合成气甲烷化镍基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气的主要成分为甲烷,是一种低碳、清洁和高效的能源。以煤为原料经合成气制备天然气是弥补我国气源不足的有效途径之一。在煤制天然气的工艺中,合成气甲烷化催化剂是核心,但目前国内尚无成熟催化剂。针对合成气甲烷化制备合成天然气的工艺特点,分别开发了适用于中低温反应的合成气甲烷化催化剂和适用于高温条件的合成气甲烷化催化剂。
     以Al203为载体制备了负载型Ni基催化剂,考察了Ni含量,助剂Mn添加量对合成气甲烷化反应的催化活性的影响,考察了温度、压力和空速对CO、CO2转化率和CH4生成速率的影响,并对催化剂进行了N2低温吸附、XRD、H2-TPR、SEM和TEM表征。结果显示,Ni含量为12、18和24 wt%的催化剂中,含Ni 24 wt%的24Ni催化剂的催化活性最好。加入助剂Mn可以促进Ni物种在催化剂表面分散,防止Ni物种在焙烧和还原过程中烧结。在Ni含量为24 wt%的条件下,含1wt%Mn的催化剂24Ni-1Mn催化剂具有最好的高温稳定性,而含3wt%Mn的24Ni-1Mn催化剂具有最好的低温催化活性。在相同反应条件下,加入助剂Mn对产物选择性影响很小,温度是影响产物分布的重要因素。增大反应压力,CO和C02转化率均升高,Cl和C2的选择性略有降低,C3-C6的选择性略有升高。因此,合成气甲烷化反应在温度为280-450℃,压力为0.1-2.0 MPa和空速为30000~45000ml·g-1·h-1的条件下操作比较合适。
     以活性A1203为载体制备了一组负载型Ni催化剂,考察了La和Mn的加入对催化剂催化活性的影响,并对催化剂进行了N2低温吸附、XRD、H2-TPR和TEM表征。结果显示,加入助剂不仅能够降低Ni晶粒的尺寸,而且能防止Ni物种在焙烧和还原过程中的烧结。24Ni-2La、24Ni-2Mn和24Ni-2La-2Mn催化剂具有相似的粒径(12.8-13.2nm),由此可知,加入不同种类的助剂主要是电子效应的不同。活性评价结果显示,24Ni-2La催化剂在相同条件下活性最高,体现出最好的协同效应。
     以α-Al203为载体,制备了负载型Ni催化剂,在Ni含量10 wt%的条件下考察了La助剂加入量对催化剂低温合成气甲烷化反应的催化活性高温稳定性,并进行了N2低温吸附、XRD、H2-TPR、SEM和TEM表征。结果表明,在10Ni催化剂中加入适量助剂La可以显著促进Ni物种的分散,经过焙烧和还原,有利于形成较小的Ni晶粒;在10Ni催化剂中加入过量助剂La后,催化剂上的Ni物种变的难以还原,导致低温活性低。加入2wt%的La的催化剂具有最好的低温活性和高温稳定性。
     利用燃烧法制备了Ni基甲烷化催化剂,考察了Ni含量(10~50 wt%),焙烧温度(700-1000℃),不同制备介质(水、乙醇和乙二醇)和添加不同助剂(2~8%Ce,4 wt% La、Zr、Mn和Mg)对合成气甲烷化反应活性和高温稳定性的影响,并进行了N2低温吸附、XRD、H2-TPR、SEM和TEM表征。燃烧法制备的催化剂Ni物种分散均匀,Ni物种周围被A1203空间隔离,有效防止了Ni的聚集和烧结,因而具有较好的低温催化活性和高温稳定性。在Ni含量10-50 wt%的范围内,30Ni-A1催化剂具有最好的低温催化活性和高温稳定性。Ni含量超过20 wt%的催化剂获得了良好的高温稳定性。Ni基催化剂上合成气甲烷化是一个结构敏感型反应,存在一个最优的Ni粒子直径。甲烷生成速率随着Ni晶粒的增大呈现先增大后减小的趋势,并在30Ni-A1催化剂(Ni粒子直径为41.8nm)上达到最大。在焙烧温度700-1000℃的范围内,随着焙烧温度的增加,Ni物种与载体的相互作用逐渐增强,生成NiA1204尖晶石物种越来越多,消耗大量Ni物种,导致催化剂活性降低。焙烧温度为700℃的30Ni-700催化剂获得了最好的低温催化活性。制备介质的影响考察表明,在以乙二醇为介质制备的催化剂上,Ni物种分散更加均匀,还原后具有最小的Ni粒子直径。在以水为介质制备的次之,以乙醇为介质制备的效果最差。加入助剂的影响考察表明,加入2、4、6和8 wt% Ce作为助剂降低了催化剂的低温催化活性;加入4 wt%的Zr,Mn,La和Mg作为助剂也降低了催化剂的低温催化活性。
Natural gas is widely used as a low carbon, high efficiency and environment friendly fuel all over the world. The large expected demand for gas, the shortage of natural gas, and the high price of gas by other alternatives have made the manufacture of SNG (Synthetic Natural Gas) from coal attractive. Syngas methanation catalyst has been recognized as the most important part in the process of coal to SNG. We developed low temperature methanation catalysts and high temperature methanation catalysts according to the process of coal to SNG.
     Ni-based catalysts were supported on Al2O3 using impregnation method. The effect of Ni and Mn loading on catalytic activity were investigated by syngas methanation. The effect of temperature, pressure and space velocity on carbon oxides (CO and CO2) conversion and CH4 formation rate were also investigated. The as-prepared catalysts were characterized using N2 adsorption-desorption, X-ray diffraction (XRD), H2 temperature programmed reduction (H2-TPR), scanning electron microscope (SEM) and transmission electron microscope (TEM).24Ni catalysts with 24 wt% Ni-loading show the best catalytic activity among 12Ni,18Ni and 24Ni catalyst. The addition of Mn to Ni-based catalysts can increase the catalyst surface area, pore volume and decrease NiO crystallite size which lead to higher activity and stability.24Ni-3Mn catalyst shows the best low temperature catalytic activity (250~300℃) while 24Ni-1Mn catalyst shows the best high temperature stability (450℃). Though the addition of Mn can increase the conversion of CO and CO2 under the same condition, it has little effect on product distribution (C1, C2 and C3~C6). Temperature plays an important role on CO, CO2 conversion and product distribution. With the increase of reaction pressure, CO and CO2 conversion increase, selectivity of C1 and C2 decrease slightly, selectivity of C3-C6 increase slightly. Space velocity plays an important role on the conversion of CO and CO2. Syngas methanation operating at 280~450℃,30000~45000 mL·g-1·h-1 and 0.1~2.0 MPa would be appropriate.
     24Ni-2La,24Ni-2Mn and 24Ni-2La-2Mn catalysts supported on another Al2O3 were prepared by co-impregnation method for syngas methanation, and characterized by N2 adsorption-desorption, XRD, H2-TPR and TEM. The addition of La and/or Mn as promoters can decrease the crystal size of Ni particles, and prevent the growth of Ni particles during calcination and reduction.24Ni-2La,24Ni-2Mn and 24Ni-2La-2Mn have similar average Ni particle size, which is in the range of 12.8~13.2 nm. For syngas methanation,24Ni-2La presents better synergism effect.
     The 10Ni catalysts supported onα-Al2O3 with different amounts of La as promoter from 0 to 4 wt% were prepared, characterized and their catalytic activity was investigated in syngas methanation reaction. Effects of reaction temperature and lanthanum loading on carbon oxides conversion and methane selectivity were also studied. Adding certain amount of lanthanum to lONi catalysts can decrease the average NiO crystallite diameter which leads to higher activity and stability while excessive addition would cause deactivation quickly. Stability on stream towards deactivation was observed up to 800 min at 500℃, 0.1 MPa and 600000 mL·g-1·h-1.
     Ni-Al2O3 catalysts with various Ni content (10~50 wt%), calcinations temperature (700~1000℃), preparation medium (water, ethanol and glycol), Ce content (2~8%) and promoter (4 wt% La, Zr, Mn and Mg) were prepared by solution combustion method for syngas methanation. The as-prepared catalysts were characterized by N2 adsorption-desorption, XRD, H2-TPR, SEM and TEM. Ni-based catalyst prepared by combustion method has better low temperature and high temperature stability than that prepared by impregnation method. The results show that the Ni-Al2O3 catalysts exhibit good low temperature activity and an optimum catalytic activity for syngas methanation can be achieved on on 30Ni-Al catalyst. Moreover, catalysts with Ni content over 20 wt% show good high temperature stability, which is due to Ni nanoparticles scattered and spatially isolated by Al2O3. Catalytic activity for syngas methanation over the Ni-Al2O3 catalysts is sensitive to Ni particle size and a maximum production rate of methane per unit mass of nickel can be achieved on Ni crystals around 41.8 nm (30Ni-Al). The production rate of methane per unit mass of nickel showed volcano-shaped trend with respect to nickel content and average Ni diameter. The interaction between Ni species and Al2O3 increased with the increase of calcinations temperature from 700℃to 1000℃. The catalystic activity as well as surface area and pore volume decreased with the increase of calcinations temperature. 30Ni-Al catalyst prepared in glycol (30Ni-G) possesses the best low temperature activity and high temperature stability, prepared in water take the second place, and then prepared in ethanol. The addition of Ce as a promoter was investigated. The results show that the addition of Ce decreased the low temperature activity. The addition of 4 wt% La, Zr, Mn and Mg was investigated. The addition of promoter decreased the low temperature activity.
引文
[1]汪家铭,蔡洁.煤制天然气技术发展概况与市场前景[J].天然气化工.2010,35:64-70
    [2]杨春生.煤制天然气产业发展前景分析[J].中外能源.2010,15:3540
    [3]付国忠,陈超.我国天然气供需现状及煤制天然气工艺技术和经济性分析[J].中外能源.2010,15:28-34
    [4]刘志光.煤制天然气的竞争力分析[J].中外能源.2010,15:26-30
    [5]冯亮杰.我国发展煤制天然气项目的分析探讨[J].化学工程.2011,39(8):86-89
    [6]Liu Z H, Chu B Z, Zhai X L, Jin Y, Cheng Y. Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor[J]. Fuel.2012,95: 599-605
    [7]Rabou L P, Bos L. High efficiency production of substitute natural gas from bio-mass [J]. Applied Catalysis B:Environmental.2012,111-112:456-460
    [8]Grol T, Walter H, Haider M. Biomass steam gasification for production of SNG-Process design and sensitivity analysis[J]. Applied Energy. Doi:10.1016/j. apenergy.2012.01.038
    [9]Sabatier P, Senderens J B. New Synthesis of Methane. Comptes Rendus Hebdomadaires des Seances del Academie des Scrences.1902,134:514-516
    [10]燃化部第六设计院.合成氨生产中甲烷化反应器的设计[J].化学工程.1974,6:9-13
    [11]李平辉.合成氨原料气净化[M].化学工业出版社.2010
    [12]Xu G W, Chen X, Zhang Z G. Temperature-staged methanation:An alternative method to purify hydrogen-rich fuel gas for PEFC[J]. Chemical Engineering Journal. 2006,121:97-107
    [13]Li Z Y, Mi W L, Liu SB, Su Q Q. CO deep removal with a method of two-stage methanation [J]. Hydrogen Energy.2010,35:2820-2823
    [14]Liu Q H, Dong X F, Lin W M. Highly selective CO methanation over amorphous Ni-Ru-B/ZrO2 catalyst[J]. Chinese Chemical Letters.2009,20:889-892
    [15]Zyryanova M M, Snytnikova P V, Amosov Y I, Kuzmin V A, Kirillov V A, Sobyanin V A. Design, scale-out, and operation of a preferential CO methanation reactor with a nickel-ceria catalyst[J]. Chemical Engineering Journal.2011,176-177:106-113
    [16]Dagle R A, Wang Y, Xia G G, Strohm J J, Holladay J, Palo D R. Selective CO methanation catalysts for fuel processing applications [J]. Applied Catalysis A: General.2007,326:213-218
    [17]石天宝.城市煤气甲烷化反应器设计及工艺开发[J].天然气化学.1992,3(3):9-29
    [18]石天宝.城市煤气甲烷化技术进展综述[J].煤炭综合利用.1991,4:1-11
    [19]Hoekman S K, Broch A, Robbins C, Purcell R. CO2 recycling by reaction with renewably-generated hydrogen [J]. International Journal of Greenhouse Gas Control. 2010,4:44-50
    [20]费金华,侯昭胤,齐共新,郑小明.A1203负载镍基催化剂上CO2氢甲烷化研究[J].高等学校化学学报.2002,23(3):457-460
    [21]Park J N, McFarland E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2 [J]. Journal of Catalysis.2009,266:92-97
    [22]左玉帮,刘永健,李江涛,李春启,忻仕河.合成气甲烷化制替代天然气热力学分析[J].化学工业与工程.2011,28(6):47-53
    [23]Mills G A, Steffgen F W. Catalytic methanation [J]. Catalysis Reviews.1973,82, 159-210.
    [24]李霞,杨霞珍,唐浩东,刘化章.载体对合成气制甲烷镍基催化剂性能的影响[J].催化学报.2011,32(8):1400-1404
    [25]Chitpong N, Praserthdam P, Jongsomjit B. A study on characteristics and catalytic properties of Co/ZrO2-B catalysts towards methanation [J]. Catalysis Letter.2009, 128:119-126
    [26]陈建刚,相宏伟,李永旺,孙予罕.费托法合成液体燃料关键技术研究进展[J].化工学报,2003,54(4):516-523
    [27]Yaccato K, Carhart R, Hagemeyer A, Lesik A, Strasser P, Volpe A F. Turner H, Weinberg H, Grasselli R K, Brooks C. Competitive CO and CO2 methanation over supported noble metal catalysts in high throughput scanning mass spectrometer [J]. Applied Catalysis A:General.2005,296:30-48
    [28]Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the Group Ⅷ metals:V. The catalytic behavior of silica-supported metals [J]. Journal of Catalysis,1977,50(2):228-236
    [29]Takenaka S, Shimizu T, Otsuka K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts [J]. International Journal of Hydrogen Energy.2004,29:1065-1073
    [30]张成.CO与CO2甲烷化反应研究进展[J].化工进展.2007,26:1269-1273
    [31]江琦,邓国才,陈荣悌.二氧化碳甲烷化催化剂研究Ⅱ.制备条件及助剂对催化剂性能的影响[J].催化学报,1997,18(1):42-45
    [32]刘文燕,赵安民,张海涛,应卫勇,房鼎业.制备条件对Ni/Zr02-SiO2催化剂煤气甲烷化的影响[J].燃料化学学报,2012,40(1):86-92
    [33]Cai M D, Wen J, Chu W, Cheng X Q, Li Z J. Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts:Effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier[J]. Journal of Natural Gas Chemistry.2011,20:318-324
    [34]Yu Y, Jin G Q, Wang Y Y, Guo X Y. Synthetic natural gas from CO hydrogenation over silicon carbide supported nickel catalysts[J]. Fuel Processing Technology.2011, 92:2293-2298
    [35]Zhi G J, Guo X N, Wang Y Y, Jin G Q, Guo X Y. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide [J]. Catalysis Communications.2011,16:56-59
    [36]宋焕玲,杨建,赵军,丑凌军.C02在高分散Ni/La203催化剂上的甲烷化[J].催化学报.2010,31(1):21-23
    [37]谭静,王乃继,肖翠微,周建明,李婷,宋春燕.煤制天然气镍基催化剂的研究进展[J].洁净煤技术.2011,17(2):43-45
    [38]胡常伟,陈豫,王文灼.钠助剂对极低镍含量Ni/Al203体系上CO反应性能的影响[J].天然气化工.1993,18(4):16-20.
    [39]胡常伟,彭新民,王文灼.钠做助剂的Ni/Al203体系上C02加氢反应[J].天然气化工.1994,19(5):6-11
    [40]Xaviera K O, Sreekalaa R, Rashida K K A, Yusuffb K K M, Sena B. Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation [J]. Catalysis Today.1999,49: 17-21
    [41]康慧敏,蒋福宏,王大祥.城市煤气甲烷化低镍催化剂的研究[J].化学工业与工程,1992,10:8-13
    [42]Minachev K M, Yu. S K, Nakhshunov V S. Activity and mechanism of the catalytic action of rare-earth oxides in low-temperature ethylene hydrogenation [J]. Journal of catalysis,1977,49(2):207-217
    [43]Kustov A L, Frey A M, Larsen K E, Johannessen T, N(?)rskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts:from computational studies towards catalyst optimization [J]. Applied Catalysis A.2007,320:98-104
    [44]王宁,孙自瑾,王永钊,高晓庆,赵永祥.Ni-Fe/γ-Al2O3双金属催化剂的制备及 其CO甲烷化性能研究[J].燃料化学学报.2011,39(3):219-223
    [45]Seo J G, Youn M H, Jung J C, Song I K. Effect of preparation method of mesoporous Ni-Al2O3 catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG) [J]. International Journal of Hydrogen Energy.2009,34:5409-5416
    [46]李丹丹,刘志红,郭奋,程易.镍基完全甲烷化催化剂的制备及性能评价[J].化工进展.2011,30:139-142
    [47]Ma S L, Tan Y S, Han Y Z. Methanation of syngas over coral reef-like Ni/Al2O3 catalysts [J]. Journal of Natural Gas Chemistry.2011,20:435-440
    [48]Li G H, Hu L J, Hill J M. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation [J]. Applied Catalysis A:General.2006,301:16-24
    [49]李丽波,魏树权,徐国林.第二金属组分对CO2甲烷化沉淀型镍基催化剂的影响[J].天然气化工.2004,29:27-31
    [50]Ocampo F, Louis B, Roger A C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method [J]. Applied Catalysis A:General.2009,369:90-96
    [51]Ocampo F, Louis B, Kiwi-Minsker L, Roger A C, Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-xO2 catalysts for carbon dioxide methanation [J]. Applied Catalysis A:General.2011,392:36-44
    [52]Kim P, Kim Y H, Kim H, Song I K, Yi J. Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas [J]. Applied Catalysis A:General.2004,272:157-166
    [53]Seo J G, Youn M H, Bang Y J, Song I K. Effect of Ni/Al atomic ratio of mesoporous Ni-Al2O3 aerogel catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG)[J]. International Journal of Hydrogen Energy.2010,35:12174-12185
    [54]徐霖,余金华.低温甲烷化催化剂的研制[J].化肥工业.2005,32(3):13-16
    [55]Patil K C, Aruna S T, Mimani T. Combustion synthesis:an update [J]. Current Opinion in Solid State and Materials Science.2002,6:507-512
    [56]胡涛,杨建,赵军,王丹君,宋焕玲,丑凌军.尿素燃烧法制备Cu-Ce-O催化剂用于消除CO[J].催化学报.2007,28(10):844-846
    [57]Roy B, Loganathan K, Pham H N, Datye A K, Lecler C A. Surface modification of solution combustion synthesized M/Al2O3 catalyst for aqueous-phase reforming of ethanol [J]. International Journal of hydrogen energy.2010,35:11700-11708
    [58]Dejene F B, Bem D B, Swart H C. Synthesis and characterization of CaAlxOy:Eu2+ phosphors prepared using solution-combustion method [J]. Journal of Rare Earth. 2010,28:272-276
    [59]Czekaj I, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas:X-ray photoelectron spectroscopy (XPS) [J]. Applied Catalysis A:General.2007,329:68-78
    [60]Loviat F, Czekaj I, Wambach J, Wokaun A. Nickel deposition on γ-Al2O3 model catalysts:An experimental and theoretical investigation [J]. Surface Science.2009, 603:2210-2217
    [61]Udengaard N R, Haldor Topsoe Inc., Houston TX. Designing & operating coal-based substitute natural gas (SNG) plants. April 10,2008, Houston TX
    [62]http://www.imcatalysts.cn/syngas-ltechnologies-sng-crg.htm
    [63]Pedersen K, Skov A, Rostrup-Nielsen J R. Catalytic aspects of high temperature methanation. Haldor Topsoe Research Laboratories, Denmark
    [64]www.cataly.com.cn/product1.asp?id=358
    [65]http://xbhgy.sxycpc.com
    [66]http://www.swrchem.com
    [67]刘其海,莫欣满,董新法,林维明.富氢重整气中微量一氧化碳的选择性催化甲烷化[J].天然气化工.2007,32:58-62
    [68]胡大成,高加俭,贾春苗,平原,贾丽华,王莹利,许光文,古芳娜,苏发兵.甲烷化催化剂及反应机理的研究进展[J].过程工程学报.2011,11(5):880-893
    [69]胡云行,万惠霖,关玉德等.Ni催化剂上一氧化碳加氢反应机理研究[J].高等学校化学学报,1995,16(8):1289-1291
    [70]Hu C W, Chen Y Q, Li P M. On the Interaction of CO and H2 with Ni-based catalyst [J]. Journal of Molecule Catalysis.1995,9(6):435-444
    [71]胡常伟,王文灼,徐光宇,潘曦,陈豫.制备条件对Ni在Al203表面上的分配形态及Ni/A1203体系催化加氢性能的影响[J].分子催化.1993,7(6):459-465
    [72]Beuls A, Swalus C, Jacquemin M, Heyen G, Karelovic A, Ruiz P. Methanation of CO2:Further insight into the mechanism over Rh/y-Al2O3 catalyst [J]. Applied Catalysis B:Environmental.2012,113-114:2-10
    [73]Jacquemin M, Beuls A, Ruiz P. Catalytic production of methane from CO2 and H2 at low temperature:Insight on the reaction mechanism [J]. Catalysis Today.2010,157: 462-466
    [74]Kim H Y, Lee H M, Park J N. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst:Independent roles of MgO and Pd on CO2 methanation [J]. Journal of Physical Chemistry C.2010,114,7128-7131
    [75]Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals:II. The kinetics of the methanation reaction over supported metals [J]. Journal of Catalysis,37(3):462-473
    [76]William A G, Stephen P W, Anthony K R, Thomas H U, Carl F M. Methanation of CO over Ni catalyst:A theoretical study [J]. Journal of Vacuum Science and Technology.1977,14 (1):416-418
    [77]Inoue H, Funakoshi M. Kinetics of methanation of carbon monoxide and carbon dioxide [J]. Journal of Chemical Engineering of Japan,1984,17(6):602-610
    [78]高锦春,朱卓群,陈霭潘.Ni催化剂上CO甲烷化的研究[J].石油化工,1989,18:215-220
    [79]高锦春,朱卓群,陈霭墙.Ni催化剂上CO甲烷化动力学的研究.北京化工学院学报(自然科学版)[J].1990,17(1):67-74
    [80]Herwijnen T V, Doesburg H V, Jong W A D. Kinetics of the methanation of CO and CO2 on a nickel catalyst [J]. Journal of Catalysis.1973,28:391-402
    [81]Kopyscinski J, Schildhauer T J, Biollaz S M A. Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009 [J]. Fuel.2010,89:1763-1783
    [82]Kopyscinski J, Schildhauer T J, Biollaz S M A. Methanation in a fluidized bed reactor with high initial CO partial pressure:Part Ⅰ—Experimental investigation of hydrodynamics, masstransfereffects, and carbondeposition [J]. Chemical Engineering Science.2011,66:924-934
    [83]Kopyscinski J, Schildhauer T J, Biollaz S M A. Methanation in a fluidized bed reactor with high initial CO partial pressure:Part Ⅱ—Modeling and sensitivity study [J]. Chemical Engineering Science.2011,66:1612-1621
    [84]Frank M E, Sherwin M B, Blum D B. Liquid phase methanation-shift PDU results and pilot plant status. Proceeding of eighth synthetic pipeline gas symposium, Chicago, American Gas Association,1976,159-179
    [85]Frank M E, Mednick R L. Liquid phase methanation pilot plant results. Proceeding of ninth synthetic pipeline gas symposium, Chicago, American Gas Association,1977, 185-191
    [86]赵钢炜,肖云汉,王钰.煤制天然气工艺技术和催化剂影响因素的分析探讨[J].陶瓷.2009,11:21-25
    [87]Moeller F W, Roberts H, Britz B. Methanation of coal gas for SNG [J]. Hydrocarbon Processing.1974,53(4):69
    [88]Rudolph P F. The Lurgi route to substitute natural gas from coal,4th Synthetic Pipeline Gas Symposium, Chicago, Oct.1972
    [89]HaldorTops(?)e, From coal to substitute natural gas using TREMP, Technical report, Haldor Tops(?)e,2008
    [90]Great Plains Gasification Plant. Practical experience gained during the first twenty years of operation of the Great Plains Gasification Plant and implications for future projects. Dakota Gasification Company prepared for US Department of Energy, 2006.
    [91]Chen L, Nolan R, Avadhany S. Thermodynamic analysis of coal to synthetic natural gas process. Mechanical Engineering, MIT
    [92]杨伯伦,李星星,伊春海,蒋雪东,张勇,周晓奇.合成天然气技术进展[J].化工进展.2011,30(1):110-116
    [93]何忠,崔晓曦,范辉,常瑜,李忠.煤制天然气工艺技术和催化剂的研究进展[J].化工进展.2011,30:388-392
    [94]李波,邵玲玲.氧化铝、氢氧化铝的XRD鉴定[J].无机盐工业.2008,40(2):54-57
    [95]Roh H S, Jun K W, Baek S C, Park S E. Carbon dioxide reforming of methane over Ni/θ-Al2O3 catalysts:Effect of Ni content[J]. Bulletin of the Korean Chemical Society.2002,23(8):1166-1168
    [96]Oh Y S, Roh H S, Jun K W, Baek Y S. A highly active catalyst, Ni/Ce-ZrO2/θ-Al2O3 for on-site H2 generation by steam methane reforming:pretreatment effect[J]. International Journal of Hydrogen Energy.2003,28:1387-1392
    [97]吕志坚,秦永宁,李晓洁,蒋福宏,张鎏.镍基甲烷化催化剂的单层分散研究[J].石油学报(石油加工),1995,11:20-26
    [98]高晓庆,王永钊,李海涛,赵永祥.Mn助剂对Ni/γ-Al203催化剂CO2甲烷化性能的影响[J].分子催化.2011,25(1):49-54
    [99]王承学,龚杰.二氧化碳加氢甲烷化镍锰基催化剂的研究[J].天然气化工.2011,36:4-6
    [100]Seok S H, Choi S H, Park E D, Han S H, Lee J S. Mn-promoted Ni/Al2O3 catalysts for stable carbon dioxide reforming of methane [J]. Journal of Catalysis.2002,209:
    [101]李凝,罗来涛,欧阳燕.纳米Zr02/Al203复合载体催化剂的性能及Ni/Zr02/Al203研究[J].催化学报.2005,26(9):775-779
    [102]Wang Y Z, Wu R F, Zhao Y X. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases[J]. Catalysis Today.2010,158:470-474
    [103]张建.氨分解制氢与钯膜分离氢的研究[D].大连:中国科学院大连化学物理研究所.2006
    [104]Hu C W, Yao J, Yang H Q, Chen Y, Tian A M. On the inhomogeneity of low nickel loading methanation catalyst [J]. Journal of Catalysis.1997,166:1-7
    [105]Guimon C, Auroux A, Romero E, Monzon A. Acetylene hydrogenation over Ni-Si-A1 mixed oxides prepared by sol-gel technique [J]. Applied Catalysis A:General.2003, 251:199-214.
    [106]Rynkowski J M, Paryjczak T, Lenik M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts [J]. Applied Catalysis A:General.1993,106:73-82
    [107]Vos B, Poels E, Bliekl A. Impact of calcination conditions on the structure of alumina-supported nickel particles [J]. Journal of Catalysis.2001,198:77-88.
    [108]Scheffer B, Molhoek P, Mounlijn J A. Temperature-programmed reduction of NiO-WO3/Al2O3 hydrodesulphurization catalysts [J]. Applied Catalysis.1989,46: 11-30.
    [109]Molina R, Poncelet G. α-Alumina-supported nickel catalysts prepared from nickel acetylacetonate:ATPR study [J]. Journal of Catalysis.1998,173,257-267.
    [110]Diskin A M, Robert H C, Ormerod R M. The oxidative chemistry of methane over supported nickel catalysts [J]. Catalysis Today.1998,46,147-154.
    [111]张玉红,熊国兴,盛世善,刘盛林,杨维慎.NiO/γ-Al203催化剂中NiO与γ-Al203间的相互作用[J].物理化学学报.1999,15(8):735-741
    [112]Kramer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier W F. The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst [J]. Applied Catalysis A:General.2009,369:42-52
    [113]Zhao A M, Ying W Y, Zhang H T, Ma H F, Fang D Y. Ni/Al2O3 Catalysts for Syngas Methanation:Effect of Mn promoter[J]. Journal of Natural Gas Chemistry.2012, 21(2):170-177
    [114]王晨英,李国辉,周敬来.Fe-Mn催化剂的费托合成产物分布动力学[J].燃料化学学报.2000,28(3):268-273
    [115]梁新义,马智,白正辰,秦永宁.超声共沉淀法制备纳米结构LaNi03及其性质 [J].物理化学学报.2002,18(6):567-571
    [116]Natesakhawat S, Oktar O, Ozkan U S. Effect of lanthanide promotion on catalytic performance of sol-gel Ni/Al2O3 catalysts in steam reforming of propane[J]. Journal of Molecular Catalysis A:Chemical.2005,241:133-146
    [117]Zhang Y, Chu W, Cao W M, Luo C R, Wen X G, Zhou K L. A plasma-activated Ni/a-Al2O3 catalyst for the conversion of CH4 to syngas[J]. Plasma Chemistry and Plasma Processing.2000,20(1):137-144
    [118]程极源,苏宝连,郭慎独.稀土氧化物对甲烷蒸汽转化反应NiO/α-Al203催化剂的影响[J].中国稀土学报.1992,10(2):138-141
    [119]Hou Z Y, Yokota O, Tanaka T, Yashima T. Characterization of Ca-promoted Ni-Al2O3 catalyst for CH4 reforming with CO2[J]. Applied Catalysis A:General.2003,253: 381-87
    [120]Laosiripojana N, Sutthisripok W, Assabumrungrat S. Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3:Influence of the doping ceria on the resistance toward carbon formation[J]. Chemical Engineering Journal.2005, 112:13-22
    [121]Zhang J, Xu H Y, Jin X L, Ge Q J, Li W Z. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition[J]. Applied Catalysis A:General.2005,290,87-96
    [122]Hegde M S, Madras G, Patil K C. Noble metal ionic catalysts [J]. Accounts of Chemical Research.2009,42(6):704-712
    [123]Sharma S, Hua Z P, Zhang P, McFarland E W, Metiu H. CO2 methanation on Ru-doped ceria [J]. Journal of Catalysis.2011,278:297-309
    [124]Galletti C, Specchia S, Saracco G, Specchia V. CO-selective methanationover Ru-γ-Al2O3 catalysts in H2-rich gas for PEMFC applications[J]. Chemical Engineering Science.2010,65:590-596
    [125]Zhao A M, Ying W Y, Zhang H T, Ma H F, Fang D Y. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation [J]. Catalysis Communications. 2012,17:34-38
    [126]Jimeneza V, Sancheza P, Panagiotopouloub P, Valverdea J L, Romeroa A. Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts [J]. Applied Catalysis A:General. 2010,390:35-44
    [127]Panagiotopoulou P, Kondarides D I, Verykios X E. Selective methanation of CO over supported noble metal catalysts:Effects of the nature of the metallic phase on catalytic performance [J]. Applied Catalysis A:General.2008,344:45-54
    [128]Seo J G, Youn M H, Lee H I, Kim J J, Yang E, Chung J S, Kim P, Song I K. Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel-alumina xerogel catalysts:Effect of nickel content [J]. Chemical Engineering Journal.2008,141:298-304
    [129]Seo Y S, Jung Y S, Yoon W L, Jang I G, Lee T W. The effect ofNi content on a highly active Ni-Al2O3 catalyst prepared by the homogeneous precipitation method [J]. International Journal of hydrogen energy.2011,36:94-102
    [130]Chen D, Christensen K O, Ochoa-Fernandez E, Yu Z X, T(?)tdal B, Latorre N, Monzon A, Holmen A. Synthesis of carbon nanofibers:effects of Ni crystal size during methane decomposition [J]. Journal of Catalysis.2005,229:82-96
    [131]Hwang S, Lee J, Hong U G, Seo J G, Jung J C, Koh D J, Lim H, Byun C, Song I K. Methane production from carbon monoxide and hydrogen over nickel-alumina xerogel catalyst:Effect of nickel content [J]. Journal of Industrial and Engineering Chemistry.2011,17:154-157.
    [132]Rostrup-Nielsen J R, Pedersen K, Sehested J. High temperature methanation sintering and structure sensitivity [J]. Applied Catalysis A:General.2007,330:134-138
    [133]Andersson M P, Abild-Pedersen F, Remediakis I N, Bligaard T, Jones G, Engbak J, Lytken O, Horcha S, Nielsen J H, Sehested J, Rostrup-Nielsen J R, N(?)rskova J K, Chorkendorff I. Structure sensitivity of the methanation reaction:H2-induced CO dissociation on nickel surfaces [J]. Journal of Catalysis.2008,255:6-19
    [134]Takano H, Izumiya K, Kumagai N, Hashimoto K. The effect of heat treatment on the of the Ni/(Zr-Sm oxide) catalysts for carbon dioxide methanation[J]. Applied Surface Science.2011,257:8171-8176
    [135]Seo J G, Youn M H, Chung J S, Song I K. Effect of calcination temperature of mesoporous nickel-alumina catalysts on their catalytic performance in hydrogen production by steam reforming of liquefied natural gas (LNG) [J]. Journal of Industrial and Engineering Chemistry.2010,16:795-799
    [136]陈吉祥,王日杰,李玉敏,张继炎.不同镍盐前驱物对CH4-CO2重整Ni/γ-Al203催化剂性能的影响[J].燃料化学学报.2001,29(6):494-498
    [137]马胜利,谭猗生,张清德,韩怡卓.不同形貌Ni/γ-Al203催化剂催化CO甲烷化反应的研究[J].燃料化学学报.2011,39(3):224-228
    [138]Zheng W Q, Zhang J, Ge Q J, Xu H Y, Li W Z. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen [J]. Applied Catalysis B:Environmental.2008,80:98-105
    [139]Fratello V J, Berkstresser G W, Brandle C D, Graitis A J V. Nickel containing perovskites [J]. Journal of Crystal Growth.1996,166:878-882
    [140]马胜利,谭猗生,张清德,韩怡卓.α-Ni/γ-Al203催化剂催化一氧化碳甲烷化反应的研究[J].天然气化工,2009,34(6):1-3
    [141]Hwang S, Lee J, Hong U G, Jung J C, Koh D J, Lim H, Byun C, Song I K. Hydrogenation of carbon monoxide to methane over mesoporous nickel-M-alumina (M= Fe, Ni, Co, Ce, and La) xerogel catalysts [J]. Journal of Industrial and Engineering Chemistry.2012,18:243-248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700