用户名: 密码: 验证码:
钌催化剂的制备及氨合成催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别以多种活性炭、氧化铝为载体,采用浸渍法制备一系列氨合成钌催化剂,利用物理吸附、化学吸附、元素分析和扫描电镜等表征手段,结合氨合成活性评价,探索了载体、助剂、制备过程及使用条件对钌催化剂氨合成催化活性的影响。
    结果表明,具有高纯度、高比表面、大孔容及合理孔分布的活性炭载体有利于活性组分有效均匀的分散,制备出高活性的氨合成钌催化剂。对于Ru/AC催化剂,碱土金属类助剂的促进作用要优于碱金属类助剂,而且二者的最佳用量不同。与单助剂钌催化剂相比,双助剂钌催化体系的催化活性更高,采用分步浸渍法比共浸渍法更为有效。
    钌金属为贵金属,从性价比方面考虑,钌负载量以4 wt%为佳。RuCl3/AC在较低温度下就能进行脱氯还原,为避免高温下炭载体的流失和钌粒子的烧结,脱氯还原温度不宜过高。
    模拟工业氨合成条件,考察温度、压力、空速对Ru/AC催化剂的影响。结果表明,钌催化剂在低温、低压下使用显示出了良好的催化活性。在反应压力较高时,升高温度有助于克服钌催化剂在高压下的氢吸附现象。
    以氧化铝为载体的氨合成钌催化剂,活性相的分散并不完全取决于氧化铝载体的比表面,较大的比孔容、合理的孔径分布是决定金属分散度的主要因素。CsNO3和Ba(NO3)2均是Ru/Al2O3催化剂的有效助剂;稀土硝酸盐Sm(NO3)3的促进效果较差,但若用其对氧化铝载体进行改性处理,可有效的抑制钌催化剂高压下的强氢吸附,显著提高钌催化剂的活性。
Many kinds of activated carbon and alumina were used as the supports to prepare a series of ruthenium catalysts. Physical adsorption, chemical adsorption, elemental analysis, scanning electron microscope were carried out to characterize the properties of supports and ruthenium catalysts. The ammonia synthesis activities were also measured. It has attracted much attention to study the effect of supports, promoter, and preparation process and reaction condition on the catalytic properties of ruthenium catalyst for ammonia synthesis.
    When activated carbon was used as support to prepare the ruthenium catalyst, it was found that the ammonia synthesis activity of Ru/AC catalyst was directly related to the properties of activated carbon. The ruthenium catalyst supported by the special activated carbon, which had high purity, high surface area, large pore volume and proper pore structure, usually had high catalytic properties for ammonia synthesis. A series of alkaline and alkaline-earth metal were used as promoter to prepare the single-promoted or double-promoted. For the single-promoted Ru/AC catalyst, it was confirmed that alkaline-earth metal are more effective in ammonia synthesis than alkaline metal promoter. For the double-promoted catalyst, it was more active when the promoters were impregnated step by step than that the promoters were co-impregnated.
    For Ru/AC catalyst, Ru loading affected the catalytic activity obviously. With the Ru loading increased, the activity of catalyst also increased, but the dispersion of the Ru decreased reversely. The optimal Ru loading was 4 wt%. In order to avoid sintering of the Ru particle and the methanation of the carbon
    
    support, the ruthenium catalyst should be reduced at a relative low temperature.
    Under the reaction condition similar with the industrial application, the effects of the reaction temperature, pressure and GHSV on the ruthenium catalyst were also investigated. The result showed that the Ru catalyst had relatively high catalytic properties at a low temperature and under a middle pressure. The enhancement of reaction temperature could weaken a strong adsorption of hydrogen in high pressure and would be beneficial to improve the activity of the ruthenium catalyst for ammonia synthesis.
    Ruthenium catalyst supported on alumina was also studied. The result showed that Ru dispersion of catalyst was not completely determined by surface area of the support, the large pore volume and fitting pore size were the main factors of affecting the Ru dispersion. Barium and cesium nitrate were proved to be effective promoter for Ru/Al2O3 catalyst. If used to modify the Al2O3 support, Sm(NO3)3 would be more effective than being the promoter singly.
引文
1. Nitrogen, 1976, 100: 47.
    2. Tamaru K. J Phys Chem, 1968, 75: 1739.
    3. Ozaki A, Aika K, Hori H. Bull Chem Soc Jpn, 1971, 44: 3216.
    4. Aika K, Hori H, Ozaki A. J Catal, 1972, 27: 424.
    5. Chem Engineering. CHEMENTATOR, 1993, 3: 19.
    6. Van Dijk C P, A. Solbakken, Mandelik B G.. US Patent 4,568,531, 1986.
    7. Urabe K, Aika K, Ozaki A. J Catal, 1974, 32: 108.
    8. Report Article in Appl Catal A: General, 1991, 67: N18.
    9. Report Article in Appl Catal A: General, 1993, 93: N16.
    10. Boudart M. Catal Rev Sci Eng, 1981, 23: 1.
    11. Fastrup B. J Catal, 1997, 168(2): 235.
    12. Katz C, Kosloff R. J Chem Phys, 1995, 103(21): 9475.
    13. Kuchaev V L, Shaptina E N, Avetisov A K. Kinet Catal, 1995, 36(5): 668.
    14. Mckee C S. Appl Catal A: General, 1995, 127: N4.
    15. Tsai K R. Paper Presented at the Post Congress Symposium on Nitrogen Fixation after the 7th ICC, Tokyo, 1980.
    16. Wei T C, Phillips J. Adv Catal, 1996, 41: 359.
    17. Temkin M I, Pyzhev V M. Acta Physicochim, 1940, 12: 327.
    18. Ozaki A, Taylor H S, Boudart M. Proc Roy Soc, London, 1960, 258: 47.
    19. Takeshita T, Wallace W E, Craig R S. J Catal, 1976, 44: 236.
    20. 魏可镁. 氨合成催化剂研究进展, 工业催化, 1992, 创刊号: 8.
    21. 南京化工研究院 译. 合成氨催化剂手册, 北京: 石油化工出版社出版,1997.
    22. 魏可镁, 王榕, 俞秀金. 化肥工业, 1985, 3: 78.
    23. 魏可镁, 俞秀金, 王榕. 工业催化, 1995, 3: 14.
    24. 王文祥, 刘照穹, 张元珍. 化学通报, 1996, 9: 51.
    25. 王文祥, 徐杰, 郭宪吉. 化肥工业, 1998, 22(1): 4.
    
    
    26. 刘化章, 李小年. 中国科学 (B), 1995, 25(1): 1.
    27. 刘化章, 胡樟能, 李小年. 化工学报, 1994, 45(4): 385
    28. 刘化章, 李小年, 胡樟能. 石油化工, 1994, 23: 16.
    29. 张成芳. 合成氨工艺与节能, 华东化工学院出版社, 1988.
    30. Almquist J A, Criffenden E D. Ind Eng Chem, 1926, 18: 1307.
    31. Bridge G L, Pole G R, Beinlch A W et al. Chem Eng Progr, 1947, 43(6): 291.
    32. 刘化章, 胡樟能, 李小年 等. 工业催化, 1994, 2(2) :19.
    33. 刘化章, 胡樟能, 李小年 等. 浙江工学院学报, 1994, 1: 27.
    34. Liu H Z, Li X N, Hu Z N. Appl Catal A: General, 1996, 142: 209.
    35. Liu H Z, Xu R Y, Jiang Z R. Hu Z G, Li Y Y, Li X N, US Patent 5,846,507, 1998.
    36. Dmitrtenko L M, Lachinov S S, Sivyakova R F. Kinet Katal, 1965, 6:121.
    37. Enikeev E K. Dokl Akad Nauk SSSR, 1960, 131: 1126.
    38. Kalenczuk R J. Catal Lett, 1995, 33: 331.
    39. Kalenczuk R J. J Chem Tech Biot, 1995, 64(4): 398.
    40. Kalenczuk R J. Appl Catal A: General, 1994, 112(2): 149.
    41. Wang W X, Zhao H Q, Du B S et al. Appl Catal A: General, 1995, 122: 5.
    42. Kalenczwk R J. J Chem Tech Biot, 1994, 59(1): 73.
    43. Ageeva I V, Kryliva A V. J Appl Chem USSR, 1992, 65(9): 1758.
    44. Yastimirskii V K, Ischenko E V. React Kinet Catal Lett, 1992, 48(2): 385.
    45. Kalenczuk R J. J Chem Tech Biot, 1992, 54(4): 349.
    46. 仰华胃. 化肥工业, 1995, 22(4): 26.
    47. 李基涛, 蔡丽芬. 化肥与催化, 1991, 2: 30.
    48. 赵和全, 王文祥, 化肥与催化, 1989, 2: 11.
    49. 许清准. 四川化工, 1992, 4: 35.
    50. 邱国涛. 化肥与催化, 1991, 1: 13.
    51. Uchida H, Ishikawa K, Suzuki T, Inoue T, Uchida H H. J Alloys Comp, 1995, 222: 153.
    52. Wang X K , Shan N F, Han S H, Gu H G.. Acta Chim Sin, 1994, 52(6): 613.
    53. Berengarten M G, Rudniskii L A, Zubova I E. Kinet Katal, 1974, 15: 250.
    
    
    
    54. Karaslavova K, Anastasov M D. Geterogennyi Katal, Tr Mezhdunar Simp 3rd, 1978, p 297.
    55. 余祖熙. 化肥催化剂使用技术, 北京:化学工业出版社, 1988.
    56. Zenghel, Osterr C. Chem Zeitung, 1937, 40: 94.
    57. Moggi P, Predieri G, Albanesi G.. Appl Cata A: General, 1989, 53: L1.
    58. Baris H, Glinski M, Kijenski J. Appl Catal A: General, 1986, 28: 295.
    59. Rambeau G, Amariglio H. J Catal, 1981, 72: 1.
    60. Kuznetsov V L, Bell A T. J Catal, 1980, 65: 374.
    61. Laza K, Matrse K, Mink J. J Catal, 1984, 87: 163.
    62. Schay Z, Lazar K, Mink J. J Catal, 1984, 87: 179.
    63. Uchiyama S, Gates B C. J Catal, 1988, 110: 388.
    64. Solymosi F, Rasko J. J Catal, 1989, 115: 107.
    65. Mieth J A, Schwarz J A. J Catal, 1989, 118: 203.
    66. Kim K S, Winograd N. J Catal, 1974, 35: 66.
    67. Fishel C T, Davis R J, Garces J M. J Catal, 1996, 163: 148.
    68. 林伟忠, 刘化章. 现代化工, 1994, 7: 12.
    69. 王丽华, 陈守正, 廖代伟 等. 化学进展, 1999, 4: 376.
    70. 何林. 工业催化, 2000, 1: 3.
    71. 王丽华, 林贻基. 厦门大学学报(自然科学版), 1991, 1: 148.
    72. 郑晓玲, 魏可镁. 化学进展, 2001, 6 : 472.
    73. 王晓南, 朱虹, 夏伟琴 等. 催化学报, 2000, 3: 276.
    74. 李瑛, 刘化章. 工业催化, 2000 , 3: 17.
    75. 张淑娟, 郑晓玲, 许交兴 等. 燃料化学学报, 2001, 29: 96.
    76. Foster A I, James P G, McCarroll J J, Tennison S R. US Patent 4,163,775, 1979.
    77. Ozaki A, Aika K, Furuta A, Okagami A. US Patent 3,770,658, 1973.
    78. Murata S, Aika K. Appl Catal A: General, 1992, 82: 1.
    79. 潘履让. 固体催化剂的设计和制备(第一版),南开大学出版社, 天津, 1993.
    80. CA, 1981, 91(8): 68634b.
    81. Aika K, Midorikawa H, Ozaki A. J Phys Chem, 1982, 86: 3263.
    82. Woodrow K, Shiflet J, Dumesie A. Ind Eng Chem Fundam, 1981, 20: 46.
    
    
    83. Moggi P, et al. Appl Catal A: General, 1995, 123: 145.
    84. Murata S, Aika K. J Catal, 1992, 136: 110.
    85. Asakara K, Baudo K, et al. J Chem Soc Far Trans, 1990, 86(14): 2645.
    86. Walker A P, Lambert R M. J Phys Chem, 1992, 96: 2265.
    87. Walker A P, Raiment T, Lamber R M. J Catal, 1989, 117: 102.
    88. Walker A P, Raiment T, Lambert R M. J Catal, 1990, 125: 67 .
    89. Aika K, Takano T, Murata S. J Catal, 1992, 136: 126.
    90. Aika K, Shimazaki K, Hattori Y, et al. J Catal, 1985, 92: 296.
    91. Elofson R M, Gadallah F F. US Patent 4,142,993, 1979.
    92. McCarroll J J, Tennison S R, Wilkinson N P. US Patent 4,600,571, 1986.
    93. Frastrup. Catal Lett, 1997, 48: 111.
    94. 秋鹿研一. 触媒(日), 1996, 38(4): 287.
    95. Murata S, Aika K. Chem Lett, 1990, 1067.
    96. 邢麟 译. 化肥工业译丛, 1990, (1): 13.
    97. 邢麟 译. 化肥工业译丛, 1990, (2): 31.
    98. Kowalczyk Z, Sentek J, Jodzis S, et al. Carbon, 1996, 34(3): 403.
    99. Forni L, Molinari D, Rossrtti I, et al. Appl Catal A:General, 1999, 185: 269.
    100. Zhong Z, Aika K .Chem Commun, 1997, 13; 1223.
    101. Zhong Z, Aika K. J Catal, 1998, 173; 535.
    102. Zhong Z, Aika K. Inorg Chim Acta, 1998, 280: 183.
    103. Dobrynkin N M, Tsyrulnikov P G, Noskov A S, et al. Preparation of Catalyst Ⅶ (B Delmon et al. Eds), Elsevier Amstedam, 1998: 213.
    104. Wei G, Wang L H, Lin Y J, et al. Chin Chem lett, 1999, 10(5); 433.
    105. Liang C H, Wei Z B, Xin Q, et al. Appl Catal A:General, 2001, 208: 193.
    106. Murata S, Aika K. J Catal, 1992, 136: 118.
    107. Aika K, Shimazaki K, Hattori Y. J Catal, 1985, 92: 296.
    108. Aika K, Ohya A, Ozaki A. J Catal, 1985, 92: 305.
    109. Izumi Y, Aika K. Chem Lett, 1995: 137.
    110. Izumi Y, Aika K. J Phys Chem, 1995, 99: 10346.
    111. Nawa Y, Aika K. J Catal, 1996, 162: 138.
    
    
    112. Aika K, Niwa Y. Stud Surf Sci Catal, 1998, 121: 327.
    113. Rao K R S, Rao P K, Masthan S K, et al. Appl Catal A: General, 1990, 62: 19.
    114. Rao K R S, Masthan S K, Prasad P S S, et al. Appl Catal A: General, 1991, 73: 11.
    115. Yunusov S M, Likholovov V A, Shur V B. Appl Catal A: General, 1997, 158: 35.
    116. Niwa Y, Aika K. J Catal, 1992, 136: 126.
    117. Niwa Y, Aika K. Chem Lett, 1996, 289: 3.
    118. Izumi Y, Iwata Y, Aika K. J Phys Chem, 1996, 100(22): 9421.
    119. Becue T, Davis R J, Garces J M. J Catal, 1998, 179: 129.
    120. Cisneros M D, Lunsford J H. J Catal, 1993, 141: 191.
    121. 石天宝. 化工进展, 1993, 6: 46.
    122. Masthan S K, Rao K S R, Rao P K, et al. Indian J Chem Sect A, 1994, 33: 816.
    123. Nitrogen, 1991, 193: 17.
    124. Aika K, Umasaka M K, Oma T, et al. Appl Catal A: General, 1986, 28: 57.
    125. Ozaki A and Aika K in "Catalysis Science and Technolgoy", (Anderson J R and boudart M, Eds), Chap 3, P 87. Springer-Verlag, Berlin, 1981.
    126. Ogata Y, Aika K, Onishi T. Bull Chem Soc Jpn, 1989, 62: 642.
    127. Hikita T, Kadowaki Y, Aika K. J Phys Chem, 1991, 95: 9396.
    128. 牛继舜. 大氮肥, 1996 , 19(5): 329.
    129. 凯洛格奉献给中国化肥工业的合成氨生产技术,大氮肥, 1991, p4 .
    130. Aika K, Kakegawa T. Catal Today, 1991, 10: 73.
    131. Noh J S, Schwarz J A. J Catal, 1991, 127: 22.
    132. Fujimoto K, Shikada T, Omata K. Ind Eng Chem Prod Res Dev, 1982, 21: 430.
    133. 邓祥贵, 许松岩, 连婉婉 等. 催化学报, 1989, 10(3): 290.
    134. Stoeckli H F. Carbon, 1990, 28(1): 1.
    135. Rodriguez-Reinoso F. Introduction to Carbon Technologies, University of Alicante, Alicante Spain, 1997, P 35.
    136. Masthan S K, Prasad P S S, Rao K S R, et al. Indian J Chem Sect A, 1995, 34(2): 146.
    137. Moggi P, Predieri G. Bull Chem Soc Jpn, 1990, 63: 1221.
    138. Kadowaki Y, Aika K. J Catal, 1996, 161: 178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700