用户名: 密码: 验证码:
引射混合式低压加热器加热性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析了热力发电厂低压加热器的工作过程后,建立了热力发电厂蒸汽动力循环低压加热系统试验台,对一具体的引射混合式低压加热器进行了引射性能和加热性能的试验研究,并详细研究了中心喷射圆周引射型射水抽汽式引射混合式低压加热器的加热特性,按雷诺数的范围拟合出两种形式的加热器凝结换热过程的Nu准则式Nu=CRe~m Pr~nφ~k mL和Nu=CRe~m Pr~nφ~k。
     鉴于引射器性能的特殊性和影响因素众多,在引射混合式低压加热器设计过程中根据其内部流道变化规律,主要采用质量守恒原理和伯努利方程进行设计计算。通过对两种结构型式的引射混合式低压加热器进行试验,发现在热力发电厂低压加热系统中采用引射混合式低压加热器加热凝结水,通过选取适当的运行参数,完全可以消除凝结水沿抽汽管道进入蒸汽轮机的危险和将凝结水加热至除氧器运行要求。从该型加热器的试验结果可以得出,φ5mm直径喷嘴的该型加热器在入口水压大于0.25MPa时,即可在加热器的蒸汽吸入室产生0.04MPa的真空,φ3mm和φ4mm直径喷嘴在入口水压大于0.2MPa时即能产生大于0.08MPa的真空,远小于现有火电机组大于0.1MPa的低压抽汽压力;φ2mm和φ3mm直径喷嘴的加热器在入口水压小于0.25MPa范围内,将凝结水加热至大于105℃。引射混合式低压加热器具有较独特的蒸汽凝结性能和加热性能,简单分析了凝结水射流与蒸汽凝结换热的特性,指出在射流表面存在着蒸汽凝结换热的主要热阻——流动凝结液膜,在凝结水射流表面上蒸汽的凝结换热系数高达0.98~5.23MW/(m~2·K)。
     本文从引射器角度简单推导了对引射混合式低压加热器的结构和设计有较重要指导意义的引射特性基本方程式,定义了引射混合式低压加热器的引射效率ηe和加热效率η_h。通过实验数据的分析计算得出,φ2mm喷嘴的η_h=98.6%、η_e=19.8%,φ3mm喷嘴的η_h=95.6%、η_e=19.6%,φ4mm喷嘴的η_h=91.6%、η_e=13.5%,φ5mm喷嘴的η_h=90.3%、η_e=7.8%。
     引射混合式低压加热器性能试验研究结果表明:在热力发电厂中引射混合式低压加热器完全可以取代目前使用的表面式低压加热器。本文还对永荣矿务局6MW发电机组的低压加热器改造进行了可行性分析。
After work process analysis about the Low-Pressure heater of the thermal power plant,a test-bed of low-pressure heating system in steam power cycle of the thermal power plant was established, an experimental investigation has been made on the ejecting and heating performance of a specific ejecting-mixing low-pressure heater, especially the heating performance of central jetting and circumferential ejecting water driven vapor ejecting-mixing low-pressure heater in detail, and Nu number formula of condensation heat transfer are fitted in two forms in the ranges of Reynolds number, i.e. Nu = CRe~m Pr~nφ~k m~L and Nu = CRe~m Pr~nφ~k.
     In view of the specific and multiple influence factors of the performance of ejector, during the design of the ejecting-mixing low-pressure heater, according to the law of its internal flow channel change, mainly mass conservation principle and Bernoulli equation are applied in design calculation. Based on the experiment on two type of structure of ejecting-mixing low-pressure heaters, it is found that if ejecting-mixing low-pressure heaters could be adopted in low-pressure preheating system to preheat condensate with the proper operation parameters, the possible danger could be cleared that condensate may flow into steam turbine along the extraction steam pipe, and condensate water would be heated up to meet the needs for deaerator. As the results of the experiment, the type of heater withφ5mm sized nozzle can generate a vacuum at 0.04MP in steam suction chamber when motive water inlet pressure is more than 0.25MPa, and the type of heater withφ3mm sized orφ4mm sized nozzle can generate a vacuum more than 0.08MP in steam suction chamber when motive water inlet pressure is more than 0.2MPa, while the low pressure extraction steam pressure in present power units is more than 0.1MPa. the type of heater withφ3mm sized orφ4mm sized nozzle can heat condensate up to more than 105℃.The ejecting-mixing low-pressure heaters present the unique performance of steam condensation and heating, according to the uncomplicated analysis of the performance of the steam condensation on the condensation water jet, it is pointed out that flowing condensation film exists on the surface of jet, which is the main heat resistance of steam condensation heat transfer, and the heat transfer coefficient of the steam condensation on the condensation water jet is as high as 0.98 ~ 5.23 MW / (m~2·K).
     This paper starts with the study of ejector theories, not only deduces the fundamental equations of ejecting performance for the structure design of ejecting-mixing low-pressure heaters, but also defines ejecting efficiency in terms ofη_eand heating efficiency in terms ofη_h. According to the calculation based on the experiment data, the value ofη_h atφ2mm sized nozzle equals 98.6% and the value ofη_e equals 19.8%, the value ofη_h atφ3mm sized nozzle equals 95.6% and the value ofη_e equals 19.6%, the value ofη_h atφ4mm sized nozzle equals 91.6% and the value ofη_e equals 13.5%, the value ofη_h atφ5mm sized nozzle equals 90.3% and the value ofη_e equals 7.8%.
     The results of experimental investigation on ejecting-mixing low-pressure heaters performance show that, ejecting-mixing low-pressure heaters can take the place of the present surface type low-pressure heaters in steam power cycle of power plant. And the feasibility analysis of reconstruction is made in the low-pressure heaters of 6MW power unit at Yongrong Mining Bureau.
引文
[1]叶涛.热力发电厂[M].北京:电力出版社,2004:55-83.
    [2]Инж·Epmoлоъ等,苏运昌编译.300兆瓦汽轮机组采用混合式低压加热器的经验[M].China Academic Journal Electronic Publishing house, 1976,(3):72-76.
    [3]徐传海.1000MW机组低压加热器输水系统的优化配置[J].电力建设,2006, Vol.27 (10):65-73
    [4]史向东,刘凤娥.混合式加热器重力联接探讨[J].东北电力技术,2002,(4):20-21.
    [5]徐奇焕.低压加热器温升不足对机组经济性影响的分析[J].华中电力,2002,Vol.15(2): 25-34.
    [6]王尊明,赵乃梁,王方正.黄铜管换热器管束的应力腐蚀分析及改进[J].设备与防腐:齐鲁石油化工,2006,34(1):41-43.
    [7]郑峰,吴金杰,周慧琳.DJ400低压加热器管口漏水问题的研究[J].河南机电高等专科学校学报,2005,03,Vol 13 (2):46-48.
    [8] Nabil Beithou, Hikmet S. Aybar. A mathematical model for steam-driven jet pump[J]. International Journal of Multiphase Flow, 2000 (26): 1609-1619.
    [9] G.Cattadori,L.Galbiati,L.Mazzocchi.A single-stage high pressure steam injector for next generation reactors:test results and analysis[J].Int.J.Multiphase Flow,1995,Vol.21(4):591-606.
    [10]田疆,刘继平等.汽液两相流喷射升压加热器供暖系统特性研究[J].节能,2003, Vol.254(9):16-19.
    [11]高阳,沙泳洪.喷射式混合加热器及其运用[J].节能与环保(运用技术)2001,(9):42-43.
    [12]高阳.喷射式混合加热器在供热系统中的应用与节能[J].节能与环保技术,2006,(8):41-44.
    [13]费洪.混合式加热器的发展及应用简介[N].广西轻工业,2005,86(1):31-32.
    [14] Jnu-jie Yan,Shu-feng Shao,Ji-ping Liu,Zhao Zhang.Experiment and analysis on performance of steam-driven jet injector for district-heating system[J].Applied Thermal Engineering 2005,(25):1153-1167.
    [15]陈亚平,徐礼华,周强泰等.板壳式换热器与电厂低压加热器无铜化[J].锅炉技术,2002,02, Vol.33(2):4-7.
    [16]刘继平,严俊杰,邢秦安等.超音速两相流加热技术用于电厂低压加热器理论研究[J].中国电机工程学报,2003, Vol.23(12):175-178.
    [17]王汝武.电厂回热系统用混合式加热器代替面式高压加热器的研究[J].中国能源:研究与探讨,2001,(9):38-39.
    [18]刘凤娥.2号低压加热器改为混合式加热器热经济性分析[J].山东电力高等专科学校学报,1998,Vol.1(1):50-51.
    [19]曾丹苓,张新铭,刘朝等.工程热力学(第三版)[M].北京:高等教育出版社,2004,226-254.
    [20] IGOR J.Karassik(美),关醒凡,程兆雪等译.泵手册第一分册泵的理论、性能、结构、使用、试验[M].北京:机械工业出版社,1983,428-460.
    [21] Hellmuth Schulz(联邦德国),吴达人等译.泵原理、计算与结构[M].北京:机械工业出版社,1991,317-341.
    [22]赵静野,孙厚钧,高军.引射器基本工作原理及其运用[J].北京建筑工程学院学报,2000,12,Vol.16(4):12-15.
    [23] N.Beithou,H.S.Aybar.High-pressure steam-Drivern jet pump—part I :Mathematical Modeling [J]. ASME,2001,Vol.123: 693-700.
    [24]沈坚,胡国新.引射器及引射循环在工程中的应用[J].煤气与热力,2005, Vol.25(1):34-38.
    [25] Keenan H,Neumann E P,Lustwerk F.An investigation of ejector design by analysis and experiment[J].Appl Mech,trans ASME,1950,(72):299-309.
    [26] Philippe D.A method for visualizing the mixing zone between two co-axial flows in an ejector[J].Optics and Lasers in Engineering,2001,(35):317-323.
    [27] Narmine H.Aly,M.M.Shamloul.Modelling and simulation of steam jet ejectors[J].Desalination 1999(123):1-8.
    [28] Ouzzane M,Aidoun Z.Model development and numerical procedure for detailed ejector analysis and design[J].Applied Thermal Engineering,2003,(23):2337-2351.
    [29] N.Deberne,J.F.Leone,A.Duque,A.Lallemand. A model for calculation of steam injector performance[J]. International Journal of Multiphase Flow. 25 (1999) 841-855.
    [30] Zeng Danling.Sound Velocity in Vapor-Liquid Two-Phase Medium[R].In:Proceeding of Second International Symposium on Multi-phase Flow and Heat Transfer,Xi’an,1989:11-18.
    [31] Zeng Danling,Zhao Liangju. Sound Velocity in Vapor-Liquid Two-Phase fluid system[J]. Proceedings of ICECA.Wuhan:ICECA,2001:18-20.
    [32] Startor R F. A theroretical model of supersonic steam nozzle behavior[J].Columbus:The Ohio State University ,1996.
    [33]江帆,严俊杰等.汽液两相流凝结激波升压装置的火用分析模型[J].热力发电,2002(4):38-40.
    [34] N.Deberne,J.F.Leone,A.Duque.A model for calculation of steam injector performance[J]. International Journal of Multiphase Flow,1999,Vol.25(5):841-855.
    [35]陈听宽.两相流与传热研究[M].西安交通大学出版社,2004:2-15.
    [36]严俊杰,刘继平.汽液两相流激波升压特性的研究[J].西安交通大学学报,2001,Vol.35(5):467-470.
    [37]赵良举,曾丹苓.两相流超音速流动、激波及其运用研究[J].热能动力工程,2002,Vol.17(100):332-335.
    [38] Tadashi Narabayashi,et al.Fesibility and application on steam injector next generation reactor[R].JSME/ASME Joint International Conference on Nuclear Engineering,Tokyo,1991.
    [39] Vincent P.Manno,Abdelouhab A Dehbi.A note:A model of steam injector performance[J]. Chem.Eng.Comm,1990,Vol.95(1):107-119.
    [40]赵良举,曾丹苓等.汽液两相混合物的加速与激波的热力学分析[J].工程热物理学报, Vol.22,No.3,2005,05.
    [41]赵良举,曾丹苓,袁鹏,等.汽液两相混合物的加速流动与激波的热力学分析[J].工程热物理学报,2001 ,Vol.22 (3) :284-286.
    [42]严俊杰,刘继平,林万超等.汽液两相流喷射升压装置的机理研究[J].核动力工程, 2001 , Vol.22 (6) : 490-493.
    [43]刘继平,严俊杰,林万超等.汽液两相流激波升压过程的实验研究[J].西安交通大学学报,2002 , Vol.36 (1) :1-3.
    [44]刘继平,严俊杰,陈国慧等.进水温度对汽液两相流激波升压特性影响的试验研究[J].热能动力工程,2001,Vol.16(96):622-624.
    [45]严俊杰,刘继平,邢秦安等.变截面通道内超音速两相流升压过程的研究[J].西安交通大学学报, 2003,03,Vol.37(3):221-224.
    [46]刘志强,沈胜强,阿布里提·阿不都拉.蒸汽喷射式热泵性能试验研究[J].大连理工大学学报, 2001,Vol.41(3):310-313.
    [47] Tadashi Narabayashi, Michitsugu Mori,Mikihide Nakamaru.Study on two-phase flow dynamics in steam injectorsⅡ: High-pressure tests using scale-models[J]. Nuclear Engineering and Design, 2000, 200:261-271.
    [48]刘德彰,曾元芳,戚荣良.引射碎流型蒸汽加热器研究[J].南京航空学院学报, 1990,Vol.22(6):18-24.
    [49]冯骥,白英等.蒸汽喷射器噪声的产生与降噪优化设计[J].内蒙古农业大学学报, 2007,Vol.28(2):174-176.
    [50]李娟.蒸汽喷射器的腐蚀与修复[J].上海化工,2007,Vol.32(7):31-32.
    [51]康永峰,廖振方,陈德淑等.自激振荡脉冲射流曝气器的实验[J].重庆大学学报(自然科学版),2006,29(8):74-101.
    [52]金良安,王孝通,刘学武.一种新型多级引射技术实验研究[J].流体力学实验与测量,2004,18(3):27-31.
    [53]王时珍.两级吸入式高效高引射系数引射器.力学学报,1980,(4):413-418.
    [54]单勇,张靖周.波瓣喷管引射—混合器涡结构的数值研究[J].空气动力学学报, 2005,Vol.23(3):355-358.
    [55] Huh,Saga T,Kobayashi T.Inveestigation of the vortex structures downstream of a lobed nozzle by mean of dual-plane stereoscopic PIV[J].4th-International Symposium on Particle Image Velocimetry,Germany,2001,1020.
    [56]缪亚芹,王锁芳,吴恒刚.多喷管引射器实验研究与数值模拟[J].南京师范大学学报,2006,Vol.6(2):68-71.
    [57]张琨.可调式喷射器的性能计算分析与结构设计[D].大连理工大学,2005:19-20 .
    [58]浦晖.可调式引射器的流动特性研究[D].福州大学,2005:14-15.
    [59] PridasawasW, Lundqvist P. An energy analysis of a solar-driven ejector refrigeration system[J]. Solar Energy,2004, (76) : 369 - 379.
    [60] WooJong Hong,Khaled Alhussan,Hongfang Zhang,Charles A.Garris.A novel thermally driven rotor-vane/pressure-exchange ejector refrigeration system with environmental benefits and energy efficiency[J].Deparment of Mechanical anf Aerospace Engineering,School of Engineering and applied Science,The George Washington Univery,USA,2005.
    [61] Woo Jong Hong, Khaled Alhussan, Hongfang Zhang and Charles A. Garris, Jr. A novel thermally driven rotor-vane/pressure-exchange ejector refrigeration system with environmental benefits and energy efficiency[J].Energy,2004, 29:2331-2345.
    [62] R.Yapici,C.C.Tetisen.Experimental study on refrigeration system power by low grade heat[R].Department of Mechanical Engineering,Facculty of Engineering and Architecture, Selcuk University ,Alaeddin Campus,Konya,Turkey.2007,01.
    [63] Y.-J. Chang and Y.-M. Chen, Enhancement of a steam-jet refrigerator using a novel application of the petal nozzle[J]. Exp. Thermal Fluid Sci. 2000(22): 203–211.
    [64] Bryzek J, Peterson K, McCulleyW. Micromachines on the match[J]. IEEE Spectrum, 1994, 31 (5) : 20 - 31.
    [65] Tadashi Narabayashi,Michitsugu Mori,Mikihide Nakamaru.Study on two-phase flow dynamics in steam injectorsⅡ.High-pressure tests using scale-models[J].Nuclear Engineering and Design 2000, 200(1):261-271.
    [66]童明伟.喷射式热力除氧的脱气效率时研究.重庆大学学报(自然科学版)[J],1995,18(4):72-75.
    [67]张鸿雁,张志政,王元.流体力学[M].北京:科学出版社,2004,236-252.
    [68]清华大学电力工程系锅炉教研组.锅炉原理及计算[M].北京:科学出版社,1979,242.
    [69]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,2005,17-49.
    [70]陆宏圻.射流泵技术的理论及运用[M].北京:水利电力出版社,1989,1-151.
    [71]贾宗谟,穆界天等.旋涡泵液环泵射流泵[M].北京:机械工业出版社,1993,82-83.
    [72]张也影.流体力学(第二版)[M].北京:高等教育出版社,2004,213-223.
    [73]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,2003,225-236.
    [74] Jun-jie Yan,Shu-feng Shao,Ji-ping Liu,Zhao Zhang.Experiment and analysis on performance of steam-driven jet injector for district-heating system[J].Applied Thermal Engineering, 2005,25:1153-1167.
    [75]王维慧,蒸汽-水喷射混合器的设计与运用[J].流体机械,2007,35(2):26-28.
    [76]邱春花,王蓉,付文锋.射水式喷射加热器结构设计计算与分析[J].华北电力大学学报,2007,34(1):63-66.
    [77] M. Ouzzane , Z. Aidoun. Model development and numerical procedure for detailed ejector analysis and design[J]. Applied Thermal Engineering,2003,23(18): 2337-2351.
    [78] Cattadori G, Galbiati L, Mazzocchi L, Vanini P. A single-stage high pressure steam injector for next generation reactors: test results and analysis[J]. International Journal of Multiphase Flow,1995, 21(16): 591-606.
    [79] Xin-Zhuang Wu,Jun-Jie Yan,Shu-Feng Shao,Cao yan.Experimental Study on the condensation of supersonic steam jet submergerd in quiesecent subcooled water:Steam plume shape and heat transfer[R].State Key Laboratory of Multiphase Flow in Power Engineering,Xi’an Jiaotong University,Xi’an,Chian.2007,05.
    [80] M.H. Chun, Y.S. Kim , J.W. Park.An investigation of direct condensation of steam jet in subcooled water[J].Int. Commun. Heat Mass Transfer 1996 (23):947–958.
    [81]李夔宁,饱和蒸汽在自由过冷液面直接接触冷凝特性的研究[D].重庆大学,2003,43-69.
    [82] Y.S. Kim, J.W. Park ,C.H. Song.Investigation of the steam-water direct contact condensation heat transfer coefficients using interfacial transport model[J], Int. Commun. Heat Mass Transfer,2004 ,(31):397–408.
    [83]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,2001,205-215.
    [84]林宗虎,汪军等.强化传热技术[M].北京:化学工业出版社,2007,212-237.
    [85]魏琪.热质交换原理与设备[M].重庆:重庆大学出版社,2007,1-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700