用户名: 密码: 验证码:
CE/SE方法在脉冲爆轰发动机气液两相爆轰流场计算中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲爆轰发动机是一种利用脉冲式爆轰波产生推力的新概念发动机。与传统的以等压方式燃烧的发动机相比,它具有结构简单、热循环效率高、单位燃料消耗率低、工作范围广等优点,这使得它在军用和民用方面具有广阔的应用前景,将成为未来重要的新型推进系统。本文以液体燃料脉冲爆轰发动机为研究对象,针对两相爆轰流场的特点,建立两相爆轰控制方程,应用近期发展起来的时空守恒元和求解元方法(简称CE/SE方法)数值求解,用Fortran语言编写程序模拟两相爆轰过程。根据时空守恒元与求解元思想,推导了一维、二维和三维CE/SE方法的计算格式,用于对脉冲爆轰发动机管内气液两相爆轰一维、二维、三维流场的数值计算。主要内容包括:
     (1)推导了一维CE/SE方法的计算格式,用于脉冲爆轰发动机内汽油/空气两相爆轰流场的一维数值计算,编写了相关计算程序,分析并讨论了一维两相爆轰波传播过程中物理量的变化规律。数值实践表明:CE/SE方法可高效捕获爆轰波等强间断。
     (2)推导了二维无粘CE/SE方法的计算格式,编写了相关计算程序,实现了对脉冲爆轰发动机内两相流场的数值模拟,获得了脉冲爆轰发动机内流场的变化规律,分析并讨论了液滴尺寸分布以及不同的起爆温度和起爆压力对两相燃烧转爆轰过程的影响。计算结果表明:起爆温度和起爆压力越大,汽油雾化后液滴尺寸越小,越有利于实现燃烧转爆轰过程。
     (3)推导了二维粘性和湍流CE/SE方法的计算格式,分别用于脉冲爆轰发动机内两相粘性和湍流爆轰流场的数值模拟,编写了相关计算程序,得到了脉冲爆轰发动机两相粘性流场和湍流流场的变化规律,分析并讨论了扰流片片数和间距对两相燃烧转爆轰过程的影响。研究发现:相对于无粘模型,应用粘性或湍流模型来描述两相爆轰过程,可更加精细刻画流场特性,更加符合实际过程。计算结果表明:扰流片可有效促进燃烧向爆轰转化的进程。
     (4)推导了三维无粘CE/SE方法的计算格式,用于脉冲爆轰发动机内两相流场的数值计算,编写了相关计算程序,分析并讨论了三维无粘两相爆轰流场的变化规律。研究发现,在燃烧转爆轰过程中,存在明显的三维效应。本文详细刻画了两相燃烧转爆轰过程中爆轰波三维结构特征。
     (5)推导了三维粘性CE/SE方法计算格式,用于脉冲爆轰发动机内两相流场的数值计算,编写了相关计算程序,分析并讨论了三维两相粘性爆轰流场的变化规律。研究发现:三维粘性数值计算结果比三维无粘数值计算结果更真实地反映爆轰流场特性,尤其在近壁附近,可更加精细刻画爆轰波的三维结构特征。
     (6)进行了以汽油/空气为工质的吸气式脉冲爆轰发动机实验研究,实现了33Hz、40Hz、50Hz三种不同工况下的爆轰,得到了三种工况下的爆轰波压力曲线,分析了进气压力变化对脉冲爆轰发动机工作性能的影响,为数值计算提供了实验验证。
Pulse detonation engine (PDE) is a novel engine which produces periodic impulse by utilizing repetitive detonation. It has several advantages in simple structure, high thermodynamic cycle efficiency, units of low fuel consumption and wide working scope, which make it widely-used in both military and civilian field as a new-style thruster system. In this dissertation, two-phase detonation governing equations are built according to the characteristic of the two-phase detonation flow field. Use the method of conservation element and solution element (the CE/SE method) to solve the governing equations. The main contents of this dissertation are as follows:
     (1) The one-dimensional CE/SE method is deduced to calculate one-dimensional two-phase flow field inside PDE. The corresponding program is written. The parameters of one-dimensional detonation are obtained. The calculation results show that the CE/SE method could efficiently capture strong discontinuity such as detonation wave.
     (2) The two-dimensional inviscid CE/SE method is deduced to simulate the axial-symmetry, inviscid detonation flow field inside PDE. The corresponding numerical calculation program is written. The characteristics of the interior flow field in PDE are studied, and how the distribution of droplets and the different of the ignition temperature and pressure to affect the deflagration to detonation are studied. The calculation results show that the higher the ignition temperature and pressure are, the smaller the gasoline radius is after atomization, which is more propitious to realize deflagration to detonation.
     (3) The two-dimensional viscous and turbulent CE/SE methods are deduced to simulate the axial-symmetry, viscous and turbulent flow field inside PDE. The corresponding programs are written. The characteristics of the viscous and turbulent two-phase flow field inside PDE have been obtained. The two-phase detonation flow field considering the obstacles inside PDE is studied. How different number of the obstacles pieces and different distance between the pieces to affect the deflagration to detonation are analyzed. The calculation results show that using the viscous and turbulent model to describe the two-phase detonation flow field is better than using the inviscid modle. The viscous and turbulent flow fields much more accord with the genuine flow field. The results show that the obstacles could efficiently promote the progress of deflagration to detonation.
     (4) The three-dimensional inviscid CE/SE method is deduced to simulate the inviscid two-phase flow field inside PDE. The corresponding calculation program is written. The characteristics of two-phase three-dimensional detonation flow field are obtained. It is found that three-dimensional effect in the tube is obvious in the deflagration to detonation stage. The dissertation detailedly depicts the feature of three-dimensional detonation wave structure in the progress of deflagration to detonation.
     (5) The three-dimensional viscous CE/SE method is deduced to simulate the viscous flow field inside PDE. The corresponding numerical calculation program is made. The characteristics of the viscous two-phase flow field inside the PDE are obtained. It is nicer to describe the three-dimensional detonation flow field when considering the viscous effect and to depict the three-dimensional structure of detonation wave especially in the near wall region.
     (6) The experiments of air breathing PDE which uses gasoline as fuel are performed. Successfully got the detonation wave of three frequency 33Hz,40Hz,50Hz. Pressure histories under three kinds frequency are obtained and how the air-intake pressure affects the PDE working performance is studied, which provide the calculation results with the validation.
引文
[1]金志明,翁春生.高等内弹道学.北京:高等教育出版社,2003.12
    [2]翁春生,王浩.计算内弹道学.北京:国防工业出版社,2006
    [3]严传俊,范伟等著.脉冲爆轰发动机原理及关键技术.西安:西北工业大学出版社,2005.10
    [4]Chang S C. The Method of Space-Time Conservation Element and Solution Element-ANew Approach for Solving the Navier-Stokes and Euler Equations. Journal of Computational Physics,1995,119:295~324
    [5]Hoffmann N. Reaction Propulsion by Intermittent Detonative Combustion. Ministry of Supply, Volkenrode Transition,1940
    [6]Krzycki L J. Performance Characteristics on Intermittent-Detonation Devices. NAVWEPS Report 7655, AD-284312, U. S. Naval Ordnance Test Station, China Lake, California,1962(6)
    [7]Helman D,Shreeve R P, Eidelman S. Detonation Pulse Engine. AIAA Paper,1986-1683, 1986
    [8]Cooper M, S.Jackson,et al. Direct Experimental Impulse Measurements for Detonation and Deflagrations. AIAA Paper,2001-3812,2001
    [9]Cooper M, Shepherd J E. The Effect of Nozzles and Extensions on Detonation Tube Performance. AIAA Paper,2002~3628,2002
    [10]Sanders S T, Jenkins T P, Hanson R D. Diode-Laser Sensor System for Multi-Parameter Measurements in Pulse Detonation Engine Flows. AIAA Paper, 2000-3592,2000
    [11]Meyer T R, Hoke J L, Brown M S. Experimental Study of Deflagration to Detonation Enhancement Techniques in a H2/Air Experiments During the Development of a Pulse Detonation Engine. AIAA Paper,1996-3263,1996
    [12]Brophy C.M, Netzer. D.W.Effect of Ignition Characteristics and Geometry on the Performance of a JP-10/O2 Fueled Pulse Detonation Engine.AIAA Paper,99-2635, 1999
    [13]Brophy.C.M, Sinibaklijo, Netzer D.W,etc. Operation of a JP-10/Air Pulse Detonation Engine. AIAA Paper,2000-3591,2000
    [14]Brophy C M, Sinibaldi J O, Damphousse P. Initiator Performance for Liquid-Fueled Pulse Detonation Engines. AIAA Paper,2002-0472,2002
    [15]Jiro Kasahara, Masao Hirano, Akiko Matsuo.Flight Experiments Regarding Ethylene-Oxygen Single-Tube Pulse Detonation Rockets. AIAA Paper,2004-3918, 2004
    [16]Kevin M, David M.Chapin, Venkat E.An Experimental and Computational Study of Jet-A Fueld Pulse Detonation Engine Operation. AIAA Paper,2006-1026,2006
    [17]黄俊,廖忠权.脉冲爆震发动机.飞航导弹,2006,9:51~55
    [18]Eric A.Nagley,Paul I.King,Frederick R.Schauer.Fuel Composition Analysis of Endothermically Heated JP-8 Fuel for Use in a Pulsed Detonation Engine. AIAA Paper, 2008-109,2008
    [19]王治武,严传俊,李牧等.不同内径两相脉冲爆震模型机爆震波速的试验研究.西北工业大学学报,2007,25(1):1-5
    [20]范玮,严传俊,张群等.点火能量等因素对脉冲爆震室压的影响实验.推进技术,2002,23(3):198~201
    [21]范玮,严传俊,何立明等.燃料种类对脉冲爆震发动机性能影响的研究.航空动力学报,1998,13(4):443~446
    [22]黄希桥,严传俊,王治武等.爆震频率对脉冲爆震发动机性能影响的试验研究.西北工业大学学报,2007,25(1):22~26
    [23]张群,严传俊等.填充系数对脉冲爆轰发动机压力波影响的实验研究.燃烧科学与技术.2002,8(5):237~240
    [24]范伟,严传俊,何立明等.原理模型脉冲爆轰发动机中压力及平均推力的实测与理论分析.航空动力学报,1997,12(4):410-412
    [25]范伟,严传俊,邓君香等.模型两相脉冲爆轰发动机推力的测试与研究.航空动力学报,2001,16(2):185~187
    [26]黄希桥,严传俊,张群等.两相脉冲爆轰发动机模型试验研究.推进技术,2001,22(2):108~110
    [27]熊姹,王治武,严传俊等.脉冲爆震发动机头部雾化、掺混实验研究.西北工业大学学报,2005,23(6):742~745
    [28]范玮,严传俊,黄希桥等.强化两相爆震的各种实验探索.机械科学与技术,2001,20(4): 5-7
    [29]范玮,严传俊,张群等.点火能量等因素对脉冲爆震室压的影响实验.推进技术,2002,23(3):198~201
    [30]李强,范玮,严传俊等.脉冲爆震火箭发动机模型实验研究.西北工业大学学报,2005,23(5):549~552
    [31]胡承启,范玮,严传俊等.当量比对脉冲爆震火箭发动机性能影响的实验研究.机械 科学与技术,2007,26(6):751~753
    [32]李建玲,范玮,严传俊等.脉冲爆震火箭发动机间接起爆试验研究.热科学与技术,2007,6(3):269~273
    [33]蒋波,严传俊,黄希桥.脉冲爆震火箭发动机模拟运动的初步探索性实验研究.西北工业大学学报,2008,26(3):368~37225
    [34]郑殿峰,王家骅,王波等.脉冲爆震发动机旋流式气动阀工作机理和扰流器阻力特性的实验研究.南京航空航天大学学报,2005,37(1):101~105
    [35]郑巅峰,张会强,王家骅.气动阀型式对脉冲爆震发动机爆震特性的影响.南京航空航天大学学报,2009,41(2):187~191
    [36]何小民,王家骅.气动阀对脉冲爆震发动机爆轰性能的影响研究.南京航空航天大学学报,2005,37(1):97~100
    [37]范育新,王家骅等.脉冲爆轰发动机工作过程控制和协调试验.推进技术,2004,25(6):539~542
    [38]李建中,王家骅等.脉冲爆轰发动机最大净推力和最佳工作频率.推进技术,2004,25(6):543~548
    [39]范育新,王家骅等.脉冲爆轰发动机净推力系数研究.南京航空航天大学学报,2004,36(3):273~277
    [40]郑殿峰,王家骅等.进气道型式对脉冲爆轰发动机阻力特性的影响研究.航空动力学报,2004,19(5):660-665
    [41]翁春生,王杰,白桥栋,马丹花.脉冲爆轰发动机进气压力对爆轰影响的实验研究.弹道学报,2008,20(3):1-4
    [42]Elaine S.Oran, Alexei M.Khokhlov.Numerical Simulation of Deflagration to Detoantion Transition. AIAA Paper,99-0965,1999
    [43]Zhang Zeng-Chan, Yu S.T. John, He Hao, Chang Sin-Chung. Direct Calculations of Two-and Three-Dimensional Detonations by an Extended CE/SE Method, AIAA 2001-0476,2001
    [44]Zhang Zeng-Chan, Yu S.T. John, He Hao, Philip Jorgenson C. E. Direct Calculations of Plume Dynamics of a Pulse Detonation Engine by the CE/SE Method. AIAA Paper, 2001-3614,2001
    [45]M.Shimo, S.E.Meyer, S.D.Heister etc. An Experimental and Computational Study of Pulsed Detonations in a Single Tube. AIAA Paper,2002-3716,2002
    [46]Li C, Kailasanath K. A Numerical Study of Reactive Flows in Pulse Detonation Engines. AIAA Paper,2001-3217,2001
    [47]T.Fontfreyde, F.levy, J.Dupays etc. Numerical Studies of Pulse Detonation Rocket Engines. AIAA Paper,2004-38723,2004
    [48]C.I. Morris. Numerical Modeling of Pulse Detonation Rocket Engine Gas Dynamics and Performance. AIAA Paper,2004-463,2004
    [49]Cheatham S, Kailasanath K. Numerical Simulations of Multiphase Detonations in Tubes[A]. In:41th Aerospace Science Meeting and Exhibit[C].Reno, Nevada,2003, AIAA Paper,2003-1315,2003
    [50]Cheatham S, Kailasanath K. Multi-Phase Detonations in Pulse Detonation Engines. AIAA Paper,2004-306,2004
    [51]Venkat E.Tangirala, Anthony Dean. Investigations of Two-Phase Detonation for Performance Estimations of a Pulse Detonation Engine.AIAA Paper,2007-1173,2007
    [52]王健平,刘云峰等.脉冲爆轰发动机预爆轰点火数值模拟.空气动力学学报,2004,22(4):475~480
    [53]牟乾辉,胡宗明,赵伟等.脉冲爆轰发动机热射流起爆机理数值分析建二维轴对称方程.计算物理,2006,23(3):266~272
    [54]王治武,严传俊,李牧等.两相脉冲爆震发动机混合流动特性的数值模拟[J].机械设计与制造,2006,(10):103~105.
    [55]闫朝,严传俊,徐建中.辛烷一空气混合物爆燃爆轰转捩的数值模拟.工程热物理学报,2002,23(增刊):217~220
    [56]张群,严传俊,范玮等.点火能量对两相爆震波形成影响的数值研究[J].火工品,2007,(3):6~10.
    [57]张群,闫朝,严传俊.两相爆震波爆燃向爆震转变过程的数值模拟.计算机仿真,2008,25(2):9-12
    [58]洪滔,秦承森.气体-燃料液滴两相系统爆轰的数值模拟.爆炸与冲击,1999,19(4):335~342
    [59]张海波,白春华,丁儆.气液两相爆轰的数值模拟.兵工学报,2000,21(2):119~122
    [60]张海波,白春华,丁儆等.气液爆轰的数值模拟与连续边界垂直扰动法.火炸药学报,1999,4:9-13
    [61]韩启祥,王家骅.旋转阀式脉冲爆震发动机非稳态进气过程数值模拟.南京航空航天大学学报,2008,4(1):7-9
    [62]郑龙席,严传俊,范玮等.脉冲爆震发动机模型燃烧室壁温分布研究.燃烧科学与技术,2003,9(4):344~347
    [63]郑龙席,严传俊,李牧等.多循环PDE模型爆震室壁温分布数值模拟.燃烧科学与技术,2007,13(5):414~420
    [64]黄玥,唐豪,李建中等.多管脉冲爆轰发动机共用特性的喷管数值模拟.南京航空航 天大学学报,2009,41(4):432-438
    [65]严传俊、何立明,范伟等.脉冲爆轰发动机的研究与发展.航空动力学报,2001,16(3):212~217
    [66]王杰,翁春生.不同喷管形状对PDE性能影响分析.弹箭制导学报,2008,27(2):177~180
    [67]王杰,刘建国,白桥栋等.填充系数对脉冲爆震发动机性能影响分析.南京理工大学学报(自然科学版),2008,32(1):1~4
    [68]王杰,翁春生.脉冲爆震发动机内轴对称压力场研究.弹道学报,2008,20(1):1-4
    [69]王杰,翁春生.多管脉冲爆震发动机管外复杂波系的研究.力学与实践,2008,30(4):39~43
    [70]王杰,翁春生.多管脉冲爆轰发动机外三维流场的数值计算.力学学报,2009,41(6):835-839
    [71]彭振,翁春生.等离子体点火对PDE一维两相爆轰影响的数值计算.火炮发射与控制学报,2009,2:77~80
    [72]刘云峰等.脉冲爆轰发动机快速起爆的二维数值模拟.推进技术,2004,25(5):454~457
    [73]李辉煌,杨基明等.脉冲爆轰发动机喷管的数值模拟.推进技术,2004,25(6):553~556
    [74]李强,张群等.脉冲爆轰发动机的原理性试验.推进技术,2004,25(5):450-453
    [75]陈永刚,何立明等.时空守恒元和解元方法的爆轰波一维数值模拟.推进技术,2005,26(3):256-259
    [76]邱华,严传俊等.带喷管脉冲爆轰发动机单循环性能分析模型.航空动力学报,2005,20(5):818~821
    [77]李牧,严传俊等.脉冲爆轰发动机引射模态数值模拟和验证.航空动力学报,2005,20(4):645~650
    [78]陈永刚,何立明等.特征线法在脉冲爆轰发动机性能计算中的应用.航空动力学报,2005,20(4):641~644
    [79]傅勇强,徐行,牛海瑛.燃烧室内喷雾两相流场数值研究.燃烧科学与技术,2001,7(4):240-243
    [80]M.Cooper, S.Jackson, et al. Direct Experimental Impulse Measurements for Detonation and Deflagrations. AIAA Paper,2001-3812,2001
    [81]M.Cooper, Shepherd J E. The Effect of Nozzles and Extensions on Detonation Tube Performance. AIAA Paper,2002-3628,2002
    [82]Sander S. T, Jenkins. T. P, Hanson R. D. Diode-Laser Sensor System for Multi-Parameter Measurements in Pulse Detonation Engine Flows. AIAA Paper, 2000-3592,2000
    [83]Meyer T R, Hoke J L, Brown M S. Experimental Study of Deflagration to Detonation Enhancement Techniques in a H2/Air Experiments During the Development of a Pulse Detonation Engine. AIAA Paper,1996~3263,1996
    [84]Cambier J L, Adelman H G. Preliminary Numerical Simulation of a Pulsed Detonation Wave Engine. AIAA Paper,1988-2960,1988
    [85]Sterling J, Ghorbanian K, Sobots T. Enhanced Combustion Pulsejet Engines for Mach 0 to 3 Applications. AIAA Paper,1996-2687,1996
    [86]Cambier J L, Tegner J K. Strategies for PDE Performance Optimization. Journal of Propulsion and Power,1998,14(4),1998
    [87]S. Cheatham, K. Kailasanath. Numerical Simulations of Multiphase Detonations in Tubes.AIAA Paper,2003-1315,2003
    [88]S.Cheatham, K. Kailasanath. Multiphase Detonations in Pulse Detonation Engines. AIAA Paper,2004-306,2004
    [89]Brophy C M, Werner LT S, Sinibaldi J O. Performance Characterization of a Valveless Pulse Detonation Engine. AIAA Paper,2003-1344,2003
    [90]Yungster S. Analysis of nozzle Effects on Pulse Detonation Engine Performance. AIAA Paper,2003-1316,2003
    [91]Mohanraj R, Merkle, Charles L, et al. A Numerical Study of Pulse Detonation Engine Performance. AIAA,2000-0315,2000
    [92]Ebrahimi H B, Malo-Molina F J, Merkle C L. Numerical Investigation of Multi-tube Pulse Detonation. AIAA Paper,2003-0718,2003
    [93]R.C.Ripley, P.G.Harris, et al. Multi-Tube Two-Dimensional Evaluation of a Pulse Detonation Engine as a Ramjet Replacement. AIAA Paper,2004-3745,2004
    [94]Ebrahimi H B, Malo-Molina F J. Simulation of 2-D and 3-D Multitube Pulse Detonation Engines with Conical Nozzle and Different Splitter Plates. AIAA Paper, 2005-1305,2004
    [95]翁春生,Gore J P. CE/SE方法在非定常爆轰计算中的应用.空气动力学学报,2003,20(3):301~310
    [96]Zhang Moujin, Lin S.-C. Henry, Yu S.T John, Chang Sin-Chung and Isaiah Blankson. Application of the Space-Time Conservation Element and Solution Element Method to the Ideal Magnetohydrodynamic Equations.AIAA Paper,2002-3888,2002
    [97]Yu Sheng-Tao, Chang Sin-Chung. Treatments of Stiff Source Terms in Conservation Laws by the Method of Space-time Conservation Element and Solution Element. AIAA Paper,97-0435,1997
    [98]Brophy, C.M, Netzer D.W.and Forster D. Detonation Studies of JP-10 with Oxygen and Air for Pulse Detonation Engine Development.AIAA Paper,98-4003,1998
    [99]Kevin M.Hinckley, David M. Chapin etc. An Experimental and Computational Study of Jet-A Fueld Pulse Detonation Engine Operation. AIAA Paper,2006-1026,2006
    [100]Tomoaki Yatsufusa. Maasahiro Ohira. Development of Liquid-fuel Initiator for Liquid-Fuel PDE. AIAA Paper,2004-1213,2004
    [101]Kristin L.Panzenhagen, Paul.King, K.colin Tucker. Liquid Hydrocarbon Detonation Branching in a Pulse Detonation Engine. AIAA,2004-3401,2004
    [102]Timothy M.Helfrich, Paul I.king, John L.Hoke etc.Effect of Supercritical Fuel Injection on the Cycle Permance of a Pulse Detonation Engine. AIAA Paper,2006-5133,2006
    [103]Stanley, S.B, Burge, K.Wilson D.Experimental Investigation of Pulse Detonation Wave Phenomenon as Related to Propulsion Application. AIAA Paper,98-2580
    [104]Kailasanath. Recent Developments In the Research on Pulse Detonation Engines. AIAA Paper,2002-0407,2002
    [105]Musielak D.E. Injection a Mixing of Gas Propellant for Pulse Detonation Propulsion. AIAA Paper,98-3878,1998
    [106]T.N. Dinh, GJ. Li, T.G Theofanous. An Investigation of Droplet Breakup in a High Mach, Low Weber Number Regine. AIAA Paper,2003-317,2003
    [107]Litchford Ron J. Development of A Gas-fueled Pulse Detonation Research Engine. AIAAPaper,2001-3814,2001
    [108]Brophy C M, Sinibaldi J O and Damphousse P. Initiator Performance for Liquid-Fueled Pulse Detonation Engines. AIAA Paper,2002-0472,2002
    [109]Brophy C M, Werner LT S and Sinibaldi J O. Performance Characterization of a Valveless Pulse Detonation Engine. AIAA Paper,2003-1344,2003
    [110]He Hao, Zhang Zeng-Chan, Yu S.T. John, Chang Sin-Chung. Simulations of Three-Dimensional Detonations by the CE/SE Method Using a Very Low-Cost Beowulf Cluster. AIAA Paper,2001-0140,2001
    [111]E.Wintenberger et al. An Analytical Model for the Impulse of a Single-cycle Pulse Detonation Engine. AIAA Paper,2001-3811,2001
    [112]Tsuei Hsin-Hua, Liou Biing-Horng, Yu S. T. John. Direct Calculation of Turbomachinery Flows Using the Space-Time Conservation Element and Solution Element Method. AIAA Paper,2001-0531,2001
    [113]Zhang Zeng-Chan, Yu Sheng-Tao. Shock Capturing without Riemann Solver-A Modified Space-Time CE/SE Method for Conservation Laws. AIAA Paper,99-0904, 1999
    [114]Sin-Chung Chang, Ching Y.Loh, Sheng-Tao Yu, Ananda Himansu, Xiao-Yen Wang and Philip C.E.Jorgenson. Robust and Simple Non-Reflecting Boundary Conditions for the Space-Time Conservation Element and Solution Element Method. AIAA Paper, 97-2077,1997
    [115]X.He, A.R.Karagozian. Reactive Flow Phenomena in Pulse Detonation Engines. AIAA Paper,2003-1171,2003
    [116]Joseph C.Yen and Donald A.Wagner. Computational Aeroacoustics Using a Simplified Courant Number Insensitive CE/SE Method. AIAA,2005-2820,2005
    [117]Aaron Glaser,Daniel Allgood,Ephrain Gutmark. Experiment Investigation into the Off-Design Performance of a Pulse Detonation Engine. AIAA Paper,2004-1208,2004
    [118]Daniel Allgood, Ephraim Gutmark,Adam Rasheed etc. Experimental Investigation of a pulse Detonation Engine with a 2D Ejector. AIAA Paper,2004-864,2004
    [119]Jiro Kasahara, Masao Hirano, Akiko Matsuo, Shigeru Sato, Takuma Endo, Shin Satori. Flight Experiments Regarding Ethylene-Oxygen Single-Tube Pulse Detonation Rockets. AIAA Paper,2004-3918,2004
    [120]Eric J.Gamble, Jose.Gutierrez, Evan Riordam. Flow Test for Pulse Detonation Engine. AIAA Paper,2004-1212,2004
    [121]C.M.Brophy, J.O.Sinibaldi, P.Damphousse. Initiator Performance for Liquid-Fueled Pulse Detonation Engines.AIAA Paper,2002-0472,2002
    [122]Kristin L.Panzenhagen, Paul I.King, K.Colin Tucker and Fred R.Schauer. Liquid Hydrocarbon Detonation Branching in a Pulse Detonation Engine. AIAA Paper, 2004-3401,2004
    [123]Bryan Palaszewski, John Jums, Kevin Breisacher etc. Metallized Gelled Propellants Combustion Experiments in a Pulse Detonation Engine. AIAA Paper,2004-4191,2004
    [124]Daniel et al. Acoustic Measurements of a Pulse Detonation Engine. AIAA Paper, 2004-2897,2004
    [125]R.Farinaccio, R.A.Stowe, P.G.Harris, et al. Multi-Pulse Detonation Experiments with Propane-Oxygen. AIAA Paper,2002-4070,2002
    [126]T.P.Jenkins, R.K.Hanson. Soot Diagnostic for Pulse Detonation Engine Studies. AIAA Paper,2000-3588,2000
    [127]R.Shehadeh, S.Saretto, S.Y.Lee, S.Pal and J.Santoro. Thrust Augmentation Measurements for a Pulse Detonation Engine Drive Ejector. AIAA Paper,2004-3398, 2004
    [128]Balaji Shankar Venkatachari, Gary C.Cheng, S.C.Chang. Courant Number Insensitive Transient Viscous Flow Solver Based on CE/SE Framework. AIAA Paper,2005-93, 2005
    [129]Soshi Kawai, Toshi Fujiwara. Numerical Analysis of 1st and 2nd Cycles of Oxy-hydrogen PDE. AIAA Paper,2002-0929,2002
    [130]August J.Rolling, Paul L.King and Fred R.Schauer. Propagation of Detonation Waves in Tubes Split from a PDE Thrust Tube. AIAA Paper,2002-3714,2002
    [131]马丹花,翁春生.二维守恒元和求解元方法在两相爆轰流场计算中的应用.燃烧科学与技术,2010,1(1):85~91
    [132]马丹花,翁春生.一维CE/SE方法在气液两相爆轰计算中的应用.南京师范大学学报,2008,8(3):25~29
    [133]翁春生,王杰,白桥栋,马丹花.脉冲爆轰发动机进气压力对爆轰影响的实验研究.弹道学报,2008,20(3):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700