-20.
    [39]高洁,刘志雄,李碧清.生物除铁除锰水厂的工艺设计与运行效果.给水排水,2003,29(11):26-28.
    [40]董历新,仲爱青.生物接触氧化除铁除锰水厂的设计与运行.中国给水排水,1999,15(5):28-30.
    [41]姜义,张吉库.地下水中铁、锰的存在形式及去除技术探讨[J].环境保护科 学,2003,29(115):32-34.
    [42]蔡辉,黄学平,陈春柏等.浅谈地下水除铁除锰技术[J].江西化工,2007(2):92-93.
    [43]朴真三,鲍志戎,李惟等.自来水厂除锰滤池的成熟与微生物群落的研究[J].环境科学,1998(1):50-53.
    [44]朴真三,李晓鄂,陈亚光等.自来水厂细菌固定化除锰及其水质条件的研究[J].环境科学,1998,19(5):37-40.
    [45]朴真三,鲍志戎,李惟等.自来水厂除锰滤池Mn2+氧化细菌的分离及其活性的研究.吉林大学自然科学学报,1997(4):87-90.
    [46]朴真三,鲍志戎,刘牧龙等.鞘铁菌(Siderocopsa)除锰和固定化[J].吉林大学自然科学学报,1996(2):19.
    [47]朴真三,李惟,刘德明等.鞘铁菌(Siderocapsa)固锰的生化分析[J].吉林大学学报(理学版),1991(3):23.
    [48]曾辉平,李冬,张杰等.高铁、高锰、高氨氮地下水的生物同层净化研究[J].中国给水排水,2009,25(17):78-84.
    [49]李冬,张杰,王洪涛等.除铁除锰生物滤层内铁的氧化去除机制探讨[J].哈尔滨工业大学学报,2007,39(8):1323-1325.
    [50]李冬,张杰,王洪涛等.除铁除锰生物滤层内铁锰去除的相关关系[J].给水排水,2006,32(2):41-44.
    [51]高洁,刘红梁,张杰等.生物滤层中铁、锰氧化细菌的时空分布特征[J].哈尔滨商业大学学报(自然科学版),2006,22(6):28-31.
    [52]李冬,杨宏,张杰.生物滤层同时去除地下水中铁、锰离子研究[J].中国给水排水,2001,17(8):1-4.
    [53]张杰,杨宏,徐爱军等.Mn2+氧化细菌的微生物学研究[J].给水排水,1997,23(1):19-23.
    [54]张杰,戴镇生.地下水除铁工艺和适应条件[J].给水排水.1997,23(2):8-12.
    [55]张杰,杨宏,徐爱军等.生物固锰除锰技术的确立[J].给水排 水,1996,22(11):5-10.
    [56]张杰,戴镇生.地下水除铁除锰现代观[J].给水排水,1996,22(10):13-16.
    [57]李冬,杨宏,张杰.首座大型生物除铁除锰水厂的实践[J].中国工程科学,2003,5(7):53-57.
    [58]薛罡,赵洪宾,陈向明等.地下水除铁除锰生物处理工艺试验研究[J].给水排水,2000,26(12):8-11.
    [59]薛罡,邹联沛,刘建勇等.接触氧化法除地下水铁锰时不同滤料性能的对比研究[J].东华大学学报(自然科学版),2002,28(6):58-61.
    [60]薛罡,赵洪宾.地下水除铁除锰技术新进展[J].给水排水,2002,28(7):26-28.
    [61]薛罡,赵洪宾.地下水中生物除锰的最佳运行条件及动力学[J].中国给水排水,2003,19(13):85-87.
    [62]周志芳,薛罡.不同曝气方式对地下水中铁锰去除效果的研究[J].中国环保产业,2005(11):36-38.
    [63]薛罡,何圣兵,王欣泽.生物法去除地下水中铁锰的影响因素[J].环境科学,2006,27(1):95-100.
    [64]袁世荃,赖健清.洞庭湖地区地下富含铁原因及水处理工艺[J].给水排水,1989(2):3-7.
    [65]哀世荃,赵正明.回流充气法处理中、高最含铁地下水的研究[J].湖南大学学报(自然科学版),1990,17(4):83-89.
    [66]余健,付国楷,郭照光等.洞庭湖区高含铁地下水除铁试验研究[J].给水排水,2003,29(2):23-26.
    [67]余健,张浩江,任文辉等.两级过滤除铁除锰水厂的设计与运行[J].中国农村水利水电,2002(1):4-5.
    [68]Rott U. Physical, chemical and biological aspects of the removal of iorn and manganese underground [J]. Water supply,1985(3):143-149.
    [69]Frischherz H. Biological elimination of iron and manganese [J]. Watersupply, 1985(3):125-131.
    [70]Czekalla C. Quantitative removal of iron and manganese by microorganisms in rapids and filters [J]. Water supply,1985(3):111.
    [71]Vuorinen A. Chemical, Mineralogical and microbiological factors affecting the precipitation of Fe and Mn from groundwater [J]. Water Sci. Technol,1998, 20(3):249-257.
    [70]Viswanathan M N, Boettcher B. Biological removl of iron from groundwater [J]. Water sci. Technol,1990(23):1437-1446.
    [72]Tremblay C V,Beaubien A,Charles P,et al. Control of biological iron removal from drinking water using oxidation-reduction potential[J]. Water Sci.Technol.1998, 38(6):121-128.
    [73]N.Tufekci, H.Z. Sarikara. An experimental study on iron removal with ferric sludge recycling. Water Sci. Tech,2000,42(1-2):393-397.
    [74]M. A. M. S. L. Attanayake,J. P. Padmasiri, Kandy District et al. An appropriate iron removal technology. In:20th WEDC Conference.Colombo, Srilanka,1994, 269-271.
    [75]Paul Williams, Ondeo Degremont. Biological iron and manganese removal as aviable alternative for groundwater treatment. www.esemag.com.2002-3.
    [76]Toni A. M. Bridge, D. Barrie Johnson. Reduction of Soluble Iron and Dissolution of Ferric Iron-containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria. Appl. Environ. Microbiol,1998,64(6):2181-2186.
    [77]Hans Jorgen Albrechtsen,Thomas H. Christensen. Evidence for Microbial Iron reduction in a Landfill Leachate-Polluted Aquifer.Appl. Environ.Microbiol,1994, 60(11):3920-3925.
    [78]David Emerson, Craig Moyer.Isolation and Characterization of Novel Iron-Oxidizing Bacteria that Grow at Circumneutral pH. Appl.Environ. Microbiol. 1997,63(12):4784-4792.
    [79]Susie Stenkamp. Effect of iron oxide coating on sand filtration. Journal AWWA, 1994,88(8):37-50.
    [80]Dirk Schuler. Formation of Magnetosmes in Magnetotactic Baeteria.J.Molec. Microbiol Biotechnol,1999, 1(1):79-86.
    [81]T.Sugio,S. uemura,I. Makino et al. Sensitivity of Iron-Oxidixzing Bacteria, Thiobacillus ferro-oxidans and Leptospirillum ferro-oxidans,to Bisulfite Ion. Appl. Environ. Microbiol,1994,60(2):722-725.
    [82]David Emerson, Johanna V. weiss, J. Pareick Meongal. Iron-Oxidizing Bacteria Are Associated with Ferric Hydroxide precipitates on the roots of Wetland Plants. Appl. Environ. Microbiol,1999,65(6):2758-2761.
    [83]Lesia Harahuc, Hector M. Lizama, Isamu Suzuki. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferro-oxidans. Appl.Environ. Microbiol,2000,66(3):1031-1037.
    [84]Kristina L. Straub, Marcus Benz, Bernhard Schink, and Friedrich Widdel Anaerobic, Nitrate-Dependent Microbial Oxidation of Ferrous Iron. Appl. Environ. Microbiol,1996,62(4):1458-1460.
    [85]David Emerson, Niels Peter Revsbech.Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark:Laboratory Studies. Appl. Environ.Microbiol,1994,60(11):4032-4038.
    [86]Hasan Z. Sarikava.Contact Aeration for Iron Removal-A Theoretical Assessmant.Wat.Res,1990,24(3):329-331.
    [87]Naeem Qureshi, Ai Barnes. Pilot study points way to iron/manganese removal. Water Engineering&Management,1994,45(2):18-20.
    [88]Hanne Rasmussen, Per Halkjaer Nielsen. Iron reduction in activated sludge measured with different extraction techniques. Wat.Res,1996,30(3):551-558.
    [89]Kenneth H. Carlson, William R. Knocke, Kevin R. Gertig. Optimizing treatment through Fe and Mn fractionation. Journal AWWA,1997,89(4):162-171.
    [90]Seppanen H T. Experience of biological iron and manganese removal in Finland. Journal IWEM,1992,6(3):333-341.
    [91]Don E.Richard, Daryl F. Dwyer. Aerated biofiltration for simultaneous removal of iron and polycyclic aromatic hydrocarbons from groundwater. Water Environ, research,2001,73(6):673-683.
    [92]Tsuyoshi Sugio,Satomi Uemura,Ikuko Makino et al. Sensitivity of Iron-Oxidizing Bacteria,Thiobacillus ferro-oxidans and Leptospirillum ferro-oxidans,to bisulfite Ion. Appl. Environ. Microbiol,1994,60(2):722-725.
    [93]G. Dimitrakos Michalakos, J. Martinez Nieva, D. V.vayenas.Removal of Iron from Potable Water Using a Tricking Filter. Wat.Res.1997,31(5):991-996.
    [94]Catherine V. Tremblay, Andre Beaubien. Philippe Charles et al. Control of Biological Iron Removal from Drinking Water Using Oxidation-Reduction Potential. Wat.Sei. Tech.1998,38(6):121-128.
    [95]Dmitri Sobolev, Erice Roden. Suboxic Deposition of Ferric Iron by bacteria in Opposing Gradients of Fe(Ⅱ) and Oxygen at Circumneutral pH. Appl. Environ.Microbiol.2001,67(3):1328-1334.
    [96]A.Gouzinis,N. Kosmidis,D.V.Vayenas et al. Removal of Mn and simultaneous removal of NH3,Fe and Mn from Potable water using a trickling filter.Wat.Res. 1998,32(8):2442-2450.
    [97]于畅游.复合型絮凝剂的絮凝特性研究[D].黑龙江大学,2009.
    [98]王青,张善锋.固定化微生物技术在废水处理中的应用[J].环境科学与管理,2008,33(11):81-84.
    [99]李超敏,韩梅,张良,陈锡时.细胞固定化技术-海藻酸钠包埋法的研究进展[J].安徽农业科学,2006,34(7):1281-1284.
    [100]蒋宇红,黄霞,俞毓馨.几种固定化细胞载体的比较[J].环境科学,1993,14(2):11-15.
    [101]王娜,闵小波,王云燕等.固定化微生物废水处理技术及其发展[J].污染防治技术,2008,21(1):62-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700