用户名: 密码: 验证码:
聚光型太阳能电热联用系统性能的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能电热联用(PV/T)系统,把光伏组件与太阳能集热器组合在一起,同时提供电能和热能,提高了太阳能的总利用效率。与分离的光伏系统和集热系统相比,太阳能电热联用装置可以共用一些组件、降低系统成本、减少安装面积、而且仅有一种组件在外观上是可见的,有利于建筑美观,更加有效的利用了太阳能。迄今为止,对PV/T联用系统的研究集中在集热器上,主要是管板式和流道式集热器,而流道式集热器又以单流程直通道为主,对于多流程流道式集热器以及自然循环水系统的研究开展的较少。
     本文首先建立多流程蛇形流道式集热器的三维稳态模型,模拟聚光比、操作参数以及外部条件变化对集热器性能的影响。得出以下结论:
     ①集热器流体的出口温度随冷却流体质量通量的增加而减小,热电效率随质量通量的增加而增大,电池板表面的温度梯度随质量通量的增加而减小,流动阻力随质量通量的增加而增加。对于本文蛇形流道式集热器来说,冷却流体质量通量M=40kg/m2·s为最优值,它既能保证集热器的热效率和电效率在较高的范围,又能使流动阻力损失保持在较低水平;
     ②采用聚光方法会使电效率下降,热效率上升,能量利用总效率略有降低,但聚光方法在增加少许成本的基础上能大幅度提高系统总产出;
     ③环境风速的增加会显著降低集热器的热效率,对其电效率影响甚微;加盖玻璃盖板能提高集热器出口水温和热效率,对电效率的影响很小。然后,建立了电热联用自然循环水系统二维动态模型,模拟了晴天和多云两种天气条件下,系统性能随太阳辐射强度的变化情况。结果发现:
     ①输出电功随太阳日辐射量的变化而变化,辐射增强,输出电功增加,辐射减弱,输出电功减少。系统水温则随着日太阳辐射量的增加而升高。系统的热电效率都随日太阳辐射量的增加而下降;
     ②水温和输出电功的年变化趋势与太阳辐射强度的变化趋势相同;电效率的年变化趋势与辐射强度的年变化趋势相反,年均值在10%以上;热效率受辐射强度和辐射分布情况的共同影响,年均值在40%以上;
     ③晴天条件下,系统日电产出大于464.4Wh/m2。一年中有6个月,水箱的水温在50℃以上,基本达到生活用热水温度;
     ④多云情况下,太阳辐射瞬时变化较大,系统的输出电功也随之波动,但水温和热电效率的瞬时变化不明显。
     最后,根据PV/T集热器和自然循环水系统的模拟结果,提出户用型PV/T联用系统设计方法,结合用户热电需求,设计一套PV/T联用系统,并对其性能进行了评价。
Hybrid photovoltaic/thermal (PV/T) solar energy system, combining solar cell module with thermal solar collector, can simultaneously provide electricity and heat and raise the total solar energy utilization efficiency. Compared with separate photovoltaic solar system or thermal solar collecting system, hybrid photovoltaic/thermal solar energy system can share some components, decrease system cost, and reduce installation area. Moreover, in such kind of equipment, there is only one component in appearance visible, which makes the building much beautiful and more effective in solar energy utilization. So far, the research on hybrid PV/T system concentrates into the thermal collectors, which are mainly tube-plate type and flow-channel type. Moreover, most of flow-channel type collectors are straight channel, few of collector is multiple serpentine flow-channels.
     In this paper, a three-dimensional steady model of solar collector with multiple serpentine flow-channels used for PV/T system is presented. Numerical calculation is conducted to simulate the characteristics of the collector considering the variations of solar radiation intensity, operating parameters and the external conditions. To understand the dynamic performance of the output of the PV/T system, a two-dimensional dynamic model of the water subsystem of the PV/T system is also established here. The simulating results give out the characteristics of system output and electric and thermal efficiencies with the variation of solar daily or annual radiation and climate conditions. Some critical conclusions are listed below.
     ①The fluid temperature at the outlet of collector decreases with the increase of coolant mass flux, while electrical and thermal efficiency increase with the mass flux. Temperature gradient on the solar cell surface decreases with the increase of the mass flux. For the serpentine flow-channel type collector, the optimum value of mass flux is 40 kg/m2, with higher electrical and thermal efficiencies and lower pressure drop in the flow channels.
     ②Adding solar concentrator to hybrid PV/T collector will decrease the electrical efficiency, rise thermal efficiency, and reduce total efficiency. However, the concentrator significantly improves the system output with slight cost increase. The increase of surrounding wind velocity will obviously decrease thermal efficiency, with little impact on the electrical efficiency. Adding glass cover can improve fluid temperature and thermal efficiency, but has little influence on the electrical efficiency.
     ③Output power changes along with the change of solar radiation intensity. The higher the solar radiation, the higher the output power, And vice versa. Water temperature rises along with the increase of daily radiation intensity. Electrical and thermal efficiencies of system decline along with the increase of daily radiation intensity. Annual variation of the water temperature and output power is the same as the annual variation tendency of solar radiation intensity. In hazy day, the fluctuation of system’s output power is obvious. However, the instantaneous changes of the water temperature and output power are not obvious.
     Finally, according to simulation results of PV/T collector and natural-circulation water system, a design method of household hybrid PV/T system is proposed. The new designed PV/T system can satisfy both the thermal and electrical requirement of the residential user. And the system performance is also analyzed.
引文
[1]王斯成.世界最新光伏动态――第31界IEEE光伏专家会议和超大规模光伏专题会议介绍[J].太阳能, 8-12.
    [2]金磊.中国能源安全及其可持续发展――浅论太阳能光伏发电的现代建筑应用[J].生存空间, 10-15.
    [3] Wen Li-zi. Vast utilization of solar power is not a dream[J], China Territory Today. 2005,1-2:59.
    [4]史玉波.光伏发电.中国科技信息(商业频道,对话栏目)[J]. 2002,No12,13-14.
    [5]马胜红,赵玉文等.光伏发电在我国电力能源结构中的战略地位和未来发展方向[J].中国能源, 2005,Vol.27,No.6,24-32.
    [7]汪建军,刘金霞.太阳能电池及材料研究和发展现状[J].浙江万里学院学报, 2006,Vol.19,No.5,73-77.
    [6]张伯泉,杨宜民.风力和太阳能光伏发电现状及发展趋势[J].中国电力,2006,Vol.39,No.6,65-69.
    [8] Zhao J, Wang A, Green M. Ferrazza F.Appl Phys Lett,1998,73:1991.
    [9] TANG Ye hua, XIE Jian. Status and expectation of photovoltaic technology [J]. Renewable Energy,2005(3): 68-69.
    [10] Yang J, Banerjee A, Guha S.Appl Phys Lett,1976,28:671.
    [11]丁海成,高立峰,马兵. 2003年世界太阳能光伏市场状况[J].可再生能源, 2004,(6):71-72
    [12]李春鹏,张廷元,周封.太阳能光伏发电综述[J].电工材料,2006,No.3,45-48.
    [13] Tripanagnostopoulos Y, NOUSIA, et al. Hybrid photovoltaic/thermal solar system[J]. Solar Energy, 2002,72(3):217-234.
    [14]杨洪兴,季杰. BIPV对建筑墙体得热影响的研究[J].太阳能学报, July, 1999,Vol.20, No.3, P270-273.
    [15]王一平,刘永辉,田玮.太阳能电热联用系统研究进展[J].太阳能学报, Vol.26, No.5,110-115.
    [16]杨德仁.太阳电池材料[M].北京:化学工业出版社, 2006,12-50.
    [17]孟庆巨,刘海波,孟庆辉.半导体器件物理[M].北京:科学出版社, 2005,213-239.
    [18] [澳]马丁·格林著,李秀文,谢鸿礼等译.太阳电池[M].北京:电子工业出版社,1987.
    [19]施敏.半导体器件物理与工艺[M].王阳元,嵇光大,卢文豪译.北京:科学技术出版社,1992.
    [20]廖家鼎,徐文娟,牟同生编著.光电技术[M].杭州:浙江大学出版社,1990.
    [21]沈辉,曾祖勤主编.太阳能电池[M].北京:化学工业出版社, 2003.
    [22]陈维,沈辉,舒碧芬,张臻.晶体硅太阳电池和组件热性能分析[C].第八届光伏会议论文集.
    [23] S.R Wennham. Applied photovoltaic[J]. Australia. Centre for photovoltaic devices and system, 235-245.
    [24] E.Radziemska, E.Klugmann. Thermally affected parameters of the current-voltage characteristics of silicon photo-cell[J]. Energy Convers Mgmt 2002;1883: l9-51.
    [25] Bakker M, Strootman KJ, Jong MJM. PVT panels: fully renewable and competitive[A]. The ISES solar world congress 2003[C], Goteborg, Zweden. 2003:14-49.
    [26] Kern Jr EC, Russell MC. Combined photovoltaic and thermal hybrid collector systems[A]. Proc 13th IEEE photovoltaic specialists[C], Washington DC; 1978,1153-1157.
    [27] Bergene T,Lovik O. Model calculations on a flat plate solar heat colletor with integrated solar cells[J]. Solar Energy,1995, 55 (6) : 453—462.
    [28] Adel A Hegazy. Comparative study of the performance of four photovoltaic/thermal solar air collectors[J]. Energy conversion & Management, 2000, 41; 861-881.
    [29] Garg HP, Adihikari RS. Conventional hybrid photovoltaic/thermal(PV/T) air heating collector; steady-state simulation[J]. Renewable Energy, 1997(3):3[a58]-386.
    [30] Zongda HA, Vries DW de, Helden WG J van, et al. The yield of different combined PV-thermal collector design[J]. Solar Energy, 2003, 74(3); 253-269.
    [31] Zondag HA,Vries DWDE, et al. The thermal and electrical yield of a PV-thermal collector[J]. Solar Energy, 2002,72(2), 113-128.
    [32] Hay J E. Calculation of monthly mean solar radiation for horizontal and inclined surface [J]. Solar Energy, 1979 ,23 (4) :301-307.
    [33] Coventry JS. Simulation of a concentrating PV/T collector using TRNSYS. In: Proceedings of Solar 2002. Australian and New Zealand Solar Energy Society; 2002.
    [34] J.I. Rosell, X. Vallverdu′, M.A. Lecho′n, M. Iba′n?ez. Design and simulation of a low concen- trating photovoltaic/thermal system[J]. Energy Conversion and Management 46 (2005) 3034–3046
    [35] Chow TT. Performance analysis of photovoltaic-thermal collector by explicit dynamic model[J]. Solar Energy 2003;75(2):143–152.
    [36]王默晗.利用计算机模拟太阳能光伏发电[J].节能,No.5,36-39,2005.
    [37]茆美琴,苏建徽,张国荣,杜雪芳,刘翔.大型光伏并网系统的建模与仿真[J].合肥工业大学学报(自然科学版). Vol.28,No.9,1069-1072,2005.
    [38]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报.Vol.17,No.5,1248-1251,2005.
    [39]王建军.太阳能光伏发电应用中的温度影响[J].青海师范大学学报(自然科学版). No.1,28-30,2005.
    [40] Huang BJ, Lin TH, Huang WC, et al. Performance evaluation of solar photovoltaic/thermal systems[J]. Solar Energy, 2001, 70(5); 443-448.
    [41] SANDNES and JOHN REKSTA. A Photovoltaic/Thermal (PV/T) Collector with A Polymer Absorber Plate. Experimental Study and Analytical Model. solar energy, Vol.72, No.1, pp.[a58]-73,2002.
    [42] Cross B M, Yin H X,Morgan TR. Development,testing and first installations of an integrated solar roof system[A]. In Proceedings of the First World Conference on PV Energy Conversion[C], Hawaii,USA,1994,1020-1023.
    [43] De Vries D W, Design of a PV/Thermal combi panel[D].Eindhoven University of Technology,the Netherland. Ph DTh Thesis,1998.
    [44]吴玉庭,朱宏晔,任建勋,梁新刚.聚光与冷却条件下常规太阳电池的特性[J].清华大学学报(自然科学版),2003,Vol.43, No8,1052-1055.
    [45]季杰,程洪波,何伟,陆剑平.太阳能光伏光热一体化系统的实验研究[J].太阳能学报, Vol.26, No.2,170-173.
    [46] Hayden H, Johnston P, Garboushian V, et al. APS installation and operation of 300kW of amonix high concentration pv systems[A].29th IEEE PVSC[C].New Orleans, 2002:1362-1368.
    [47] Coventry. A solar concentrating photovoltaic/thermal collector[D]. Australian National University, June 2004.
    [48] Ludman J, Riccobono J, Reinhand N, et al. Holographic solar concentrator for terrestrial photovoltaics[A]. First WVPEC[C]. Hawaii, 1994:1208-1215.
    [49] [美]汉斯S劳申巴赫著,张金熹,廖春发,等译.太阳电池阵列设计手册[M].北京:宇航出版社, 1987.
    [50] Boes EC. Photovoltaic concentrator technology development [A],21st IEEE PVSC[C]. Kissimmee. 1990:944-950.
    [51] Swanson RM. The promise of concentrators[J]. research and application. 2000,8(1):93-111
    [52] Sala G, Arboiro JC, Luque A,et al. 480kWp EUCUIDE-STM concentrator power plant using parabolic trough[A],2nd WCPVSEC[C]. Vienna(Austria),1998:19[58]-1968.
    [53] Mc Connell R. First international conference on solar electric concentrators[A]. 29th IEEE PVSV[C].New Orleans, 2002: 1737-1741.
    [54] Brogren M, Karlsson B. Low-concentrating water-cooled pv thermal hybrid system for latitudes[A]. 29th IEEE PVSC[C]. New Orlean, 2002:1733-1736.
    [55]陈清华.太阳能光电光热综合转化性能分析[D].重庆:重庆大学动力工程学院, 1994.
    [56] M Y H Othman, B Yatim, K Sopian, M N A Bakar. Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins[J]. Renewable Energy, 2005, 30, 2005–2017.
    [57]王长贵,王斯成.太阳能光伏发电实用技术[M].化学工业出版社, p52-53.
    [58]陶文铨.计算流体力学与传热学[M].北京:北京建筑工业出版社, 1991,75-126.
    [59] Holman J P. Heat transfer[C]. 8th ed. New York: McGraw-Hill Companies, 1997.289.
    [60] Jones, A.D, Underwood, C.P. A thermal model for photovoltaic systems[J]. Solar Energy, 2001,70 (4), 349–359.
    [61] Anand S. Joshi, Arvind Tiwari, Energy and exergy efficiencies of a hybrid photovoltaic– thermal (PV/T) air collector[J]. Renewable Energy. 32 (2007) 2223–2241.
    [62] Jie Jia, Jian-Ping Lu a, et al. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation[J]. Applied Energy, 84 (2007) 222–237
    [63]张鹤飞主编.太阳能利用原理与计算机模拟[M].西北工业大学出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700