用户名: 密码: 验证码:
大坝安全监测与损伤识别的新型计算智能方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的高速发展,我国兴建了大批的重大土木工程项目,这些重大工程项目的使用期较长,影响力较大,一旦失事,会造成严重的生命财产损失。因此为了保障结构的安全性、完整性、适用性和耐久性,已经建成的许多重大工程结构和基础设施急需采用有效的手段检测和评定其安全状况、修复和控制损伤。许多新建的大型结构和基础设施,如大坝、桥梁、海洋平台等,增设了长期的安全/健康监测系统,以监测结构的服役安全状况,并为研究结构服役期间的损伤演化规律提供有效的、直接的方法。
     监测系统中数据采集与传感的一个基本假设是这些系统不是直接测量结构异常,而是测量系统在它的运作或环境载荷下的响应,或者是对嵌入传感系统中作动器输入的响应。传感器的读数或多或少的与结构异常的存在及其位置相关。数据处理程序对于结构健康监测系统来说是必须的,它们将传感器采集到的数据转化为结构状况的信息。
     计算智能是大坝等结构安全监测建立预报模型和进行反演分析的有力工具,已经取得了一些成果,但仍存在一些不足。计算智能目前仍处于快速发展阶段,将几种新型的计算智能方法引入大坝等结构的安全监测预报建模与反演分析领域,开展了一些有意义的工作。
     差分进化算法、微粒群优化算法和人工蜂群算法是几种具有较大发展潜力的新型智能优化方法,和传统的遗传算法相比具有实现简单、收敛性能好等优点。差分进化算法和微粒群优化算法在处理多维优化问题时具有较好的收敛性能,将他们用于损伤识别问题,并将几种人工免疫特性引入微粒群算法,提出了一种结构损伤识别的免疫加强微粒群算法。对人工蜂群算法进行了改进,针对其由搜索模式的单一性导致的参数较少时的“趋同”问题,将单纯形算子引入算法中,提出一种混合单纯形人工蜂群算法,改进算法不仅收敛速度明显加快,且由于搜索方式的增多,也很少陷入停滞现象。静动态反演分析算例表明,所提出的算法是高效的优化反演方法,为大坝参数的识别,进而进行结构响应预报建模与损伤评估提供了新的途径。
     径向基网络与BP网络相比,不仅具有生物学基础和数学基础,而且结构简单,学习速度快,隐节点具有局部特性,逼近能力更强。提出了一种处理复杂反演分析问题的蚁群聚类径向基网络模型。该模型避免了智能优化反演方法需要循环迭代,计算效率不高的问题;以及传统神经网络模型训练时间长、易陷入局部最优以及反演精度不高的问题。它可以直接用于三维土石坝双屈服面模型参数反演这样计算量巨大的大型非线性多参数反演问题。采用蚁群聚类选择径向基函数中心,克服了传统K-means聚类易陷入局部最优,和对初始聚类中心依赖强的缺点,能够获得更合理的聚类中心,得到满意的径向基网络模型。
     支持向量机是数据挖掘中的一项新技术,是借助于最优化方法解决机器学习问题的新工具。模型参数选择是采用支持向量机进行建模的关键影响因素,采用三种方法进行模型参数选择,分别是:基于网格平行搜索的交互验证法、遗传算法和粒子群算法。将所建立的模型用于金竹山电厂贮灰坝渗流测压管预测,表明支持向量机模型预测精度高,泛化能力强,是一种高效的系统建模方法。
     优化的传感器网络结构可以最小化所需要的传感器数量,节约投资,同时能够提高精度并提供一个鲁棒性的系统。在研究大坝安全监测中静动态传感器优化配置模型和准则的基础上,将单亲遗传算法用于求解该问题。传统遗传算法在求解组合优化问题时,交叉操作可能产生不可行解,需要借助一些复杂的操作算子,不仅效率不高且缺乏理论基础;单亲遗传算法遗传操作在一条染色体上进行,避免了该问题。同时为了进一步提高单亲遗传算法的性能,提出了两种改进算法,即自适应模拟退火单亲遗传算法和病毒协同进化单亲遗传算法。通过算例验证了所提出模型和算法的有效性。
With the development of economy,a great deal large civil engineering projects,which are long used with great impact,are constructed in China.The wreckage of these important projects will cause serious loss of property and life.Therefore,many already constructed large engineering projects and infrastructures need effective measures to detect and evaluate their condition of safety,and then the damage can be repaired and controlled.Many new constructed structures,such as dam,bridge and ocean platform,are equipped with healthy monitoring system,which are applied to monitor the structural safety condition and provide direct effective methods to study damage evolve process during enlistment.
     A basic presume in health monitoring system is that these systems not measure structural abnormity directly,rather measure the responses under the operational and environmental loads or the responses to input of actors embedded in the sense system.The data collected by sensors are more or less correlated to the existence and position of structural abnormity.Data processing procedures are integrant to a health monitoring system;they translate the data collected by sensors into information of structural condition.
     Computational intelligence is a powerful tool for safety prediction modeling and inverse analysis,and many achievements have been obtained in this domain,but there are still some drawbacks in the traditional computational intelligence.Nowadays,computational intelligence is still in the rapid developing stage,several novel computational intelligent methods are introduced into the domain of safety prediction and inverse analysis of structures like dams,and some meaningful work is developed.
     Artificial bee colony algorithms(ABC),particle swarm optimization(PSO) and differential evolution(DE) are three novel intelligent optimization algorithms with tremendous developing potential.Compared to traditional genetic algorithms,the advantages of these optimization algorithms are easier to implementation and better convergence performance.Aim at the problem of "incline to be the same" phenomena when used to few parameters optimization caused by single search pattern,ABC are improved by introduce cultural frame,annealing operator and simplex operators,and cultural annealing ABC and hybrid simplex ABC are proposed.The convergence speed of the improved algorithms is accelerated,meanwhile the stagnation phenomena is reduced because of enriched search patterns.DE and PSO have good convergence performance whey they are applied to problems with many dimensions,and they are used to damage detection problems.Several immune properties are introduced into PSO,and an immunity enhanced PSO is proposed for damage detection problems.Static and dynamic inverse analysis indicates that the proposed algorithms are very efficient for inverse problem,so novel approaches are provided for structural parameter identification,which can be used to response prediction modeling and damage evaluation.
     Compare to BP neural networks,radial basis function neural networks(RBF) not only has biological foundation but also mathematical foundation,meanwhile it has simpler structure, faster training speed and higher accuracy of simulation which is because the hidden nodes have local tuned properties.An ant colony clustering RBF model for completed inverse analysis problems is proposed.The disadvantages of intelligent optimization based inverse need long time caused by repeating iteration and traditional neural network need long training time,easy trapped into local optimum and low inversion accuracy,are avoided in the new model.It can be applied to large-scale nonlinear inverse problems,such as inverse analysis of three dimensional rockfill dams.K-means clustering algorithms have the disadvantages of easily trapped into local optimal and dependence on initial clustering centers.However,ant colony clustering can avoid these disadvantages,more reasonable radial basis function centers and more satisfactory RBF model can be obtained.
     Support vector machines(SVM) are novel technology for data mine,and are novel tools for machine learning recurs to optimization methods.Several optimization algorithms are used to model parameter selection.Application example illustrated that SVM model have the advantage of high prediction accuracy,less over fitting and is an efficient prediction modeling method.
     Optimized sensor network configuration can minimize the sensor number needed and save investment,meanwhile can provide a robust system with high accuracy.Optimal sensor placement problem in health monitoring and testing is studied.A partheno-genetic algorithm (PGA) is used to solve this problem.The drawback of traditional genetic algorithm for this problem is avoided.In order to improve the performance of PGA,adaptive simulated annealing PGA and virus coevolution PGA are proposed.The efficiency of the proposed optimal sensor placement algorithms are illustrated by several numerical examples.
引文
[1]Housner G W,Bergman L A,Caughey T K et al.Structural control:past,present and future.Journal of Engineering Mechanics,1997,123(9):897-971.
    [2]Farrar C R,Park G,Allen D W et al.Sensor network paradigms for structural health monitoring.Structural Control and Health Monitoring,2006,13(1):210-225.
    [3]Ou J,Li H,Yu Y.Development and performance of wireless sensor network for structural health monitoring.In:Liu S C,ed.Proceedings of SPIE,2004:765-773.
    [4]Pakzad S N,Fenves G L,Kim S et al.Design and implementation of scalable wireless sensor network for structural monitoring.Journal of infrastructure system,2008,14(1):89-101.
    [5]欧进萍.土木工程结构用智能感知材料、传感器与健康监测系统的研发现状.功能材料信息,2005,2(5):12-22.
    [6]顾冲时,吴中如.大坝与坝基安全监控理论和方法及其应用.南京:河海大学出版社,2006.
    [7]郦能惠.土石坝安全监测分析评价预报系统.北京:中国水利水电出版社,2003.
    [8]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现.土木工程学报,2006,39(4):39-44.
    [9]欧进萍,肖仪清,黄虎杰等.海洋平台结构实时安全监测系统.海洋工程,2001,19(2):1-6.
    [10]李迪,马水山,张保军等.工程岩体变形与安全监测.武汉:长江出版社,2006.
    [11]王德厚.大坝安全监测与监控.北京:中国水利水电出版社,2004.
    [12]吴中如.水工建筑物安全监控理论及其应用.北京:高等教育出版社,2003.
    [13]吴中如,顾冲时.重大水工混凝土结构病害检测与健康诊断.北京:高等教育出版社,2005.
    [14]蔡德所.光纤传感技术在大坝工程中的应用.北京:中国水利水电出版社,2002.
    [15]Bonaldi P,Fanelli M,Giusepptti G et al.Displacement forecasting for concrete dams via deterministic mathematical models.International Water Power & Dam Construction,1977,29(9):143-148.
    [16]吴中如,顾冲时,吴相豪.碾压混凝土坝安全监控理论及其应用.北京:科学出版社,2001.
    [17]李珍照.国外大坝监测分析的新进展.水力发电学报,1992,11(2):75-84.
    [18]李珍照.大坝安全监测.北京:中国电力出版社,1997.
    [19]何金平,李珍照.大坝结构性态多测点数学模型研究.武汉水利电力大学学报,1994,27(2):134-142.
    [20]黄铭,李珍照.重力坝安全监测位移多测点二维分布数学模型的研究.武汉水利电力大学学报,1997,30(1):1-5.
    [21]黄铭,李珍照.大坝监测空间位移统计模型研究.武汉水利电力大学学报,1999,32(3):19-22.
    [22]黄铭,葛修润,刘俊.大坝安全监测多测点位移向量模型.上海交通大学学报,2001,35(4):514-517.
    [23]徐梦华,李珍照,李民等.大坝监测多测点多方向位移数学模型研究.长江科学院院报,2003,20(1):29-32.
    [24]李民,李珍照,何金平.大坝实测位移模型及建模方法.四川大学学报,2003,35(3):21-25.
    [25]宋志宇.基于智能计算的大坝安全监测方法研究:(博士学位论文).大连:大连理工大学,2007.
    [26]熊支荣,李珍照.灰色系统理论在大坝观测资料分析中的应用.水利水电技术,1991,4:46-51.
    [27]杨杰,党志良,吴中如.土石坝竖向位移的灰色非线性拟合与预测.水电能源科学,2002,20(4):31-33.
    [28]李珍照,张淑丽.大坝观测数据的模糊分析.水电自动化与大坝监测,1992,16(1):1-8.
    [29]薛桂玉,李民.洪门土坝垂直变形规律分析.人民长江,1998,29(1):30-32.
    [30]汪树玉,刘国华,杜王盖等.大坝观测序列中的混沌现象.水利学报,1999,(7):22-26.
    [31]赵斌,吴中如,张爱玲.BP模型在大坝安全监测预报中的应用.大坝观测与土工测试,1999,23(6):1-4.
    [32]杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究.西安理工大学学报,2001,17(1):25-29.
    [33]吴云芳,李珍照,徐帆.BP神经网络在大坝安全综合评价中的应用.河海大学学报,2003,31(1):25-28.
    [34]高平,薛桂玉.基于小波网络的大坝变形监测模型与预报.水利学报,2003,(7):107-110.
    [35]Su H Z,Wu Z R,Wen Z P.Identification model for dam behavior based on wavelet network.Computer-Aided Civil and Infrastructure Engineering,2007,103(2):32-39.
    [36]苏怀智.大坝安全性态的非线性组合监控.水利学报,2005,36(2):197-202.
    [37]张晓春,徐晖,邓念武等.径向基函数神经网络在大坝安全监测数据处理中的应用.武汉大学学报,2003,36(2):33-36.
    [38]刘福深,刘耀儒,杨强.基于差异进化算法的前馈神经网络在大坝变形监测中的应用.岩土力学,2006,27(4):597-600.
    [39]陈继光,吕学昌.土坝观测数据的模糊人工神经网络分析.水利学报,2000,(1):19-22.
    [40]徐洪钟,胡群革,吴中如.自适应模糊神经网络在大坝安全监控中的应用.河海大学学报,2001,29(3):8-10.
    [41]王铁生,华锡生.基于模糊聚类算法的大坝监控模型的研究.水利学报,2003,(6):115-118.
    [42]王新洲,邓兴升.大坝变形预报的模糊神经网络模型.武汉大学学报,2005,30(7):588-591.
    [43]卢廷浩.岩土数值分析.北京:中国水利水电出版社,2008.
    [44]李守巨.基于计算智能的岩土力学模型参数反演方法及其工程应用:(博士学位论文).大连:大连理工大学,2004.
    [45]Kavanagh K,Clough R W.Finite element application in the characterization of elastic solid.International Journal of Solids structures,1971,(7):11-23.
    [46]Gioda G,Jurina G.Numerical identification of soil structure interaction pressures.International Journal for numerical and analytical methods in geomechanics,1981,5(1):33-56.
    [47]Sakurai S,Takeuchi K.Back analysis of measured displacement of tunnel.Rock Mechanics and Rock Engineering,1983,16(3):173-180.
    [48]Arai R.An inverse problem approach to the prediction of multi-dimensional consolidation behavior.Soil and Foundations,1984,21(1):95-108.
    [49]Giusepptti G.Basic theory underlying the computation of influence coefficients.ISMES,1986,241-247.
    [50]陈久宇.应用实测位移资料研究刘家峡重力坝横缝的结构作用.水利学报,1982,(12):12-20.
    [51]陈久宇.利用实测位移资料估计坝体混凝土的实际弹性模量.水电自动化与大坝监测,1983,(2):3-9.
    [52]顾冲时,吴中如.综论大坝原型反分析及其应用.中国工程科学,2001,3(8):76-81.
    [53]顾冲时,吴中如,吴相豪.碾压混凝土坝安全监控理论和方法.水利学报,2002,(9):112-116.
    [54]王银芝,杨志法,王思敬.岩石力学位移反演分析回顾与进展.力学进展,1998,28(4):488-498.
    [55]吉林,赵启林,冯兆祥等.岩土工程中反分析的进展.水利水运工程学报,2002,(4):57-63.
    [56]吕爱钟.地下巷道弹性位移反分析各种优化方法的探讨.岩土力学,1996,17(2):29-34.
    [57]吕爱钟,蒋斌松.岩石力学反问题.北京:煤炭工业出版社,1998.
    [58]王平,朱伟申,王可钧.单纯形法及其在广蓄电站围岩变形反分析中的应用.岩土力学,1991,12(2):57-66.
    [59]周志芬,顾长存,吴跃东.拉西瓦水电工程岩体裂隙透水性反分析研究.水文地质工程地质,1993,(6):4-9.
    [60]吴相豪,吴中如,顾冲时等.碾压混凝土拱坝徐变度反演分析法.大坝观测与土木测试,2000,24(1):22-25
    [61]李守巨,刘迎曦,周承芳.岩土渗流问题反分析的非线性最小二乘法.中国有色金属学报,1998,8(S2):726-729.
    [62]刘迎曦,李守巨,陈昌林等.丰满混凝土重力坝材料参数识别研究.水利学报,1999,(9):38-43.
    [63]刘迎曦,李守巨,周承芳等.丰满混凝土重力坝渗透参数反演分析.武汉水利电力大学学报,1999,32(1):1-4.
    [64]刘迎曦,王登刚,张家良等.材料物性参数识别的梯度正则化方法.计算力学学报,2000,17(1):69-75.
    [65]李守巨,刘迎曦,王登刚等.混凝土重力坝材料参数识别的正则化最小二乘法.计算物理,2000,17(6):702-706.
    [66]李守巨,刘迎曦,王登刚等.岩石和混凝土材料参数识别的修正高斯一牛顿算法.岩石力学与工程学报,2000,19(1):93-96.
    [67]李守巨,刘迎曦,王登刚.混凝土重力坝弹性参数识别的灵敏度分析及实例.岩土工程学报,2000,22(3):381-383.
    [68]王登刚,刘迎曦,李守巨.混凝土重力坝振动参数识别研究.水力发电,2001,(2):17-19.
    [69]Ardito R,Bartalotta P,Ceriani L,et al.Diagnostic inverse analysis of concrete dams with statical excitation.Journal of the mechanical behavior of materials 2004,15(6):381-389.
    [70]Ardito R,Cocchetti G.Statistical approach to damage diagnosis of concrete dams by radar monitoring:formulation and a pseudo-experimental test.Engineering Structures,2006,28(14):2036-2045.
    [71]Sortis A S,Paoliani P.Statistical analysis and structural identification in concrete dam monitoring.Engineering Structures,2007,29(1):110-120.
    [72]Fedele R,Maier G.Flat-jack tests and inverse analysis for the identification of stress states and elastic properties in concrete dams.Meccanica,2007,42(4):387-402.
    [73]刘迎曦,王登刚,李守巨.识别混凝土重力坝弹性模量的一种新方法.大连理工大学学报,2000,40(2):144-147.
    [74]王登刚,刘迎曦,李守巨.岩土工程位移反分析的遗传算法.岩石力学与工程学报,2000,19(增):979-982.
    [75]冯新,周晶,陈建云等.一种混凝土重力坝分区弹模反演新方法.大连理工大学学报,2002,42(4):480-484.
    [76]向衍,苏怀智,吴中如.基于大坝安全监测资料的物理力学参数反演.水利学报,2004,(8):98-102.
    [77]李守巨,刘迎曦,陈昌林等.基于混合遗传算法的混凝土大坝力学参数反演.大连理工大学学报,2004,44(2):195-199.
    [78]刘福深,刘耀儒,杨强等.基于改进遗传算法的拱坝位移反分析.岩石力学与工程学报,2005,24(23):4341-4345.
    [79]宋志宇,李俊杰.重力坝弹性参数反演的灵敏度分析及一种新的反演算法.四川大学学报,2006,38(4):34-38.
    [80]宋志宇,李俊杰,王洪宇.混沌人工鱼群算法在重力坝材料参数反演中的应用.岩土力学,2007,28(10):2193-2202.
    [81]冯新,周晶,范颖芳.基于模态观测的混凝土坝反演分析.水利学报,2004,(2):101-105.
    [82]郭雪莽,田俊明,秦理曼.土石坝位移反分析的遗传方法.华北水利水电学院学报,2001,22(3):94-98.
    [83]张社荣,何辉.改进的遗传算法在堆石体参数反演中的应用.岩土力学,2005,26(2):182-186.
    [84]田俊明,周晶.土石坝土体参数反演的一种新方法.岩土工程学报,2005,38(8):118-122.
    [85]田俊明,周晶.基于蚁群算法的土石坝土体参数反演.岩石力学与工程学报,2005,24(8):1411-1416.
    [86]李守巨,刘迎曦,孙慧玲.基于蚁群算法的含水层参数识别方法.岩土力学,2005,26(7):1049-1052.
    [87]李守巨,刘迎曦,张正平等.基于神经网络的混凝土大坝弹性参数识别方法.大连理工大学学报,2000,40(5):531-535.
    [88]徐洪钟,吴中如,李雪红.应用模糊神经网络反演大坝弹性模量.河海大学学报,2002,30(2):14-17.
    [89]练继建,王春涛,赵寿昌.基于BP神经网络的李家峡拱坝材料参数反演.水力发电学报,2004,23(2):44-48.
    [90]刘健,练继建.李家峡拱坝坝体弹性模量及基岩变形模量的反演.岩石力学与工程学报,2005,24(24):4466-4471.
    [91]何翔,李守巨,刘迎曦等.基于遗传神经网络的坝基岩体渗透系数识别.岩石力学与工程学报,2004,23(5):751-757.
    [92]Fedele R,Maier G,Miller B.Identification of elastic stiffness and local stresses in concrete dams by in situ tests and neural networks.Structure and Infrastructure Engineering,2005,1(3):165-180.
    [93]Fedele R,Maier G,Miller B.Health assessment of concrete dams by overall inverse analyses and neural networks.International Journal of Fracture,2006,137(1-4):151-172.
    [94]张乾飞,王建,吴中如.基于人工神经网络的大坝渗透系数分区反演分析.水电能源科学,2001,19(4):4-7.
    [95]袁会娜,李全明,张丙印.公伯峡混凝土面板堆石坝位移反演分析.水利水电技术,2004,35(11):22-25.
    [96]张丙印,袁会娜,李全明.基于神经网络和演化算法的土石坝位移反演分析.岩土力学,2005,26(4):547-552.
    [97]Yu Y Z,Zhang B Y,Yuan H N.An intelligent displacement back-analysis method for earth-rockfill dams.Computers and Geotechnics,2007,34(6):423-434.
    [98]苗丽,郭雪莽,王复明.心墙坝渗透系数反演修正神经网络法研究.人民黄河,2007,29(6):65-68.
    [99]Wang Z L,Li Y C,Shen R F.Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model.Engineering Geology,2007,91(2-4):168-177.
    [100]Cevik A.Discussion on "Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model" By Zhi-liang Wang,Yong-chi Li,R.F.Shen[Engineering Geology 91(2007) 168-177].Engineering Geology,2008,100(3-4):146-147.
    [101]王术新,姜哲.基于结构振动损伤识别技术的研究现状及进展.振动与冲击,2004,23(4):99-102.
    [102]赵玲,李爱群,陈丽华.基于结构测试的损伤诊断方法研究.东南大学学报,2003,33(5):610-612.
    [103]Hjelmstad K D,Shin S.Damage detection and assessment of structures from static response.Journal of Engineering Mechanics-ASCE,1997,123(6):568-576.
    [104]Chou J H,Ghaboussi J.Genetic algorithm in structural damage detection.Computers and Structures 2001,79(14):1335-1353
    [105]Bakhtiari N F,Rahai A,Esfandiari A.A structural damage detection method using static noisy data.Engineering Structures,2005,27(12):1784-1793
    [106]Shenton H W,Hu X F.Damage identification based on dead load redistribution:methodology.Journal of Structural Engineering-ASCE,2006,132(8):1254-1263.
    [107]Hu X F,Shenton H W.Damage identification based on dead load redistribution:effect of measurement error.Journal of Structural Engineering-ASCE,2006,132(8):1264-1273.
    [108]韩大建,王文东.基于振动的结构损伤识别方法的近期研究进展.华南理工大学学报,2003,31(1):91-96.
    [109]Salawu 0 S,Detection of Structural damage through changes in frequency:a review.Engineering Structures,1996,19(9):718-723.
    [110]Xia Y,Hao H.Statistical damage identification of structures with frequency changes.Journal of Sound and Vibration,2003,263(4):853-870.
    [111]Kim J T,Ryu Y S,Cho H M,et al.Damage identification in beam-type structures:frequency-based method vs mode-shape-based method.Engineering Structures,2003,25(1):57-67.
    [112]Pandey A K,Biswas M.Damage detection in structures using changes in flexibility.Journal of Sound and Vibration 1994,169(1):3-17.
    [113]Stutz L T,Castello D A,Rochinha F A.A flexibility-based continuum dumage identification approach.Journal of Sound and Vibration,2005,279(3-5):641-667.
    [114]Clayton E.H,Koh B.H,Xing G.L,et al.Damage detection and correlation-based localization using wireless mote sensors.Proceedings of the 13th Mediterranean Conference on Control and Automation,Limassol,Cyprus,2005:304-309
    [115]Koh B H,Dyke S J.Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data.Computers and Structures,2007,85(3-4):117-130.
    [116]Yang Q.W,Liu J K.Structural damage identification based on residual force vector.Journal of Sound and Vibration,2007,305(1-2):298-307.
    [117]Zhang Z,Aktan A E.Application of modal flexibility and its derivatives in structural identification.Research in Nondestructive Evaluation,1998,10(1):43-61.
    [118]Wang J L,Qiao P Z.Improved damage detection for beam-type structures using a uniform load surface.Structural Health Monitoring,2007,6(2):99-110.
    [119]Guan H,Karbhari V M.Improved damage detection method based on Element Modal Strain Damage Index using sparse measurement.Journal of Sound and Vibration,2008,309(3-5):465-494.
    [120]Oh B H,Jung B S.Structural damage assessment with combined data of static and modal tests.Journal of Structural Engineering-ASCE,1998,124:956-965.
    [121]Wang X,Hu N,Fukunaga H,et al.Structural damage identification using static test data and changes in frequencies.Engineering Structure,2001,23:610-621.
    [122]Vanlanduit S,Parloo E,Guillaume P.Combined damage detection techniques.Journal of Sound and Vibration,2003,266:815-831
    [123]He R S,Hwang S F.Damage detection by an adaptive real-parameter simulated annealing genetic algorithm.Computers and Structures,2006,84:2231-2243.
    [124]Bakhary N,Hao H,Deeks A J.Damage detection using artificial neural network with consideration of uncertainties.Engineering Structures,2007,29 (11):2806-2815.
    [125]Lee J J,Lee J W,Yi J H.Neural network-based damage detection for bridges considering errors in baseline finite element models.Journal of sound and vibration,2005,280(3-5):555-578.
    [126]Hao H,Xia Y.Vibration-based damage detection of structures by genetic algorithm.Journal of Computing in Civil Engineering-ASCE,2002,16 (3):222-229.
    [127]Perera R,Torres R.Structural damage detection via modal data with genetic algorithms.Journal of Structural Engineering-ASCE,2006,132 (9):1491-1501.
    [128]Koh B H,Dyke S J.Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data.Computers and Structures,2007,85(3-4):117-130.
    [129]He R S,Hwang S F.Damage detection by an adaptive real-parameter simulated annealing genetic algorithm.Computers and-Structures,2006,84 (31-32):2231-2243.
    [130]Perera R,Ruiz A.A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization.Mechanical Systems and Signal Processing,2008,22 (4):970-991.
    [131]Sahoo B,Maity D.Damage assessment of structures using hybrid neuro-genetic algorithm.Applied Soft Computing,2007,7 (1):89-104.
    [132]Naimimohasses R,BarnettDM,GreenDAetal.Sensor optimization using neural network sensitivity measures.Measurement Science and Technology,1995,6 (9):1291-1300.
    [133]Oh D Y,No H C.Determination of the minimal number and optimal sensor location in a nuclear system with fixed incore detectors.Nuclear Engineer and Design,1994,152(1-3):197-212.
    [134]Trucco E,Umasuthan M,Wallace AM,Roberto V.Model-based planning of optimal sensor placements for inspection.IEEE Transactions on Robotics and Automation,1997,13 (2):182-194.
    [135]KrauseA,Gupta A,GuestrinC,Kleinberg J.Near-optimal sensor placements:maximizing information while minimizing communication cost.Proceedings of the 5th International Conference on Information Processing in Sensor Networks.Nashville,Tennessee,USA,2006:2-10.
    [136]淡丹辉,何广汉.桥梁结构传感器优化布置法.工程设计CAD与智能建筑,2002,(2):53-56.
    [137]谭冬莲,肖汝诚.桥梁监测系统中复杂结构的静力应变传感器优化配置方法.公路,2006,(6):105-108.
    [138]谭冬莲,肖汝诚.桥梁监测系统中梁桥静力应变传感器的优化配置.长安大学学报(自然科学版),2007,27(5):66-69.
    [139]颜义忠,杨泽艳,陈娟等.洪家渡面板坝安全监测设计特点.水力发电,2001,(9):32-34.
    [140]李运良,颜义忠.洪家渡面板堆石坝安全监测设计.贵州水力发电,2002,16(4):26-30.
    [141]苏怀智,吴中如.大坝工程安全监测仪器优化设计.南昌工程学院学报,2005,24(3):5-9.
    [142]Kammer D C.Sensor placement for on-orbit modal identification and correlation of large space structures.Journal of Guidance,Control and Dynamics,1991,14(2):251-259.
    [143]Kammer D C,Yao L.Enhancement of on-orbit modal identification of large space structures through sensor placement.Journal of Sound and Vibration,1994,171(1):119-139.
    [144]Lim K B.Method for optimal actuator and sensor placement for large flexible structures.AIAA Journal of Guidance,Control,and Dynamics,1992,15(1):49-57.
    [145]Came T G,Dohrmann C R.A modal test design strategy for model correlation,Proceedings of the 13th International Modal Analysis Conference,Nashville,Tennessee,USA,1995,927-933.
    [146]Schedlinski C,Link M.An approach to optimal pick-up and exciter placement,Proceedings of the 14th International Modal Analysis Conference,Dearborn,Michigan,USA,1996,376-382.
    [147]Reynier M,Abou-Kandil H.Sensors location for updating problems.Mechanical Systems and Signal Processing,1999,13(2):297-314.
    [148]Papadimitriou C.optimal sensor placement methodology for parametric identification of structural systems.Journal of Sound and Vibration,2004,278(4-5):923-947.
    [149]Vinot P,Cogan S,Cipolla V.A robust model-based test planning procedure.Journal of Sound and Vibration,2005,288(3):571-585.
    [150]刘福强,张令弥.作动器/传感器优化配置研究进展.力学进展,2000,30(4):506-516.
    [151]Chen G S,Bruno R J,Salama M.Optimal placement of active/passive members in truss structures using simulated annealing.AIAA Journal,1991,29(8):1327-1343.
    [152]Yao L,Sethares W A,Kammer D C.Sensor placement for on-orbit modal identification via a genetic algorithm.AIAA Journal,1993,31(10):1922-1928.
    [153]Abdullah M M,Richardson A,Jameel H.Placement of sensors/actuators on civil structures using genetic algorithm.Earthquake Engineering and Structural Dynamics,2001,30(8):1167-1184.
    [154]李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布点.工程力学,2000,17(1):25-34.
    [155]周星德,陈国荣,张华.智能框架结构作动器最优配置研究.土木工程学报,2003,36(8):20-23.
    [156]黄维平,刘娟,李华军.基于遗传算法的传感器优化配置.工程力学,2005,22(1):113-117.
    [157]孙晓丹,李宏伟,欧进萍.大型桥梁动力检测测点优化的改进遗传算法及其应用.西安建筑科技大学学报,2006,38(5):624-628.
    [158]张连振,黄侨,王潮海.基于多目标遗传算法的传感器优化布点研究.工程力学,2007,24(4):168-172.
    [159]Gao H,Rose J L.Ultrasonic sensor placement optimization in structural health monitoring using evolutionary strategy.Thompson D O and Chimenti D E ed.Review of quantitative nondestructive evaluation,2006,25:1687-1693.
    [160]Gao H,Rose J L.Sensor placement optimization in structural health monitoring using genetic and evolutionary algorithms.Tomizuka M,ed.Proceedings of SPIE,2006,6174:1-12.
    [161]蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,2004.
    [162]李建.计算智能的若干新方法及应用研究:(硕士学位论文).南京:南京大学,2001.
    [163]王小平,曹立明.遗传算法-理论、应用与软件实现.西安:西安交通大学出版社,2002.
    [164]杨启文.计算智能及其工程应用:(博士学位论文).浙江:浙江大学,2001.
    [165]Blanco A,Delgado M,Pegalajar,M C.A real-coded genetic algorithm for training recurrent neural networks.Neural Networks,2001,14(1):93-105.
    [166]Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms.IEEE Transactions on System,Man and Cybernetic,1994,24(4):656-667.
    [167]Metropolis N,Rosenbluth A W,Rosenbluth M N et al.Equations of state calculations by fast computing machines.Journal of Chemical Physics,1953,21:1087-1091.
    [168]Rechenberg I."Cybernetic solution path of an experimental problem",Royal Aircraft Establishment,Library Translation NO.1122,1965.
    [169]Fogel L J,Owens A J,Walsh M T.Artificial Intelligence through Simulated Evolution.New York:Wiley,1966.
    [170]Holland J H.Adaptation in natural and artificial systems.Ann Arbor,MI:University of Michigan Press,1975.
    [171]Glover F.Future paths for integer programming and links to artificial intelligence.Computers and Operations Research,1986,13:533-549.
    [172]Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies.Proceeding of the 1st European Conference on Artificial Life.Paris,1991,134-142.
    [173]Dorigo M,Gambardella L M.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem.IEEE Transactions on Evolutionary Computations,1997,1(1):53-66.
    [174]Reynolds R G.An introduction to cultural algorithms.Proceeding of the 3rd Annual Conference on Evolutionary Programming.River Edge,NJ:World Scientific Publishing,1994:131-139.
    [175]R.Storn,K.Price,Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces,Berkeley,CA,Tech.Rep.TR-95-012,1995.
    [176]Storn R,Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces.Journal of Global Optimization,1997,11(4):341-359.
    [177]Price K V,Storn R M,Lampinen J A.Differential evolution:a practical approach to global optimization.Berlin:Springer,2005.
    [178]Eberhart R.C,Kennedy J.A new optimizer using particle swarm theory.Proceeding of 6th International Symposium on Micro Machine and Human Science,1995:39-43.
    [179]Geem Z W,Kim J H,LoganathanG V.A new heuristic optimization algorithm:harmony search.Simulation,2001,76(2):60-68.
    [180]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002,11:32-38.
    [181]Penev K,Littlefair G.Free search-A comparative analysis.Information Science,2005,172(1):173-193.
    [182]Karaboga D.A idea based on bee swarm for numerical optimization.Technical report-TR06,Erciyes University,Engineering Faculty,Computer Engineering Department,2005.
    [183]Karaboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization:artificial bee colony(ABC) algorithm.Journal of Global Optimization,2007,39(3):459-471.
    [184]Karaboga D,Basturk B.On the performance of artificial bee colony(ABC) algorithm.Applied Soft Computing,2008,8(1):687-697.
    [185]MehrabianA R,Lucas C.A novel numerical optimization algorithm inspired from weed colonization.Ecological Informatics,2006,1(4):355-366.
    [186]苑希民,李鸿雁,刘树坤等.神经网络和遗传算法在水科学领域的应用.北京:中国水利水电出版社,2002.
    [187]Moody J,Darken C J.Fast learning in networks of locally-tuned processing units.Neural Computation,1989,1(2):289-294.
    [188]魏海坤.神经网络结构设计的理论与方法.北京:国防工业出版社,2005.
    [189]Cortes C,Vapnik V.Support-vector networks.Machine Learning,1995,20(3):273-297.
    [190]邓乃扬,田英杰.数据挖掘中的新方法-支持向量机.北京:科学出版社,2004.
    [191]Shi Y,Eberhart R C.A modified particle swarm optimization.Proceedings of IEEE International Conference on Evolutionary Computation,Anchorage,AK,1998,69-73.
    [192]Xu S H,Rahmat-Samii Y.Boundary conditions in particle swarm optimization revisited.IEEE Transactions on Antennas and Propagation,2007,55(3):760-765.
    [193]Robinson J,Rahmat-Samii Y.Particle swarm optimization in electromagnetics.IEEE Transactions on Antennas and Propagation,2004,52(2):397-407.
    [194]Huang T,Mohan A S.A hybrid boundary condition for robust particle swarm optimization.IEEE Antennas and Wireless Propagation Letters,2005,4:112-117.
    [195]Huth O,Feltrin G,Maeck J et al.Damage identification using modal data:experiences on a prestressed concrete bridge,Journal of Structural Engineering-ASCE,2005,131(12):1898-1910.
    [196]Zhou Z J,Wegner L D,Sparling B F,Vibration-based detection of small-scale damage on a bridge deck.Journal of Structural Engineering-ASCE,2007,133(9):1257-1267.
    [197]Gao Y,Spencer Jr B F.Damage localization underambient vibration using changes in flexibility.Earthquake Engineering and Engineering Vibration,2002,1(1):136-144.
    [198]De Castro L N,Timmis J I.Artificial Immune Systems:A New Computational Intelligence Paradigm,Springer-Verlag,2002.
    [199]Musilek P,Lau A,Reformat Met al.Immune programming.Information Sciences,2006,176(8):972-1002.
    [200]Khilwani N,Prakash A,Shankar R et al.Fast clonal algorithm.Engineering Application of Artificial intelligence,2008,21(1):106-128.
    [201]Gay D,Saunders T,Camper S et al.Receptor editing:an approach by autoreactive B cells to escape tolerance.The Journal of Experimental Medicine,1993,177:999-1008.
    [202]Tiegs S L,Russell D M,Nemazee D.Receptor editing in selfreactive bone marrow B cells.The Journal of Experimental Medicine,1993,177:1009-1020.
    [203]Pelanda R,Torres PM.Receptor editing for better or for worse.Current Opinion in Immunology,2006,18:184-190.
    [204]Casellas R,Yang Shih T A,Kleinewietfeld M,et al.Contribution of receptor editing to the antibody repertoire.Science,2001,291(5508):1541-1544.
    [205]王正志,薄涛.进化计算.长沙:国防科技大学出版社,2000.
    [206]Zhao X C,Gao X S,Hu Z C.Evolutionary programming based on non-uniform mutation.Applied Mathematics and Computation,2007,192(1):1-11.
    [207]Jiao L C,Wang L.A novel genetic algorithm based on immunity.IEEE Transaction on System,Man,Cybernetics-Part A:Systems and Humans,2000,30(5):552-561.
    [208]Shi Y,Eberhart R C.Empirical study of Particle swarm optimization.Proceeding of the IEEE Congress on Evolutionary Computation,1999,1945-1950.
    [209]Niu B,Zhu Y L,He X X et al.MCPSO:A multi-swarmcooperative particle swarm optimizer.Applied Mathematics and Computation,2007,185(2):1050-1062.
    [210]Gould J L,Gould C G.The Honey Bee.New York:Scientific American Library,1988.
    [211]吴燕如.蜜蜂的行为.生物学通报,2001,36(10):1-3.
    [212]曾志将,黄康.蜂群中化学信息通讯.蜜蜂杂志,2008,(4):3-6.
    [213]Visscher P K.How self-organization evolves.Nature,2003,421:799-800.
    [214]Seeley T D,Visscher P K.Group decision making in nest-site selection by honey bees.Apidologie,2004,35:101-116.
    [215]Passino K M,Seeley T D,Visscher P K.Swarm cognition in honey bees.Behavioral ecology and sociobiology,2008,62(3):401-414.
    [216]Seeley T D.The Wisdom of the Hive.Cambridge,MA:Harvard University Press,1995.
    [217]Nelder J A,Mead R.A simplex method for function minimization.Computer Journal,1965,7:308-313.
    [218]Press W H,Teukolsky S A,Vetterling W T et al.Numerical Recipes in C++.New York:Cambridge University Press,2002.
    [219]Fan S S,Zahara E.A hybrid simplex search and particle swarm optimization for unconstrained optimization.European Journal of Operational Research,2007,181(2):527-548.
    [220]张光澄.非线性最优化计算方法.北京:高等教育出版社,2005.
    [221]陈宝林.最优化理论与算法.北京:清华大学出版社,2005.
    [222]田俊明,周晶.岩土工程参数反演的一种新方法.岩石力学与工程学报,2005,24(9):1492-96.
    [223]刘杰,王嫒,杨建贵.采用加速遗传算法反演裂隙岩体渗流参数.水利学报,2003,2:55-60.
    [224]Fan S S,Liang Y,Zahara E.A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search.Computers and industrial engineering,2006,50(4):401-425.
    [225]Ren Z,San Y,Chen J.Hybrid simplex-improved genetic algorithm for global numerical optimization.Acta Automatica Sinica,2007,33(1):91-95.
    [226]Helio J C B,Carlile C L,Fernanda M P R.A GA-simplex hybrid algorithm for global minimization of molecular potential energy functions.Annals of Operations Research,2005,138(1):189-202.
    [227]苏克忠,郭永刚,常廷改.大坝原型动力试验.北京:地震出版社,2006.
    [228]Lee K H,Baek S W,Kim K W.Inverse radiation analysis using repulsive particle swarm optimization algorithm.International Journal of Heat and Mass Transfer,2008,51(11-12):2772-2783.
    [229]Versa S,Balaji C.Multi-parameter estimation in combined conduction-radiation from a plane parallel participating medium using genetic algorithms.International Journal of Heat and Mass Transfer,2007,50(9-10):1706-1714.
    [230]赵洪波,冯夏庭.位移反分析的进化支持向量机研究.岩石力学与工程学报,2003,22(10):1618-1622.
    [231]Fathian M,Amiri B,Maroosi A.Application of honey-bee mating optimization algorithm on clustering.Applied Mathematics and Computation,2007,190(2):1502-1513.
    [232]DORIGO M,ST(U|¨)TZLE T.蚁群优化.张军,胡晓敏,罗旭耀译.北京:清华大学出版社,2007.
    [233]Garg S,Patra K,Pal S K et al.Effect of different basis functions on a radial basis function network in prediction of drill flank wear from motor current signals.Soft Comput,2008,12(8):777-787.
    [234]Haykin S.神经网络原理.叶世伟,史忠植译.北京:机械工业出版社,2004.
    [235]Chen S,Cowan C F N,Grant P M.Orthogonal least squares learning algorithms for radial basis function networks.IEEE Transactions on Neural networks,1991,2(2):302-309.
    [236]杨燕,张昭涛.基于阈值和蚁群算法结合的聚类方法.西南交通大学学报,2006,41(6):719-742.
    [237]恩戈科.堆石坝材料参数的灵敏度分析.河海大学学报,1999,27(5):94-99.
    [238]李守义,高辉,冯海波.基于模糊有限元的堆石坝材料参数敏感性分析.西安理工大学学报,2002,18(1):35-39.
    [239]何昌荣,杨桂芳.邓肯-张模型参数变化对计算结果的影响.岩土工程学报,2002,24(2):170-174.
    [240]王志亮,宋茂天,殷宗泽.路堤沉降计算中邓肯-张模型参数灵敏度分析.岩土力学,2004,25(7):1135-1138.
    [241]雷华阳,李鸿琦,宛子瑞,等.建筑垃圾填埋沉降计算中模型参数灵敏度分析.岩土力学,2007,28(4):675-678.
    [242]朱百里,沈珠江.计算土力学.上海:上海科学技术出版社,1990.
    [243]Morris M D.Factorial sampling plans for preliminary computational experiments.Technometrics,1991,33(2):161-174.
    [244]黄金良,杜鹏飞,何万谦,等.城市降雨径流模型的参数局部灵敏度分析.中国环境科学,2007,27(4):549-553.
    [245]Lenhart L,Eckhardt K,Fohrer N et al.Comparison of two different approaches of sensitivity analysis.Physics and Chemistry of the Earth,2002,27(9-10):645-654.
    [246]Vapnik,V.Statistical learning theory.New York,USA:Wiley,1998.
    [247]阎平凡,张长水.人工神经网络与模拟进化计算(第2版).北京:清华大学出版社,2005.
    [248]Smola A,Sch(o|¨)lkopf B.A tutorial on support vector regression.Statistics and Computing,2004,14(3):199-222.
    [249]Browne M W.Cross-validation methods.Journal of Mathematical Psychology,2000,44(1):108-132.
    [250]余志雄,周创兵,李俊平等.基于v-SVR算法的边坡稳定性预测.岩石力学与工程学报,2005,24(14):2468-2475.
    [251]Carlisle A,Dozier G.An off-the-shelf PSO.Proceeding of the workshop on particle swarm optimization.Indianapolis,USA:Purdue School of Engineering and Technology,2001,1-6.
    [252]张永兴,王桂林,胡居义.岩石洞室地基稳定性分析方法与实践.北京:科学出版社,2005.
    [253]Sah N A,Sheorey P R,Upadhyaya L N.Maximum likelihood estimation of slope stability.International Journal of Mechanics and Mining Sciences & Geomechanics Abstracts,1994,31(1):47-53.
    [254]冯夏庭.智能岩石力学导论.北京:科学出版社,2000.
    [255]赵玲泽.火力发电场贮灰场的安全监察.中国电力,1996,29(5):62-64.
    [256]葛哲学,孙志强.神经网络理论与MATLABR2007实现.北京:电子工业出版社,2007.
    [257]李茂军,童调生,罗隆福.单亲遗传算法及其应用研究.湖南大学学报,1998,25(6):56-59.
    [258]李茂军,童调生.单亲遗传算法的选择方式.系统工程与电子技术,2002,24(10):87-89.
    [259]李茂军,童调生.单亲遗传算法及其全局收敛性分析.自动化学报,1999,25(1):68-72.
    [260]李茂军.单亲遗传算法理论及应用:(博士学位论文).长沙:湖南大学,2002.
    [261]Raven P H,Johnson G B.Biology.5th ed.Boston:The McGraw-Hill Companies,1999.
    [262]Johnson G B.The living world.3rd ed.Boston:The McGraw-Hill Companies,2003.
    [263]Alters S.Biology:understanding life.3rd ed.Boston:Jones and Bartlett Publishers,2000.
    [264]Haskel S,Sygoda D.Biology:a contemporary approach.New York:Amsco School Publications,1996.
    [265]Riparbelli M G,Callaini G.Drosophila parthenogenesis:a model for de novo centrosome assembly.Developmental Biology,2003,260(2):298-313.
    [266]金晶,苏勇.一种改进的自适应遗传算法.计算机工程与应用,2005,(18):64-69.
    [267]Kubota N,Fukuda T,Shimojima K.Virus-evolutionary genetic algorithm for a self-organizing manufacturing system.Computers & Industrial Engineering Journal,1996,30(2):1015-1026.
    [268]胡士成,许晓飞,李向阳.项目优化调度的病毒协同进化遗传算法.软件学报,2004,15(1):49-57.
    [269]杨易,谷正气,胡林等.病毒进化遗传算法在动态路径规划中的运用研究.汽车工程,2007,29(1):67-70.
    [270]刘丽萍,王智,孙优贤.无线传感器网络部署及其覆盖问题研究.电子与信息学报,2006,28(9):1752-1757.
    [271]杨强.大规模无线传感器网络定位算法研究:(硕士学位论文).上海:同济大学,2007.
    [272]Lin F Y S,Chiu P L.A near-optimal sensor placement algorithm to achieve complete coverage/discrimination insensor networks.IEEE Communications Letters,2005,9(1):43-45.
    [273]Chakrabarty K,Lyengar S S.Grid coverage for surveillance and target location in distributed sensor networks.IEEE Transactions on Computers,2002,51(12):1448-1453.
    [274]Dhillon S S,Chakrabarty K.Sensor placement for effective coverage and surveillance in distributed sensor networks.2003 IEEE Wireless Communications and Networking Record.Piscataway,USA:2003.1609-1614.
    [275]Tongco E,Meldrum D.Optimal sensor placement of large flexible space structures.AIAA Journal of guidance,control,and dynamics,1996,19(2):961-963.
    [276]Cherng A.Optimal sensor placement for modal parameter identification using signal subspace correlation techniques.Mechanical Systems and Signal Processing,2003,17(2):361-378.
    [277]Kammer D C.Sensor set expansion for modal vibration testing.Mechanical Systems and Signal Processing,2005,19(4):700-713.
    [278]秦仙荣,张令弥.一种基于QR分解的逐步累积法传感器配置.振动、测试与诊断,2001,21(3):168-224.
    [279]王柏乐.中国当代土石坝工程.北京:中国水利水电出版社,2004.
    [280]Meo M,Zumpano G.On the optimal sensor placement techniques for a bridge structure.Engineering Structures,2005,27(10):1488-1497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700