用户名: 密码: 验证码:
连铸初始凝固过程若干动力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸坯凝固是包含流动、传热、传质的动力学过程,也是具有高温、多相及相互影响特征的复杂体系,控制连铸坯初始凝固对铸坯质量至关重要。连铸生产中,大部分铸坯缺陷是在凝固初期形成,随凝固进程而发展,严重时会形成质量事故。本文围绕连铸中结晶器振动和水口吹氩浇注工艺,研究其动力学过程(如金属熔体及其温度的动力学响应、气泡的动力学行为和运动过程等),及其对铸坯质量的影响,进而揭示部分凝固缺陷形成的动力学过程。这有助于从问题的本源或动因的定量角度,进行工艺设计、分析、优化,为改善铸坯质量提供内在依据和理论指导。
     目前,冶金研究者对连铸坯凝固的研究主要是围绕流动、传热、相变中的“力”和“热”的作用展开的,而连铸中的流动和传热受众多因素影响,尤其在结晶器振动、水口注入氩气等工艺条件下,流动和传热的情况更为复杂,直接通过实验观察和测量,以及理论计算都存在许多困难,因此结晶器振动等因素往往被忽略或做简化处理,这就会丢失一些重要的影响信息,使连铸过程深层次的一些动力学行为难以展示,进而影响了工艺设计和优化的准确性。对此,本文考虑结晶器振动和拉坯过程,建立包含结晶器振动的非稳态传热模型,定量地揭示铸坯初始凝壳的传热特点,进而提出一种新的振痕形成机理。
     另一方面,水口吹氩工艺使用不当,也会对铸坯带来质量缺陷。为了降低钢水中气泡对铸坯质量的影响,弄清气泡在结晶器内的动力学行为和运动过程十分重要。这里,气泡在结晶器内的运动是涉及钢(液)-渣(液、固)-气三相的多相流问题,通过数值模拟的方法再现气泡运动的整个过程难度极大,而水模拟实验也难以真实反映气泡在金属液中的运动特点。因此,本文采用物理模拟和数值模拟相结合的方法,测量气泡在液态金属(水银)条件下的运动特点和数量分布,计算气泡上浮中的变形、破裂/聚合等行为和对钢渣界面的影响,观察气泡被坯壳(固液界面)所俘获的情况,从而相对完整地反映气泡在结晶器内的动力学行为和过程。
     文中首先建立了结晶器振动条件下的传热和凝固模型,通过传热方程中对流项的特殊处理将结晶器振动和拉坯过程同时考虑进来,在算法上实现了结晶器振动和拉坯作用的计算。在此基础上,模拟了结晶器振动条件下的锡液初始凝固传热行为,发现锡连铸中,初始凝固区域温度随结晶器振动而发生周期性变化。频谱分析显示,该温度变化的频率与结晶器振动的频率一致。同时,为验证数值模拟结果的正确性,文中设计了实验室的小型连铸实验,并以锡为模拟介质,采用热电偶序列对初始凝固区域温度进行测量。实验结果显示,结晶器振动导致初始凝固区域温度发生变化,温度变化幅度在4~11℃,变化频率与结晶器振动基本一致。将数值结果与实测结果进行对比,发现上述结果数值接近,趋势吻合,这表明本文所建立的数学模型适用于结晶器振动条件下的传热计算。
     由此,利用上述数学模型对实际生产中的钢连铸传热进行了数值模拟,从理论上证实了“温度波动”现象的存在,并且针对不同的连铸工艺参数下的传热模拟,得到了不同工艺参数对铸坯初凝壳区域温度波动的影响规律。结果显示,温度波动峰值往往出现在初始凝固点附近,提高结晶器振动频率或减小结晶器振动幅度,均可减小温度波动。
     其次,文中基于对结晶器振动条件下的传热计算,结合包晶钢相转变解析计算方法,建立了温度波动条件下的相转变模型,分析温度波动对微观枝晶组织生长的影响。结果显示,温度波动使得包晶钢凝固过程中L/δ和δ/γ界面发生变化,当温度波动幅度较大时,已凝固的γ相会发生重熔,就本文所计算的不同化学成分对包晶钢相变的影响来看,碳含量在0.1%~0.14%的亚包晶钢受温度波动影响尤甚,这解释了包晶钢和不锈钢难以连铸的原因。
     再者,文中基于宏观温度场分析和微观枝晶生长计算,并对实际生产的铸坯进行取样分析,观察铸坯表面形貌、振痕特征,以及振痕附近的组织特点等,提出了铸坯表面振痕和微裂纹形成的一种可能机理。
     从本文对铸坯表面振痕的观察可见,除了传统的“凹陷”型和“皱折”型振痕,还有一种新的、被称之为“熔断溢流”型振痕。这类振痕可能是初始凝固区域的温度波动导致弯月面(初始凝固点)温度探底到零强温度和零韧温度,此时任何外力都可能破坏枝晶组织,从而显现为熔断溢流型振痕或其它裂纹缺陷。基于温度波动计算和实验分析,可解释目前所有类型振痕的形成机理。笔者认为,温度波动是振痕形成的一个重要原因,并由此提出温度波动因子(Index of temperature fluctuation)概念,以此衡量温度波动对铸坯表面形成振痕的影响。同时,不同位置温度波动因子的变化还揭示铸坯凝固坯壳厚度的不均匀状态,表明铸坯表面一定范围内的力学性能会有较大差异,易形成表面缺陷。在生产中,采取适当的工艺措施抑制温度波动因子大小和变化幅度,有利于改善铸坯表面质量。
     最后,本文针对连铸浇注时水口吹氩,以及其对对铸坯质量的影响问题,进行了物理和数值模拟,由此分析气泡在上浮过程中的拓扑变化和对钢渣界面局部流场的影响,再通过现场取样对比,提出了气泡被铸坯捕获的可能机理。文中设计了水口吹氩的实验装置,采用水银作为模拟介质进行水口吹氩的物理模拟实验,并用电阻探针组对结晶器内的气泡分布进行统计测量。结果表明,进入结晶器的大部分气泡上浮逸出,小部分气泡在固液界面处被铸坯捕获而凝入铸坯。对于气泡在液面处的上浮行为和凝固前沿被铸坯捕获的过程,本文分别采用数值模拟和实验观察方法进行研究。为研究结晶器内气泡上浮时穿过钢渣界面的运动行为及其拓扑变化,笔者用水平集法对钢-渣-气三相体系进行了数值模拟,以此研究不同尺寸的气泡在上浮过程中的变形行为,以及气泡穿过钢渣界面时对界面流场(分布)的影响规律(变化特点),进而考察气泡与卷渣现象的关联性等问题。另外,本文通过水冷插针凝固耦合钢液内气体喷吹实验,还观察了气泡在固液界面处的运动和被凝固坯壳俘获的动力学行为,发现部分气泡在固液界面处被捕获,而有些气泡却在到达固液界面处后被微液流推开。另从铸坯试样观察发现,铸坯振痕底部存在气泡,且四周被枝晶所包围,据此认为弯月面处的枝晶阻碍了气泡上浮,这会是气泡被铸坯捕获的一个重要原因。
     通过对连铸过程上述关键问题的动力学研究,揭示结晶器振动条件下连铸坯初始凝固区域温度场分布及变化情况和规律,分析其对振痕形成的作用机理;同时全面准确地描述气泡在结晶器内的运动、变形、逸出/被俘获的动力学过程,为确定合理的吹氩工艺和制度提供理论指导。
     纵观全文,笔者的研究工作由两部分组成,(1)结晶器振动对连铸坯质量的影响(第二~五章),(2)水口吹氩对铸坯缺陷产生的影响(第六章)。前者首先建立结晶器振动条件下连铸初始凝固区域传热数学模型,并采用低熔点金属对模型进行验证(第二章),再利用该模型模拟了钢坯连铸中初始凝固区域的传热特点(第三章),并在此基础上对连铸中包晶钢的相变过程进行模拟(第四章),同时,为研究结晶器振动对表面振痕的影响,对实际生产的铸坯进行取样分析并与理论计算结果相互对比,得出结晶器振动所导致的弯月面区域温度波动是铸坯表面振痕的形成动因之一的结论(第五章);后者则设计了以液态金属汞为工质的物理模拟实验,测量气泡在结晶器不同部位的分布特点和规律,同时用数值模拟方法,分析气泡上浮过程中的变形、破碎/聚合等动力学行为和特征,以及其对钢渣界面的影响,并分别采用水力学模拟(用冰-水界面模拟凝固前沿)和水冷插针凝固实验方法展现和观察结晶器内气泡被凝固坯壳所捕获的情况和过程,最后再通过生产现场的取样,观察铸坯内气泡周围的组织特征,分析气泡被铸坯捕获的机理,并与理论和模拟实验的研究结果相互印证(第六章)。
It is important to control the initial solidification in continuous casting, during this period, not only the fluid flow, heat transfer and mass transfer were involved, but also the complex system, such as high temperature and multi-phase, was concerned. Most of billet defects were formed in the initial solidification stage, and would get worse during later process. Based on the mold oscillation and argon blowing techniques, the dynamic process and its influence on the billet qualities were investigated, then the dynamic formation process of billet defects were analyzed. It was helpful to improve the billet quality.
     Up to the present, metallurgists payed attention to the fluid flow, heat transfer, and the force in the phase transfer, however, most of them were affected by many factors, it was difficult to study directly through experiments or numerical simulation, thus some important information was lost. In this paper, mold oscillation and billet withdrawing were considered, and the transient heat transfer mathematical model was established, with which the heat transfer character was quantitatively revealed, then a new formation mechanism of oscillation marks was proposed.
     Besides, improper application of argon blowing would lead to the billet defeats. In order to reduce the influence of gas bubble on the billet quality, it was very important to investigate the dynamic behavior of gas bubble in the mold. The motion of bubble in mold was a three phase flow problem, it was extremely difficult to calculate this process by numerical simulation. Meanwhile, the water modeling experiment was hard to reflect the real motion characteristics of gas bubble in the liquid metal. In this paper, combing with physical modeling and numerical simulation, bubbles distribution in the liquid metal (mercury) was measured, and bubble deformation during floating was calculated, its influence on the steel-slag interface was analyzed. On the other hand, bubble behavior in solidifying front was observed in the experiments. With which the dynamic behavior of gas bubble in the mold was comprehensively described.
     This paper is composed of four parts. In the first part, a mathematical model was established to calculated the heat transfer under mold oscillation, the mold oscillation and billet withdrawing were considered through convection term in the governing equations. The heat transfer in continuous casting of Tin was calculated with this model, it was found that temperature of initial solidification area was varied periodically along with mold oscillation. The frequency spectrum analysis of temperature data showed that the frequency was the same as mold oscillation. In order to verify the mathematical model, experiments were carried out on a small-scale caster. Thermocouples column were adopted to measure the temperature of initial solidification area. Repeat experiments results showed that mold oscillation leads to temperature fluctuation, the amplitude was about 4 to 10℃, and the frequency of temperature variety was almost the same as mold oscillation. Compared with calculation and experiment results, it was found that calculation temperature was agreed with measured data, the mathematical model was suitable to calculate the heat transfer under mold oscillation during continuous casting.
     The heat transfer of steel continuous casting was simulated with above model, the temperature fluctuation phenomenon was confirmed theoretically. Different continuous casting operation parameters were considered, and its influence on temperature fluctuation was analyzed. The results showed that the maximum temperature fluctuation appeared in vicinity of the initial solidification point, both increasing mold oscillation frequency and decreasing the oscillation amplitude would helpful to reduce the temperature fluctuation.
     In the second part of the paper, combined with heat transfer simulation and analytical calculation of peritectic phase transformation, a special mathematical model was proposed to investigate the effect of temperature fluctuation on the initial solidification during continuous casting of peritectic steel. Pretectic phase transfer with different temperature fluctuation was calculated with above mathematical model, the interface of L/δandδ/γwere changed along with temperature fluctuation. While the temperature fluctuation amplitude was larger, part of theγ-phase would be re-melted . Different chemical compositions with different carbon content were calculated, and it was found that the peritectic steel with carbon content of 0.1-0.17% was most sensitive to the temperature fluctuation, it maybe the reason why some of peritectic steels and stainless steels were difficult to continuous cast in industry production. In the third part of the paper, the samples were cut from the industrial billet, and the surface morphology was observed, solidified microstructures in the oscillation marks area were analyzed, the possible formation mechanism of oscillation marks and cracks were proposed.
     Besides the depression type and hook type oscillation marks, a new type of oscillation marks was found on the billet surface, we called it as "melt-overflow" type oscillation marks. The temperature in meniscus area may changed near the ZST ( Zero Strength Temperature) or ZDT ( Zero Ductility Temperature) because of temperature fluctuation in initial solidification area, and lead to the formation of "melt-overflow" type oscillation marks. And in this situation, any force exert on the shell might brake the dendrite, then the new type oscillation marks formed.
     Based on the analysis of calculation and experiment results, the formation mechanism of all kinds of oscillation marks could be explained, and the temperature fluctuation was considered to be a key factor to the formation of oscillation marks. The ITF( Index of Temperature Fluctuation) was proposed to evaluate the effect of temperature fluctuation on billet surface defects, the variation of ITF lead to the non-uniform shell thickness, and then the billet mechanical properties was heterogeneous, furthermore lead to the formation of surface defects. So, it was useful to improve the billet quality by depressing the ITF as low as possible.
     In the fourth part of this paper, the impact of argon blowing on the slab quality was studied in experiment and numerical simulation respectively, the deformation of bubbles during floating and its influence on the velocity field in the area of steel-slag interface were calculated, and the mechanism of bubble entrapment in the solidification front was proposed.
     The experiment device of argon blowing was designed, mercy was used in the experiment, and a resistance probe was developed to measure the quantity of bubbles. The results showed that most of bubbles were escaped form liquid surface, some of the bubbles which moved to the solid-liquid interface were captured and then entrapped by the solidified shell. The level set method was used to simulate the three phase flow, and the shape deformation of bubbles with different diameter was calculated, vertical velocity in the steel-slag interface was analyzed, also the possible influence on slag entrapment was discussed. The dip test was carried to observe bubble behavior in front of solid-liquid interface, it was found that some bubbles were captured, while other bubbles could escape form the interface. Observation on the slab specimens, it was found that bubbles were existed at the bottom of oscillation marks, and the bubble was surrounded by dendrites, maybe the floating bubbles were blocked by the dendrites in the meniscus ,it might to be an important reason why bubbles were entrapped in the solidified shell.
     Based on the investigation of above key dynamic issues, the temperature distribution and variation in initial solidification area under mold oscillation was revealed, and then the formation mechanism of oscillation marks was proposed. Also, the dynamic behavior of gas bubble in the liquid metal and in solidification front was described comprehensively, and it would be used to determine the reasonable argon blowing parameters.
引文
[1]干勇,仇圣桃,萧泽强著.连续铸钢过程数学物理模拟[M].北京:冶金工业出版社. 2001: 9.
    [2]史宸兴主编.实用连铸冶金技术[M].北京:冶金工业出版社. 1998: 4.
    [3] J. Singh, G. Purdy, G. Weatherly. Microstructural and microchemical aspects of the solid-state decomposition of delta ferrite in austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 1985, 16(8): 1363-1369.
    [4]钱惠国.钢坯热装、热送对加热炉单耗的影响[J].上海冶金高等专科学校学报, 2000, 21(02): 81-84.
    [5]余志祥主编.连铸坯热装热送技术[M].北京:冶金工业出版社. 2002: 9.
    [6] J. Savage. A new reciprocation mould cycle to improve surface quality of continuous casting steel[J]. Iron and Coal Trade Review, 1961, 182(4): 787-795.
    [7] I. G. Saucedo. Improving the casting conditions at the meniscus[C]. Proceedings of the 70th Steelmaking Conference, Chicago, IL: Warrendale, PA, USA, Iron & Steel Soc of AIME, 1987: 449-459.
    [8] E. S. Szekeres. Overview of mould oscillation in continuous casting[J]. Iron and Steel Engineer, 1996, (7): 29-37.
    [9] I. G. Saucedo. Early solidification during the continuous casting of steel[C]. Proceedings of the 74th Steelmaking Conference, Washington, D.C.: Warrendale, PA, USA, Iron & Steel Soc of AIME, 1991: 79-89.
    [10] I. V. Samarasekera, J. K. Brimacombe. Thermal and mechanical behaviour of continuous-casting billet mould[J]. Ironmaking and Steelmaking, 1982, 9(1): 1-15.
    [11] I. Samarasekera, D. Anderson, J. Brimacombe. The thermal distortion of continuous-casting billet molds[J]. Metallurgical and Materials Transactions B, 1982, 13(1): 91-104.
    [12]蔡开科译.金属初级加工过程的数学和物理模型[M].北京:冶金工业出版社. 1992: 237.
    [13] J. Brimacombe. Empowerment with knowledge—toward the intelligent mold for the continuous casting of steel billets[J]. Metallurgical and Materials Transactions B, 1993, 24(6):917-935.
    [14] E. Takeuchi, J. Brimacombe. The formation of oscillation marks in the continuous casting of steel slabs[J]. Metallurgical and Materials Transactions B, 1984, 15(3): 493-509.
    [15] J. R. King, A. A. Lacey, C. P. Please, P. Wilmott, A. Zoryk. Formation of oscillation marks on continuously cast steel[J]. Mathematical Engineering in Industry, 1993, 4(2): 91-106.
    [16] H. Steinruck, C. Rudischer, W. Schneider. Modelling of continuous casting processes[J]. Nonlinear Analysis, Theory, Methods and Applications, 1997, 30(8): 4915-4925.
    [17] J. M. Hill, Y. H. Wu, B. Wiwatanapataphee. Analysis of flux flow and the formation of oscillation marks in the continuous caster[J]. Journal of Engineering Mathematics, 1999, 36(4): 311-326.
    [18] K. Schwerdtfeger, H. Sha. Depth of oscillation marks forming in continuous casting of steel[J]. Metallurgical and Materials Transactions B, 2000, 31(4): 813-826.
    [19] S. Takeuchi, Y. Miki, S. Itoyama, K. Kobayashi, S. Kenichi, T. Sakuraya. Control of oscillation mark formation during continuous casting[C]. 1991 Steelmaking Conference on Mold Operation for Quality and Productivity, Warrendale, PA, USA, Iron & Steel Soc of AIME, 1991: 37-41.
    [20] E. Lainea, J. C. Busturial. The E.L.V. solidification model in continuous casting billets moulds using casting powder[C]. Proceedings of 1st European Conference on continuous casting, Florence, Italy, 1991: 1621-1631.
    [21] Z. M. Ren, H. F. Dong, K. Deng, G. C. Jiang. Influence of high frequency electromagnetic field on the initial solidification during electromagnetic continuous casting[J]. ISIJ International, 2001, 41(9): 981-985.
    [22] H. Fredriksson, J. Elfsberg. Thoughts about the initial solidification process during continuous casting of steel[J]. Scandinavian Journal of Metallurgy, 2002, 31(5): 292-297.
    [23] H. Tomono, W. Kurz, W. Heinemann. The liquid steel meniscus in molds and its relevance to the surface quality of castings[J]. Metallurgical and Materials Transactions B, 1981, 12(2): 409-411.
    [24]雷作胜,任忠鸣,张邦文,邓.康.连铸结晶器振动下弯月面处温度波动的模拟实验[J].金属学报, 2002, 38(8): 877-880.
    [25] W. Lankford. Some considerations of strength and ductility in the continuous-casting process[J]. Metallurgical and Materials Transactions B, 1972, 3(6): 1331-1357.
    [26] J. Brimacombe, K. Sorimachi. Crack formation in the continuous casting of steel[J]. Metallurgical and Materials Transactions B, 1977, 8(2): 489-505.
    [27] K. Sorimachi, J. K. Brimacombe. Improvements in mathematical modelling of stresses in continuous casting of steel[J]. Ironmaking and Steelmaking, 1977, 4(4): 240-245.
    [28] H. V. Ende, G. Vogt. Comparison of the influence of straight and curved mould continuous-casting machines on product quality[J]. Journal of the Iron and Steel Institute, 1972, 210(12): 889-894.
    [29] C. J. Adams. Partial annealing of low carbon steel strip[C]. Proceedings - National Open Hearth and Basic Oxygen Steel Conference, Pittsburgh, PA, Iron and Steel Society, 1971: 290-302.
    [30]藤井博務,大橋徹郎,広本健,織田昌彦.内部割れの金相学的調査並びに発生状況の検討(内部割れ発生機構に関する研究第1報)[J].鐵と鋼, 1975, 61(4): 56.
    [31] A. Gueussier, R. Castro.étude expérimentale des criques de solidification dans les aciers influence des impuretés[J]. Revue de Métallurgie, 1960, 57(2): 117-134.
    [32] G. Wilber, R. Batra, W. Savage, W. Childs. The effects of thermal history and composition on the hot ductility of low carbon steels[J]. Metallurgical and Materials Transactions A, 1975, 6(9): 1727-1735.
    [33]飯田義治,守脇広治,上田典弘,垣生泰弘.厚板向連鋳スラブの欠陥について[J].鐵と鋼, 1973, 59(4): S89.
    [34] M. Mayrhofer. Dissolution and separation kinetics investigations of aluminum nitride in aluminum-killed steels(UNTERSUCHUNGEN ZUR AUFLOESUNGS- UND AUSSCHEIDUNGSKINETIK VON Al-NITRID IN Al-BERUHIGTEM STAHL. )[J]. Berg- und Huettenmaennische Monatshefte, 1975, 120(7): 312-321.
    [35] M. Hater, R. Klages, B. Redenz, K. Taeffner. Results from a curved-mould continuous casting machine[C]. Proceedings - National Open Hearth and Basic Oxygen Steel Conference, Cleveland, OH, USA, 1973: 202-217.
    [36] G. Abbel, W. Damen, G. d. Gendt, W. Tiekink. Argon bubbles in slabs[J]. ISIJ International1996, 36(Suppl): S219-S222.
    [37] W. Damen, G. Abbel. Argon bubbles in slabs, a non-homogeneous distribution[J]. Revue De Metallurgie-Cahiers D Informations Techniques, 1997, 94(6): 745-750.
    [38] L. F. Zhang. Inclusion and bubble in steel——a review[J]. Journal of Iron and Steel Research International, 2006, 13(3): 1-8.
    [39] M. Burty, M. D. Santis, M. Gesell. Behaviour of argon gas bubbles in the continuous casting machine[J]. Revue de Métallurgie, 2002, (1): 49-53.
    [40] K. Mukai, Z. X. Lei, H. Segawa, Z. Wang, D. Lzu. Behaviour of bubbles in liquid caused by Marangoni effect in relation to steel refining process[J]. High Temperature Materials and Processes 2003, 22(5-6): 309-317.
    [41] H. Esaka, Y. Kuroda, K. Shinozuka, M. Tamura. Interaction between argon gas bubbles and solidified shell[J]. ISIJ International, 2004, 44(4): 682-690.
    [42] H. Lei, M. Y. Zhu, J. C. He. Dynamic behaviour of bubbles ahead of advancing solid/liquid interface in continuous casting machine[J]. International Journal of Cast Metals Research, 2007, 20(2): 98-102.
    [43]曹娜,朱苗勇.吹氩板坯连铸结晶器内钢/渣界面行为的数值模拟[J].金属学报, 2008, 44(1): 79-84.
    [44]张胜军,朱苗勇,张永亮,郑淑国,程乃良,宋景欣.高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J].金属学报, 2006, 42(10): 1087-1090.
    [45]卢金雄,王文科,张炯明,王新华,王万军,郄芳.板坯连铸结晶器吹氩对铸坯卷渣的影响[J].北京科技大学学报, 2006, 28(1): 34-37.
    [46] S. Mazumdar, S. K. Ray. Solidification control in continuous casting of steel[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2001, 26(179-198.
    [47] W. Kurz. About initial solidification in continuous casting of steel[J]. Metallurgia Italiana, 2008, 100(7): 56-64.
    [48] J. Zhou, X. Peng, Y. Qin. A coupled thermal–mechanical analysis of a mold-billet system during continuous casting[J]. The International Journal of Advanced Manufacturing Technology, 2009, 42(5): 421-428.
    [49] M. R. Amin, N. L. Gawas. Conjugate heat transfer and effects of interfacial heat flux duringthe solidification process of continuous castings[J]. Journal of Heat Transfer-Transactions of the Asme, 2003, 125(2): 339-348.
    [50] M. Vynnycky. An asymptotic model for the formation and evolution of air gaps in vertical continuous casting[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 2009, 465(2105): 1617-1644.
    [51] P. E. Ramirez-Lopez, P. D. Lee, K. C. Mills. Explicit modelling of slag infiltration and shell formation during mould oscillation in continuous casting[J]. ISIJ International, 2010, 50(3): 425-434.
    [52] K. G. Kang, H. S. Ryou, N. K. Hur. Coupled turbulent flow, heat, and solute transport in continuous casting processes with an electromagnetic brake[J]. Numerical Heat Transfer Part A: Applications, 2005, 48(5): 461-481.
    [53] S. Youyin, W. Ge, G. Jingna, G. Ying, A. Lingjun, L. Qiang. Numerical simulation of temperature on copper mould of thin slab continuous casting[C]. 2009 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Zhangjiajie, Hunan, China, 2009: 275-278.
    [54] R. M. McDavid, B. G. Thomas. Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds[J]. Metallurgical and Materials Transactions B, 1996, 27(4): 672-685.
    [55] A. Kumar, P. Dutta. Modeling of transport phenomena in continuous casting of non-dendritic billets[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3674-3688.
    [56] S. Koric, B. G. Thomas. Efficient thermo-mechanical model for solidification processes[J]. International Journal for Numerical Methods in Engineering, 2006, 66(12): 1955-1989.
    [57] X. Z. Na, M. Xue, X. Z. Zhang, Y. Gan. Numerical simulation of heat transfer and deformation of initial shell in soft contact continuous casting mold under high frequency electromagnetic field[J]. Journal of Iron and Steel Research International, 2007, 14(6): 14-21.
    [58] B. Mochnacki. Application of the BEM for numerical modelling of continuous casting[J]. Computational Mechanics, 1996, 18(1): 62-71.
    [59] B. Q. Li. Numerical simulation of flow and temperature evolution during the initial phase of steady-state solidification[J]. Journal of Materials Processing Technology, 1997, 71(3):402-413.
    [60] X. K. Lan, J. M. Khodadadi. Liquid steel flow, heat transfer and solidification in mold of continuous casters during grade transition[J]. International Journal of Heat and Mass Transfer, 2001, 44(18): 3431-3442.
    [61] X. Liu, M. Zhu. Finite element analysis of thermal and mechanical behavior in a slab continuous casting mold[J]. ISIJ International, 2006, 46(11): 1652-1659.
    [62] B. G. Thomas, L. Mika, F. Najjar. Simulation of fluid flow inside a continuous slab-casting machine[J]. Metallurgical and Materials Transactions B, 1990, 21(2): 387-400.
    [63] A. Ramos-Banderas, R. Sanchez-Perez, R. Morales, D, J. Palafox-Ramos, L. Demedices-Garcia, M. Diaz-Cruz. Mathematical simulation and physical modeling of unsteady fluid flows in a water model of a slab mold[J]. Metallurgical and Materials Transactions B, 2004, 35(3): 449-460.
    [64] K. Fujisaki. Magnetohydrodynamic solidification calculation in Darcy flow[J]. Ieee Transactions on Magnetics, 2003, 39(6): 3541-3545.
    [65] G. Kim, H. Kim, K. Oh, J. Park, H. Jeong, E. W. Lee. Level meter for the electromagnetic continuous casting of steel billet[J]. ISIJ International, 2003, 43(2): 224-229.
    [66]谭利坚,沈厚发,柳百成,刘晓,徐荣军,李永全.连铸结晶器液位波动的数值模拟[J].金属学报, 2003, 39(04): 435-438.
    [67] J. Sengupta, C. Ojeda, B. G. Thomas. Thermal-mechanical behaviour during initial solidification in continuous casting: steel grade effects[J]. International Journal of Cast Metals Research, 2009, 22(1-4): 8-14.
    [68] E. G. Wang, J. C. He. Finite element numerical simulation on thermo-mechanical behavior of steel billet in continuous casting mold[J]. Science and Technology of Advanced Materials, 2001, 2(1): 257-263.
    [69] J. K. Park, B. G. Thomas, I. V. Samarasekera. Analysis of thermomechanical behaviour in billet casting with different mould corner radii[J]. Ironmaking and Steelmaking, 2002, 29(5): 359-375.
    [70] B. G. Thomas, G. Li, A. Moitra, D. Habing. Analysis of thermal and mechanical behavior of copper molds during continuous casting of steel slabs[C]. 80th Steelmaking ConferenceProceedings, Chicago, IL, Iron and Steel Society, 1997: 183-201.
    [71] Y. W. Cho, Y. J. Oh, S. H. Chung, J. D. Shim. Mechanism of surface quality improvement in continuous cast slab with rectangular cold crucible mold[J]. ISIJ International, 1998, 38(7): 723-729.
    [72] J. W. Cho, T. Emi, H. Shibata, M. Suzuki. Heat transfer across mold flux film in mold during initial solidification in continuous casting of steel[J]. ISIJ International, 1998, 38(8): 834-842.
    [73]中田正之,西岡信一,大迫隆志,森健太郎,佐藤俊雄,沖本伸一.高周波磁場による鋼の初期凝固制御[J].鐵と鋼, 1996, 82(12): 1005-1010.
    [74] T. Toh, E. Takeuchi, M. Hojo, H. Kawai, S. Matsumura. Electromagnetic control of initial solidification in continuous casting of steel by low frequency alternating magnetic field[J]. ISIJ International, 1997, 37(11): 1112-1119.
    [75] M. Tani, J. Tanaka, N. Yamasaki, K. Fujisaki, E. Anzai, K. Isobe, K. Miyazawa. The control of initial solidification by the imposition of a pulsative AC electromagnetic field[J]. Revue De Metallurgie-Cahiers D Informations Techniques, 2001, 98(11): 1009-1013.
    [76] M. Tani, K. Tanaka, S. Fukunaga, T. Toh, K. Tunenari, K. Umetsu, K. Hayashi, M. Zeze. Pulsating electromagnetic casting technique for slab casting[J]. International Journal of Cast Metals Research, 2009, 22(1-4): 298-301.
    [77]于光伟,贾光霖,王恩刚,赫冀成,张永杰,陈兆平.方坯软接触电磁连铸初始凝固区高频磁场的分布[J].金属学报, 2002, 38(02): 208-214.
    [78]许秀杰,邓安元,王恩刚,张林涛,张兴武,张永杰,赫冀成.电磁软接触连铸圆坯表面振痕演变机理[J].金属学报, 2009, 45(04): 464-469.
    [79]许秀杰,邓安元,王恩刚,张林涛,张永杰,赫冀成.高频电磁场对15CrMo连铸坯表面质量和等轴晶率的影响机理[J].金属学报, 2009, 45(11): 1330-1335.
    [80] I. Sumi, H. Shimizu, S. Nishioka, M. Nakada, K. Murakami, M. Suzuki. Initial solidification control of continuous casting using electromagnetic oscillation method[J]. ISIJ International, 2003, 43(6): 807-812.
    [81] T. J. Li, X. T. Li, Z. F. Zhang, J. Z. Jin. Effect of multielectromagnetic field on meniscus shape and quality of continuously cast metals[J]. Ironmaking and Steelmaking, 2006, 33(1):57-60.
    [82]金百刚,王强,崔大伟,刘燕,赫冀成.两段式无缝软接触结晶器电磁参数和结构参数的研究[J].金属学报, 2007, 43(04): 427-432.
    [83] B. G. Jin, Q. Wang, A. Gao, Y. Q. Yu, J. C. He. Electromagnetic feld distribution in two-section Slitless mold for soft-contact electromagnetic continuous casting[J]. ISIJ International, 2009, 49(1): 44-50.
    [84]孟祥宁,朱苗勇,程乃良.高拉速下连铸坯振痕形成机理及振动参数优化[J].金属学报, 2007, 43(08): 839-846.
    [85] H. M. Wang, G. R. Li, Z. M. Ren, Y. T. Zhao. Effect of exciting current of high frequency electromagnetic field on initial solidification of steel during electromagnetic continuous casting[J]. Ironmaking and Steelmaking, 2009, 36(8): 615-622.
    [86]金沢敬,平城正,川本正幸,中井健,花崎一治,村上敏彦.高速連続鋳造時の鋳型内潤滑?伝熱挙動[J].鐵と鋼1997, 83(11): 701-706.
    [87] J. Cho, H. Shibata, T. Emi, M. Suzuki. Radiative heat transfer through mold flux film during initial solidification in continuous casting of steel[J]. ISIJ International, 1998, 38(3): 268-275.
    [88] Y. Ohba, I. Takasu, S. Kitade, H. Shimoguchi. The improvement of surface cracks on leaded free-cutting steel bloom[J]. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 2006, 92(7): 439-447.
    [89]梶谷敏之,山田亘,山村英明,若生昌光.鋼の連続鋳造における鋳型内潤滑と初期凝固制御(鋳造?凝固)[J].鐵と鋼, 2008, 94(6): 189-200.
    [90] H. Nakada, M. Susa, Y. Seko, M. Hayashi, K. Nagata. Mechanism of heat transfer reduction by crystallization of mold flux for continuous casting[J]. ISIJ International, 2008, 48(4): 446-453.
    [91] M. Kawamoto, Y. Tsukaguchi, N. Nishida, T. Kanazawa, S. Hiraki. Improvement of the initial stage of solidification by using mild cooling mold powder[J]. ISIJ International, 1997, 37(2): 134-139.
    [92]高輪武志,高本勉,友野宏,多田健一.連鋳鋳型内におけるメニスカス近傍の初期凝固解析[J].鐵と鋼, 1988, 74(11): 2130-2136.
    [93]干勇,陈栋梁,杨文改.结晶器非正弦振动理论的研究[J].钢铁, 1999, 34(5): 26-29.
    [94] X. Meng, M. Zhu. Optimisation of non-sinusoidal oscillation parameters for slab continuous casting mould with high casting speed[J]. Ironmaking and Steelmaking, 2009, 36(4): 300-310.
    [95] A. Badri, T. T. Natarajan, C. C. Snyder, K. D. Powers, F. J. Mannion, M. Byrne, A. W. Cramb. A mold simulator for continuous casting of steel: Part II. The formation of oscillation marks during the continuous casting of low carbon steel[J]. Metallurgical and Materials Transactions B, 2005, 36(3): 373-383.
    [96] A. Badri, T. T. Natarajan, C. C. Snyder, K. D. Powers, F. J. Mannion, A. W. Cramb. A mold simulator for the continuous casting of steel: Part I. The development of a simulator[J]. Metallurgical and Materials Transactions B, 2005, 36(3): 355-371.
    [97] J. Park, I. Samarasekera, B. Thomas, U. Yoon. Thermal and mechanical behavior of copper molds during thin-slab casting (I): Plant trial and mathematical modeling[J]. Metallurgical and Materials Transactions B, 2002, 33(3): 425-436.
    [98] J. Park, I. Samarasekera, B. Thomas, U. Yoon. Thermal and mechanical behavior of copper molds during thin-slab casting (II): Mold crack formation[J]. Metallurgical and Materials Transactions B, 2002, 33(3): 437-449.
    [99] T. Emi, H. Fredriksson. High-speed continuous casting of peritectic carbon steels[J]. Materials Science and Engineering: A, 2005, 413-414: 2-9.
    [100] J. Konishi, M. Militzer, I. Samarasekera, J. Brimacombe. Modeling the formation of longitudinal facial cracks during continuous casting of hypoperitectic steel[J]. Metallurgical and Materials Transactions B, 2002, 33(3): 413-423.
    [101] Y. Chuang, D. Reinisch, K. Schwerdtfeger. Kinetics of the diffusion controlled peritectic reaction during solidification of iron-carbon-alloys[J]. Metallurgical and Materials Transactions A, 1975, 6(1): 235-238.
    [102] H. Fredriksson, Nyl, T. n. Mechanism of peritectic reactions and transformations[J]. Metal Science, 1982, 16(6): 283-294.
    [103] Y. Ueshima, S. Mizoguchi, T. Matsumiya, H. Kajioka. Analysis of solute distribution in dendrites of carbon steel withδ/γtransformation during solidification[J]. Metallurgical andMaterials Transactions B, 1986, 17(4): 845-859.
    [104]高橋忠義,大笹憲一,田中順一.炭素鋼の包晶反応とδ-γ変態機構[J].鐵と鋼1987, 73(1): 99-106.
    [105] K. Matsuura, M. Kudoh, T. Ohmi. Simulation of peritectic reaction during cooling of iron-carbon alloy[J]. ISIJ International, 1995, 35(6): 624-628.
    [106] K. Matsuura, H. Maruyama, M. Kudoh, Y. Itoh. Effects of cooling rate on growth behavior of austenite phase during peritectic reaction in iron-carbon binary alloy[J]. ISIJ International, 1995, 35(12): 1483-1488.
    [107] K. Matsuura, M. Kudoh. Peritectic transformation during cooling of iron-carbon alloy[J]. Metals and Materials-Korea, 1998, 4(3): 562-565.
    [108]松浦清隆,伊藤洋一,工藤昌行.鉄-炭素系包晶凝固中のγ相成長速度に及ぼす初期炭素濃度と冷却速度の影響[J].鐵と鋼1998, 84(7): 496-501.
    [109] H. Shibata, Y. Arai, M. Suzuki, T. Emi. Kinetics of peritectic reaction and transformation in Fe-C alloys[J]. Metallurgical and Materials Transactions B, 2000, 31(5): 981-991.
    [110] A. Spaccarotella, M. R. Ridolfi, G. Picht, P. R. Scheller. Control of delta-gamma transformation during solidification of stainless steel slabs in the mould[J]. Steel Research International, 2003, 74(11-12): 693-699.
    [111] M. Ode, S. G. Kim, W. T. Kim, T. Suzuki. Numerical simulation of peritectic reaction in Fe-C alloy using a multi-phase-field model[J]. ISIJ International, 2005, 45(1): 147-149.
    [112] K. Matsuura, H. Maruyama, Y. Itoh, M. Kudoh, K. Ishii. Rate of peritectic reaction in iron-carbon system measured by solid/liquid diffusion couple method[J]. ISIJ International, 1995, 35(2): 183-187.
    [113] D. Phelan, M. Reid, R. Dippenaar. Experimental and modelling studies into high temperature phase transformations[J]. Computational Materials Science, 2005, 34(3): 282-289.
    [114] D. Phelan, M. Reid, R. Dippenaar. Kinetics of the peritectic phase transformation: In-situ measurements and phase field modeling[J]. Metallurgical and Materials Transactions A, 2006, 37(12): 985-994.
    [115]杉谷泰夫,中村正宣.連鋳鋳型内不均一凝固に及ぼす合金成分の影響[J].鐵と鋼, 1979, 65(12): 1702-1711.
    [116]荆德君,刘中柱,蔡开科.包晶相变对连铸坯初生坯壳凝固收缩的影响[J].钢铁研究学报, 1999, 11(3): 13-17.
    [117] A. Grill, J. K. Brimacombe. Mathematical Analysis of Stresses in Continuous Casting of Steel[J]. Ironmaking and Steelmaking, 1976, 3(2): 76-87.
    [118] M. Wolf, W. Kurz. The effect of carbon content on solidification of steel in the continuous casting mold[J]. Metallurgical and Materials Transactions B, 1981, 12(1): 85-93.
    [119] M. El-Bealy, B. G. Thomas. Prediction of dendrite arm spacing for low alloy steel casting processes[J]. Metallurgical and Materials Transactions B, 1996, 27(4): 689-693.
    [120] K. Matsuura, M. Kudoh. Finite difference simulation of peritectic transformation in iron-carbon alloy[J]. Materials Transactions Jim, 1998, 39(1): 203-210.
    [121] H. Fredriksson. The mechanism of the peritectic reaction in iron-base alloys[J]. Metal Science, 1976, 10(3): 77-86.
    [122] W. Bernadette, H. Klaus, B. Wolfgang. Phenomenological description of the surface morphology and crack formation of continuously cast peritectic steel slabs[J]. Steel Research International, 2004, 75(10): 686-692.
    [123] M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, Y. Komatsu. Development of a new mold oscillation mode for high-speed continuous casting of steel slabs[J]. ISIJ International, 1991, 31(3): 254-261.
    [124]王昌绪,王新华,王万军,张立.提高连铸结晶器振动频率、减少振幅改善铸坯质量的研究[J].钢铁, 2003, 38(01): 19-21, 42.
    [125] A. Yamauchi, S. Itoyama, Y. Kishimoto, H. Tozawa, K. Sorimachi. Cooling behavior and slab surface quality in continuous casting with alloy 718 mold[J]. ISIJ International, 2002, 42(10): 1094-1102.
    [126] K. C. Mills, A. B. Fox. The role of mould fluxes in continuous casting - so simple yet so complex[J]. ISIJ International, 2003, 43(10): 1479-1486.
    [127]孙珍宝,朱谱藩,林慧国.合金钢手册(上册)[M].北京:冶金工业出版社. 1984: 45.
    [128] N. V. Yu, A. A. Kortel, L. M. Akselrod. Effect of argon blow through a monoblock stopper in continuous casting of steel on the service of the stopper and nonmetallic inclusions in the cast steel[J]. Refractories and Industrial Ceramics, 1999, 40(5): 275-278.
    [129]曹娜,朱苗勇.吹氩板坯连铸结晶器内双循环流的形成条件[J].金属学报, 2008, 44(5): 626-630.
    [130]于会香,朱国森,王新华,张炯明,王万军.连铸板坯结晶器内钢液吹氩行为的数值模拟[J].北京科技大学学报, 2003, 25(3): 215-217.
    [131] B. G. Thomas, X. Huang, R. C. Sussman. Simulation of argon gas flow effects in a continuous slab caster[J]. Metallurgical and Materials Transactions B, 1994, 25(4): 527-547.
    [132]王庆祥,吴雄,喻承欢,陈清泉,李具中,吴永生.浸入式水口堵塞的机理及其改善措施[J].钢铁, 2005, 40(2): 34-36.
    [133] S. O. Unverdi, G. Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows[J]. Journal of Computational Physics, 1992, (92): 25-37.
    [134] J. M. Boulton-Stone, J. R. Blake. Gas bubbles bursting at a free surface[J]. Journal of Fluid Mechanics, 1993, 254( ): 437-466.
    [135] W. J. Rider, D. B. Kothe. Reconstructing volume tracking[J]. Journal of Fluid Mechanics, 1998, 141(2): 112-152.
    [136] S. Osher, J. A. Sethian. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12-49.
    [137] S. Osher, R. P. Fedkiw. An overview and some recent results[J]. Journal of Computational Physics, 2001, 169(2): 463-502.
    [138] J. A. Sethian. Evolution, implementation, and application of level set and fast marching methods for advancing fronts[J]. Journal of Computational Physics, 2001, 169(2): 503-555.
    [139]李会雄,杨冬,陈听宽,罗毓珊,汤敏. Level set方法及其在两相流数值模拟研究中的应用[J].工程热物理学报, 2001, 22(2): 233-236.
    [140]王跃发,杨超,毛在砂,陈家镛.水平集方法在两相体系颗粒运动数值模拟中的应用[J].自然科学进展, 2004, 14(2): 220-222.
    [141]李向阳,王跃发,禹耕之,杨超,毛在砂.改进水平集法模拟不可压缩两相流动时质量守恒的体积校正法[J].中国科学(B辑:化学), 2008, 38(7): 636-644.
    [142]李宝宽,顾明言,齐凤升,王芳,周谦.底吹钢包内气/钢液/渣三相流模型及渣层行为的研究[J].金属学报, 2008, 44(10): 1198-1202.
    [143]于湛.电磁场控制连铸结晶器内流动研究[D].博士学位论文.上海:上海大学, 2009.
    [144]钱忠东,唐学林,吴玉林,赫冀成.组合式结晶器内的气泡运动[J].清华大学学报(自然科学版), 2003, 43(6): 791-793.
    [145]陈芝会,王恩刚,张兴武,赫冀成.静磁场对吹氩结晶器内弯月面行为的影响[J].金属学报, 2007, 43(4): 422-426.
    [146] Z. S. Lei, H. B. Zhang, Z. M. Ren, K. Deng. Gas bubble statistical behavior under electro-magnetic brake in physical simulation of continuous casting slab mold[J]. Journal of Iron and Steel Research International, 2008, 15(Suppl. 1): 538-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700