用户名: 密码: 验证码:
宽波段微型光谱仪设计优化及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的光谱仪体积庞大且价格不菲,为应对光谱仪的普及,光谱仪的微型化是仪器本身发展的必然趋势。随着微型光机电技术、光电探测技术、先进加工制造技术和计算机技术的发展,光谱仪进入了自动化、智能化、数字化、微型化等各个方向的发展的新阶段。
     本文研究设计了宽波段微型光谱仪并加以实现,根据光谱仪应用的特点,对光学系统进行改进优化,同时开发了测量附件,为微型光谱仪的后继应用建立了一个扎实的基础平台。
     在宽波段微型光谱仪的光学设计与优化中,选择了交叉非对称型Czerny-Turner光学结构,针对微型光谱仪的光学性能,提出了在探测器表面加自由曲面型柱面镜来实现宽波段校正像散方法,以提高光谱仪的集光效率,同时提出了一种在探测器上放置自由曲面透镜的方法实现宽波段校正子午彗差,以提高光谱仪的分辨率,首次从理论上进行了优化设计与分析,得到了很好的校正结果。选择了线阵CCD探测器作为本系统的探测元件,实现了整体的电路和探测系统。设计出整体机械结构,以及提出部分光学元件的加工方,并对光学系统进行了公差分析。实现了功能全面,操作方便的软件系统,同时还为二次开发提供了丰富的接口。
     在宽波段微型光谱仪的性能测试以及光源附件的研制中,研究了基于发光二极管(LED)为介质的光谱分布可调的光源,实现了氘-卤钨组合光源和标准光源的研制。提出了相对辐射定标和绝对辐射定标的方法。
     在宽波段微型光谱仪的应用中,主要研究了基于微型光谱仪的颜色测量系统,提出了三种测量系统方案对光源色和反射物体色的测量,从硬件、软件、算法对系统实现在CIE1931和CIE1964色度系统与不同标准照明体下(A、B、C、D50,D55、D65、D75,F1-F12)环境下各种颜色参数的实时动态测量。在测量过程中,针对测量误差,提出了一种低反射率元件背面反射补偿模型,同时还对反射型积分球的非中性进行了研究。
The applications of traditional spectrometers are constrained due to their big volume and high costs, miniaturization becomes to be their important developing direction for coping with the popularity of the spectrometer. As the development of MEMS, photoelectric detection technology, advanced manufacturing technology and the development of computer technology, the spectrometer into a new stage of the development of automation, intelligent, digital, miniaturization direction.
     In this paper, the main works focus on the broadband miniature spectrometer design and achievement, according to the characteristics of spectrometer application system, the optimization of the optical system was improved, while the measurement accessories were developed, and then established a solid foundation platform for in-depth application system.
     In the optical design and optimization of the broadband miniature spectrometer, a cross asymmetric Czerny-Turner optical structure was selected. For the optical performance of the miniature spectrometer, a freefom cylindrical lens based on the detector surface to correct broadband astigmatism and improve the light collection efficiency, and a freeform lens based on the detector surface to correct broadband coma and improve the resolution. Optimized design and analysis of theory for the first time, and good correction results have achieved. The linear CCD detector was chosen as this system detection element, the whole circuit and detection system were realized. The design of the mechanical system and optical element and thorough tolerance analysis of this system were achieved. The software was developed, it can provide various user interface for software re-development.
     During the performance testing and the development of the accessories, a spectrally tunable light source using a large number of LEDs has been designed. The combination of deuterium tungsten and halogen light source was realized, and the development of the standard light source was realized. The relative radiometric measurement and absolute radiometric measurement were proposed.
     In the application of miniature spectrometer, three kinds of measurement system scheme for light source color and reflection object color measurements were proposed. From hardware, software, algorithms implemented on the system to realize parameters of various colors of the real-time measurements in the CIE1931and CIE1964color system and different standard illuminants (A, B, C, D50, D55, D65, D75, Fl~F12). For measurement error in the measurement process, there is proposed a low-reflectance element back reflective compensation model, and a non-neutral reflectance integrating sphere.
引文
[1]吴国安,光谱仪器设计.1978.
    [2]林中,范世福.光谱仪器学[M].北京:机械工业出版社,1989.
    [3]Snyder R W, Hooker T M. A Raman Spectrometer-Minicomputer Data Acquisition and Analysis System [J]. Appl Spectrosc,1984,38(1):58-66.
    [4]Lewis E N, Treado P J, Levin I W. A Miniaturized, No-Moving-Parts Raman Spectrometer [J]. Appl Spectrosc,1993,47(5):539-543.
    [5]Kc U, Silver J A, Hovde D C, et al. Improved multiple-pass Raman spectrometer [J]. Appl Opt,2011,50(24):4805-4816.
    [6]Li Z, Deen M J, Fang Q, et al. Design of a flat field concave-grating-based micro-Raman spectrometer for environmental applications [J]. Appl Opt,2012,51(28): 6855-6863.
    [7]Adler I, Axelrod J M. A Multi-Wavelength Fluorescence Spectrometer [J]. J Opt SocAm,1953,43(9):769-769.
    [8]Garai K, Muralidhar M, Maiti S. Fiber-optic fluorescence correlation spectrometer [J]. Appl Opt,2006,45(28):7538-7542.
    [9]Gao L, Kester R T, Tkaczyk T S. Snapshot Image Mapping Spectrometer (IMS) for Hyperspectral Fluorescence Microscopy, F,2010 [C]. Optical Society of America.
    [10]汤自义,须耀辉,王志坚.反射棱镜[M].北京:国防工业出版社,1981.
    [11]郁道银,谈恒英.工程光学[M].北京;机械工业出版社.1999:169-170.
    [12]马科斯.波恩,埃米尔.沃尔夫,杨葭荪译.光学原理[M].北京:光学原理,2006.
    [13]Boutami S, Ben Bakir B, Leclercq J L, et al. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter [J]. Opt Express,2006,14(8):3129-3137.
    [14]Okamoto T, Kawata S, Minami S. Fourier transform spectrometer with a self-scanning photodiode array [J]. Appl Opt,1984,23(2):269-273.
    [15]Agladze N I, Sievers A J. Holographic Fourier Transform Spectrometer for THz Region, F,2007 [C]. Optical Society of America.
    [16]Brasunas J C, Flasar F M, Jennings D E. CIRS-lite:A Fourier Transform Spectrometer for a Future Mission to Titan, F,2009 [C]. Optical Society of America.
    [17]Gom B, Naylor D A, Oba C. Pre-Commissioning Status of FTS-2, the SCUBA-2 Imaging Fourier Transform Spectrometer, F,2011 [C]. Optical Society of America.
    [18]Berggren R, Thompson D, Winkel R J. Hadamard transform imaging spectrometer for pushbroom or staring use, F,2001 [C]. Optical Society of America.
    [19]Singh S, Rawat B S, Tayahi M B, et al. Performance of Hadamard Transform Spectrometer Based on MEMS Technology, F,2007 [C]. Optical Society of America.
    [20]Tilotta D C, Zhou Z. Design and Performance of a Hadamard Transform Infrared Spectrometer with No Moving Parts [J]. Appl Spectrosc,1995,49(9):1338-1346.
    [21]祝绍箕.衍射光栅的复制技术[J].仪表工业,1984,03):40-42.
    [22]王春霞.复制光栅质量分析[J].光学精密工程,1997,04):71-76.
    [23]Moslehi B, Harvey P, Ng J, et al. Fiber-optic wavelength-division multiplexing and demultiplexing using volume holographic gratings [J]. Opt Lett,1989,14(19): 1088-1090.
    [24]Tsonev L V, Popov E K, Hoose J, et al. Concave holographic grating:optimization of the diffraction efficiency [J]. Appl Opt,1992,31(25):5317-5319.
    [25]Hsieh H-T, Liu W, Havermeyer F, et al. Beam-width-dependent filtering properties of strong volume holographic gratings [J]. Appl Opt,2006,45(16):3774-3780.
    [26]Qing L, Gang W, Bin L, et al. Varied line spacing plane holographic grating recorded by using uniform line spacing plane gratings [J]. Appl Opt,2006,45(21): 5059-5065.
    [27]史密斯沃J,周海宪,程云芳译.现代光学工程[M].北京:化学工业出版社,2011.
    [28]Shafer A B, Megill L R, Droppleman L. Optimization of the Czerny-Turner Spectrometer [J]. J Opt Soc Am,1964,54(7):879-886.
    [29]Vila R, De Frutos A M, Mar S. Design of aberration-balanced high-efficiency focusing holographic gratings [J]. Appl Opt,1988,27(14):3013-3019.
    [30]Shafer A B. Correcting for Astigmatism in the Czerny-Turner Spectrometer and Spectrograph [J]. Appl Opt,1967,6(1):159-160.
    [31]Reader J. Optimizing Czerny-Turner Spectrographs:A Comparison between Analytic Theory and Ray Tracing [J]. J Opt Soc Am,1969,59(9):1189-1194.
    [32]Dalton J M L. Astigmatism Compensation in the Czerny-Turner Spectrometer [J]. Appl Opt,1966,5(7):1121-1123.
    [33]Xue Q, Wang S, Lu F. Aberration-corrected Czerny-Turner imaging spectrometer with a wide spectral region [J]. Appl Opt,2009,48(1):11-16.
    [34]Xue Q, Wang S, Li F. Czerny-Turner imaging spectrometer for broadband spectral simultaneity [J]. Chin Opt Lett,2009,7(9):861-864.
    [35]Xia G, Qu B, Liu P, et al. Astigmatism-corrected miniature czerny-turner spectrometer with freeform cylindrical lens [J]. Chin Opt Lett,2012,10(8):081201.
    [36]Xu L, Chen K, He Q, et al. Design of freeform mirrors in Czerny-Turner spectrometers to suppress astigmatism [J]. Appl Opt,2009,48(15):2871-2879.
    [37]Austin D R, Witting T, Walmsley I A. Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors [J]. Appl Opt,2009,48(19):3846-3853.
    [38]Lee K-S, Thompson K P, Rolland J P. Broadband astigmatism-corrected Czerny?Turner spectrometer [J]. Opt Express,2010,18(22):23378-23384.
    [39]Li M, Wang M, Li H. Optical MEMS pressure sensor based on Fabry-Perot interferometry [J]. Opt Express,2006,14(4):1497-1504.
    [40]Oceanoptics. USB4000 datasheet [M]. http://www.oceanoptics.com/Products/usb4000uvvis.asp.
    [41]Avantes. AvaSpec-2048型光纤光谱仪 [M]. http://www.avantes.net.cn/index.php?page=shop.product details&flypage=shop.flypag e&product id=22&category id=38&manufacturer id=0&option=coin virtuemart&lie mid=98.
    [42]范世福,肖松山,赵友全,et a1.显微荧光光谱成像仪的研究与设计[J].仪器仪表学报,2005,10):1056-1059.
    [43]范世福,肖松山,赵友全,et al.光谱成像技术及其在生物医学研究中的应用[J].现代科学仪器,2005,01):60-62.
    [44]王乐,刘力宇,张浩康,et al.紫外可见光谱法测量光刻胶的膜厚(英文)[J].液晶与显示,2007,04):402-406.
    [45]尚小燕,韩军,李琪,et al.宽光谱膜厚监控系统中光谱实时测量技术研究[J].应用光学,2011,05):937-941.
    [46]熊利民,霍超,陈为群.光源颜色特性的测量及计算方法[J].计量技术,2005,04):23-25.
    [47]徐海松.颜色技术原理及在印染中的应用(十二)第九篇颜色的测量[J].印染,2006,05):43-46+51.
    [48]王蓉,袁心强.翡翠颜色色度学测量的可行性研究[J].宝石和宝石学杂志,2007,02):20-24+28+58.
    [49]刘娟.颜色测量方法[J].印刷质量与标准化,2008,06):34-37.
    [50]黎国梁,宋光均,姚志湘,et al.光纤光谱仪在颜色在线测量中的应用[J].广东化工,2008,10):112-116.
    [51]温浩礼,易波.LED光电参数测量系统的设计[J].电子测量技术,2008,01):108-111.
    [52]潘建根,沈海平,冯华君.光谱校正积分光度法测量蓝光LED光通量[J].半导体学报,2006,05):932-936.
    [53]鲍超.超高亮度LED测量问题[J].液晶与显示,2003,04):244-250.
    [1]程梁,陈燕平,朱若波,et a1.微型光谱仪平场全息凹面光栅的优化设计[J].浙江大学学报(工学版),2008,02):312-316.
    [2]武建芬,赵雷,陈永彦,et a1.宽谱高分辨平场凹面全息光栅光谱仪设计[J].光学学报,2012,04):83-87.
    [3]刘亚青,李儒新,高泉兰,范品忠.高效透射光栅谱仪的初步研究[J].中国激光,1996,03):216-220.
    [4]韩磊,刘木清.一种反射式光栅光谱仪光学系统的复合形法最优化设计[J].复旦学报(自然科学版),2006,06):767-773.
    [5]Shafer A B, Megill L R, Droppleman L. Optimization of the Czerny-Turner Spectrometer [J]. J Opt Soc Am,1964,54(7):879-886.
    [6]苏立国,刘振宇,董小鹏,et a1.自动光栅单色仪光谱分析系统的设计与实现[J].机电工程,2001,04):67-69.
    [7]林中,范世福.光谱仪器学[M].北京:机械工业出版社,1989.
    [8]史密斯沃J,周海宪,程云芳译.现代光学工程[M].北京:化学工业出版社,2011.
    [9]Bociort F, Kross J. Seidel aberration coefficients for radial gradient-index lenses [J]. J Opt Soc Am A,1994,11(10):2647-2656.
    [10]郁到银,谈恒英.工程光学[M].北京;机械工业出版社.1999:169-170.
    [11]Beutler H G. The Theory of the Concave Grating [J]. J Opt Soc Am,1945,35(5): 311-350.
    [12]迟泽英,陈文建.应用光学与光学设计基础[M].南京;东南大学出版社.2008:15-18.
    [13]Rosendahl G R. Contributions to the Optics of Mirror Systems and Gratings with Oblique Incidence.Ⅲ. Some Applications [J]. J Opt Soc Am,1962,52(4):412-415.
    [14]Dalton J M L. Astigmatism Compensation in the Czerny-Turner Spectrometer [J]. Appl Opt,1966,5(7):1121-1123.
    [15]Austin D R, Witting T, Walmsley I A. Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors [J]. Appl Opt,2009,48(19):3846-3853.
    [16]司福祺,谢品华,刘宇,et a1.超光谱成像差分吸收光谱系统烟羽测量研究[J].光学学报,2009,09):2458-2462.
    [17]Xue Q, Wang S, Lu F. Aberration-corrected Czerny-Turner imaging spectrometer with a wide spectral region [J]. Appl Opt,2009,48(1):11-16.
    [18]程灏波,冯云鹏,王涌天.自由曲面光学研究[J].激光与光电子学进展,2009,12):17-22.
    [1]机械工业部.光学零件特种加工工艺学:上册[M].北京;机械工业出版社.1982:332-341.
    [2]罗强,刘文涵,张清义.光电二极管阵列检测器在分析仪器中的应用[J].浙江工业大学学报,2001,4):54-57+70.
    [3]李庆先.电荷耦合器件(CCD)应用概述[J].仪表技术与传感器,1991,06):12-14.
    [4]倪景华,黄其煜.CMOS图像传感器及其发展趋势[J].光机电信息,2008,05):33-38.
    [5]Franks W a R, Kiik M J, Nathan A. Inorganic phosphor coatings for UV-responsive CCD image sensors [J].2000,33-41.
    [6]程书博,张惠鸽,王哲斌,et al.科学级光学CCD非线性特性测试[J].光学学报,2012,04):39-44.
    [7]张惠鸽,王哲斌,杨存榜,et al. CCD采集系统线性斜率及非线性研究[J].强激光与粒子束,2008,08):1313-1316.
    [8]李相民,周立伟,金伟其.科学级致冷CCD相机的性能和技术[J].大连理工大学学报,1997,S2):15-17.
    [9]李继军,杜云刚,张丽华,et al. CMOS图像传感器的研究进展[J].激光与光电子学进展,2009,04):45-52.
    [10]刘灵志.摄像机中成像器件的工作原理(下)——固态传感器的像素结构及信号传输方式[J].影视技术,2005,06):46-49.
    [11]Lachowicz S W, Rassau A, Lee S-M, et al. Iterative current mode per pixel ADC for 3D SoftChip implementation in CMOS [J].2003,267-273.
    [12]Tang J, Rittgers A, Lorenz J, et al. Design and performance analysis for a single-chip optoelectronic database filter [J]. Optical Engineering,2001,40(11): 2419-2430.
    [13]雷蕾,李红涛.基于CCD与CMOS图像传感新技术的研究[J].科技创新导报,2010,14):4-5.
    [14]程灏波,冯云鹏,王涌天.自由曲面光学研究[J].激光与光电子学进展,2009,12):17-22.
    [15]Guo X, Chu D, Liu P, et al. The design of data acquisition system of the NIRS instrument based on USB [J].2009,75061B-75061B.
    [16]刘妍秀.USB3.0体系结构及发展前景[J].长春大学学报,2010,10):23-26.
    [17]刘瑞芳,丁卫平,胡文静,et al.基于USB3.0高速数据采集系统的研究与设计[J].现代计算机(专业版),2011,30):78-80.
    [18]Wiener R,侯捷译.VVin32多线程程序设计[M].武汉;华中科技大学出版社. 2002:93-128.
    [19]Richter J,王建华,张焕生,et al. Windows核心编程[M].北京;机械工业出版社.2000:463-549.
    [1]陈风,袁银麟,郑小兵,et al.LED的光谱分布可调光源的设计[J].光学精密工程,2008,16(11):5.
    [2]朱继亦,任建伟,李葆勇,et al.基于LED的光谱可调光源的光谱分布合成[J].发光学报,2010,31(6):
    [3]蒋水秀,贾宁,彭斐.一种基于LED的光谱可调光源[J].红外,2012,33(6):
    [4]Dowling K J, Kolsky B. The design of a spectrally tunable light source [J].2009, 742206-742206.
    [5]Fryc I, Brown S W, Eppeldauer G P, et al. LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications [J]. Optical Engineering,2005, 44(11):111309-111309.
    [6]韩炜,廖振鹏.一种全局优化算法:遗传算法-单纯形法[J].地震工程与工程振动,2001,21(2):7.
    [7]曹治国,汪勇.基于模拟退火-单纯形法的目标函数的优化[J].华中科技大学学报(自然科学版),2005,33(6):3.
    [8]杨啸涛,蒋晓波,刘木清,et al.长寿命氘灯的特性及其使用[J].中国无机分析化学,2011,01(1):
    [9]肖建平.高压开关电源的拓扑研究[J].电子科技大学学报,2007,36(4):4.
    [10]蔡子亮,方波.稳流型开关电源控制系统研究[J].电力自动化设备,2007,27(8):4.
    [11]王淑荣,邢进,李福田.利用积分球光源定标空间紫外遥感光谱辐射计[J].光学精密工程,2006,14(2):6.
    [12]Geyer U, Hellwig A, Heβling T, et al. Glass reflectors for LED downlight applications [J].2012,84890J-84890J.
    [13]李幼平,禹秉熙,王玉鹏,et al.成像光谱仪辐射定标影响量的测量链与不确定度[J].光学精密工程,2006,14(5):7.
    [1]徐海松.颜色信息工程[M].杭州;浙江大学出版社.2005:40-209.
    [2]CIE Publication No.10527. CIE standard colormetric observers,2007.
    [3]CIE色品图www.efg2.com/lab.
    [4]代彩红,于家琳.光源相关色温计算方法的讨论[J].计量学报,2000,21(3):6.
    [5]林岳,叶烈武,刘文杰,et al.LED光源相关色温计算新方法[J].计量学报,2010,31(5):
    [6]林岳,叶烈武,刘文杰,et al.二分法优化计算LED光源相关色温[J].光学学报,2009,29(10):4.
    [7]陈硕,沈模卫,水仁德.CIE标准照明体和Munsell颜色体计算机仿真[J].浙江大学学报(工学版),2003,37(4):6.
    [8]徐海松.颜色技术原理及在印染中的应用(四)第四篇CIE标准照明体与颜色表述方法[J].印染,2005,31(21):5.
    [9]Macadam, L. D. Visual Sensitivities to Color Differences in Daylight [J]. Journal of the Optical Society of America 1942,32(5):247-274.
    [10]Macadam, L. D. Subtractive color mixture and color reproduction [J]. Journal of the Optical Society of America,1938,28(12):466.
    [11]刘义成.光源的显色性与显色指数[J].电子器件,2000,23(1):8.
    [12]谭力,刘玉玲,余飞鸿.光源显色指数的计算方法研究[J].光学仪器,2004,26(4):4.
    [13]熊利民,霍超,陈为群.光源颜色特性的测量及计算方法[J].计量技术,2005,4):3.
    [14]卢利根,张保洲,张军远.积分球非中性对出射光谱的影响[J].光子学报,2011,40(8):
    [15]吕正.LED光通量测试中的若干问题[M].海峡两岸第十二届照明科技与营销研讨会专题报告暨论文集.
    [16]Xia G, Gong X, Cheng L, et al. Research on the surface reflectance measurement of optical element with transparent substrate [J].2010,78492V-78492V.
    [17]张百顺,刘文清,魏庆农,et a1.典型目标的BRDF实验室测量与模型验证[J].量子电子学报,2006,23(4):4.
    [18]徐士良.C常用算法程序集[M].北京;清华大学出版社.1994:360-366.
    [19]Richter J,王建华,张焕生,et al. Windows核心编程[M].北京;机械工业出版社.2000:463-549.
    [20]Wiener R,侯捷译.VVin32多线程程序设计[M].武汉;华中科技大学出版社.2002:93-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700