用户名: 密码: 验证码:
快速全光谱反射差分光谱仪的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反射差分光谱仪是一种对表面光学各向异性具有高灵敏度的新型光学测量仪器,在半导体材料表面分析与加工、金属表面研究、液晶器件检测等领域已获得成功应用。随着应用范围的不断扩展,仪器综合性能朝更高的方向发展,快速全光谱并行测量型仪器是主要发展方向之一。本论文围绕这一主题,首先对光弹调制式单通道仪器进行了多通道改造,搭建了一台双通道并行测量样机;在此基础上,提出了旋转补偿器式多通道并行、快速测量型反射差分光谱仪的概念,并完成第一台以旋转补偿器为调制技术的反射差分光谱仪。经过与光弹调制式单通道商用仪器实验结果的比对,新型仪器在保持相同测量精度的同时,将全光谱的测量时间缩短为原有的1/10,较好地将快速测量与全光谱并行测量的特点融于一体。按照工作开展的顺序,课题的研究内容和成果可归纳为以下几个方面:
     1.对单通道光弹调制器式仪器进行多通道改造,创新性地提出基于数据采集板与计算机虚拟技术的采集方案,实验分析了采集板性能和数据处理方法对测量精度的影响,如快速傅里叶变换和锁相放大技术,并创新性地提出两种普适公式用于校正多通道测量中光弹调制器的位相延迟随波长非线性变化造成的误差。
     2.首次提出旋转补偿器式反射差分光谱仪的概念,并通过建立数学模型,分析了仪器多种误差源,如器件自身缺陷、光学器件装配误差、传感器测量误差等,与测量结果间存在的数学联系,创新性地提出基于起偏器方位角的系统误差标定方法和旋转起偏器消除系统误差的在线校正方法。针对数据的采集与处理,创新性地提出基于实时读取补偿器旋转角度与最小二乘法的方案。
     3.开发第一台旋转补偿器式多功能反射差分光谱仪,仪器包括光学测量系统,电子控制系统以及软件等部分。在仪器控制环节提出数据同步采集机制。
     4.系统地测试并分析了光源、探测器、补偿器等器件自身可能存在的缺陷及其对仪器测量性能的影响,讨论了处理光谱数据的几种数学方法,并利用单通道光弹调制式商用机,对旋转补偿器式仪器的性能进行了对比性测试。
     5.采用旋转补偿器式仪器实际测试多种样品,进一步评价新仪器性能,同时指出存在的不足。实验结果显示,无论是相对值远小于1的微弱反射差分信号,还是接近1的强信号,旋转补偿器式仪器都能准确测量,且测量速度10倍快于单通道商用机。实验还表明,反射差分光谱仪对亚纳米量级的样品表层原子结构、纳米量级表面原子团簇以及亚微米尺度微加工结构在表面二维空间呈现的各向异性都具有极高的灵敏度。
Reflectance difference spectroscopy (RDS) is a linear optical instrument which measures the difference in the normal incidence reflectivity for two mutually perpendicular orientations of the polarization vector as a function of photon energy. The technique is extremely sensitive to any kind of the in-plane optical anisotropy of matters and has been successfully applied in the studies of semiconductor surfaces, metal surfaces, and polymer surfaces. Particularly, it is widely used as a powerful tool for the real-time inline measurement in industry. According to the continuous extending of its application in different fields, the instruments can do fast full spectrum acquisition are required. This has stimulated lot of research and development efforts carried out in both industry and universities over the world. Focusing on the realization of this challenging task, in the PhD work, two systems based on different phase modulation techniques have been development. For the first system, we have set up a prototype multi-channel RD spectrometer by modifying a commercial single-channel RD spectrometer which is based on photoelastic modulator (PEM) techniques. Then, with a new concept of RDS configuration based on rotating compensation techniques established in this work, a prototype machine is developed. The testing results show that the time consumed for one full spectrum is one order of magnitude less than that for commercial one without loosing measurement precision. Therefore, the function of fast data acquisition is successfully realized. The main achievements of this PhD work are listed by time sequence in the following:
     1. A new scheme for multi-channel PEM based RDS was introduced based on a general high speed data acquisition board and virtual instrumentation technique on PC. And a two-channel PEM based RDS was built up as a prototype of the new kind of multi-channel instrument. The influences of acquisition board performances and two frequency domain analysis methods on measurement precision, such as FFT and Lock-in amplifier, were discussed. Two more general PEM retardation corrections for full spectrum range were promoted for calculating the exact phase retardation of PEM at every wavelength.
     2. The mathematic model of rotating-compensator based RDS was established by Stokes matrix. All kinds of measurement errors including systematic and statistical ones and their origins were studied in detail. Perticular attention has been given to the imperfections of optical elements, azimuth misalignments and error signals from detector. The mathematic relationships between measurement errors and these error sources were derived. Two new calibration / correction methods for system were promoted. One was based on polarizer’s azimuth and another was an on-line method based on polarizer rotation. A combination of the real time angular positions of the compensator and a least-square method was applied to data analysis.
     3. A prototype of rotating-compensator based RDS was built up, which composes 3 parts namely, optical probe system, electronic control system, and operation software. A method of reading simultaneously both the real time angular position of the compensator and the integrated intensity on the detector was used for data acquisition.
     4. The test and analysis for each component’s imperfection was conducted, especially for the light source, the compensator, and the CCD detector. Then, several mathematical methods in data analysis for improving signal to noise ratio were discussed. At last, the comparison of measurement precision between the commercial single-channel PEM based RDS and the new spectrometer was performed.
     5. In order to evaluate the performance of the new instrument thoroughly, some samples in addition to Si(110) were measured by both the new instrument and the commercial RDS. The results show that in the full range of RDS signal (between -1 and +1), the new spectrometer can measure the signal exactly and the measurement speed is 10 times faster than that of the commercial RDS. It also indicates that RDS is very sensitive to anisotropy of surface electronic structure, whatever it comes from subnano-scale atom structure, nano-scale cluster, and submicro-scale micro-maching structure.
引文
[1] P. Weightman, D.S. Martin, R.J. Cole, et al, Reflectance anisotropy spectroscopy, Rep. Prog. Phys., 2005, 68: 1251~1341
    [2] D.E. Aspnes and A.A. Studna, Anisotropies in the Above—Band-Gap Optical Spectra of Cubic Semiconductors, Phys. Rev. Lett., 1985, 54 (17): 1956~1959
    [3] D.E. Aspnes, Above-bandgap optical anisotropies in cubic semiconductors: A visible–near ultraviolet probe of surfaces, J. Vac. Sci. Technol. B, 1985, 3 (5): 1498~1506
    [4] 廖延彪,偏振光学,北京:科学出版社,2003.19~44
    [5] R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (Second Edition),Amsterdam: Elsevier Science, 1987
    [6] K.L. Shaklee, F.H. Pollak, M. Cardona, Electroreflectance at a Semiconductor-Electrolyte Interface, Phys. Rev. Lett., 1965, 15(23): 883~885
    [7] D.E. Aspnes, J.P. Harbison, A.A. Studna, et al, Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs, J. Vac. Sci. Technol. A, 1988, 6 (3): 1327~1332
    [8] S.R. Armstrong, R.D. Hoare, M.E. Pemble, et al, A RHEED and reflectance anisotropy study of the MBE growth of GaAs, AlAs and InAs on GaAs(001), Surf. Sci., 1992, 274 (2): 263~269
    [9] O. Acher, B. Drèvillon, A reflectance anisotropy spectrometer for real-time measurements, Rev. Sci. Instrum., 1992, 63(11): 5332~5339
    [10] L.F. Lastras Martinez, A. Lastras Martinez, and R.E. Balderas Navarro, A spectrometer for the measurement of reflectance-difference spectra, Rev. Sci. Instrum., 1993, 64(8): 2147~2152
    [11] Antonio Salvati, Piero Chiaredia, Analysis of reflectometers for surface anisotropy, Appl. Opt., 2000, 39(31): 5820~5826
    [12] J. Rumberg, Development and optimization of the reflectance anisotropy spectroscopy (RAS) technique with respect to online growth control:[硕士学位论文], Germany, Berlin, Technische Universitat Berlin, 1996
    [13] Jon-K?re Hansen,Electronic and Optical Surface Properties of Noble Metals Studied by Reflection Anisotropy Spectroscopy: [博士学位论文], Norges teknisk-naturvitenskapelige universitet, Norway, Trondheim, 2000
    [14] B. Koopmans, P.V. Santos, and M. Cardona, Microscopic Reflection Difference Spectroscopy on Semiconductor Nanostructures, Phys. Stat. Sol. (A), 1998, 170(2): 307~315
    [15] V.L. Berkovits, I. V. Makarenko, T. A. Minashvili, et al, Optical transitions on GaAs[110] surface, Solid State Commun., 1985, 56:449~450
    [16] C. Goletti, G. Bussetti, F. Arciprete, et al, Infrared surface absorption in Si(111)2×1 observed with reflectance anisotropy spectroscopy, Phys. Rev. B, 2002, 66: 153307
    [17] Th. Herrmann, K. Lüdge, W. Richter, et al, Growth phases and optical anisotropy of Co on preoxidized Cu(110), Phys. Rev. B, 2001, 64: 184424
    [18] T. Wethkamp, K. Wilmers, N. Esser, et al, Spectroscopic ellipsometry measurements of AlxGa1?xN in the energy range 3–25 eV, Thin Solid Films, 1998, 313-314(13): 745~750
    [19] Christian Kaspari, Markus Pristovsek, Wolfgang Richter, A fast reflectance anisotropy spectrometer for in situ growth monitoring, Phys. Stat. Sol. (b), 2005, 242(13): 2561~2569
    [20] P. Harrison, T. Farrell, A. Maunder, et al, A rapid reflectance anisotropy spectrometer, Meas. Sci. Technol., 2001, 12(12): 2185~2191
    [21] R.W. Collins, Ilsin An1, Chi Chen, et al, Advances in multichannel ellipsometric techniques for in-situ and real-time characterization of thin films, Thin Solid Films, 2004, 469–470: 38~46
    [22] D.E. Aspnes, Optimizing precision of rotating-analyzer and rotating-compensator ellipsometers, J. Opt. Soc. Am. A, 2004, 21(3): 403~410
    [23] B. Koopmans, P.V. Santos, M.Cardona, Microscopic reflection difference spectroscopy on semiconductor nanostructures, Phys. Stat. Sol. (a), 1998, 170(2): 307~315
    [24] H.H. Rotermund, Imaging pattern formation in surface reactions from ultra-high vacuum up to atmospheric pressures, Surf. Sci., 1997, 386(1-3):10~23
    [25] J. Dick, P. Erichsen, J. Wolff, et al, Reflection anisotropy microscopy: improved set-up and applications to CO oxidation on platinum, Surf. Sci., 2000, 462(1-3): 90~102
    [26] H.H. Rotermund, Real time imaging of surface catalytic reactions, Phys. Stat. Sol. (a), 2001, 188(4): 1537~1548
    [27] J.M. Geary, J. W. Goodby, A. R. Kmetz, et al, The mechanism of polymer alignment of liquid-crystal materials, J. Appl. Phys.,1987, 62(10): 4100~4108
    [28] B.F. Macdonald and R.J. Cole, RAS measurements of optical retardation in rubbed polymer thin films, J. Phys. D: Appl. Phys., 2003, 36(2): 142–145
    [29] M. Ebert, K.A. Bell, S.D. Yoo, et al, In situ monitoring of MOVPE growth by combined spectroscopic ellipsometry and reflectance difference spectroscopy, Thin Solid Films, 2000, 364(1-2): 22~27
    [30] K.A. Bell, M. Ebert, S.D. Yoo, et al, Real-time optical characterization of heteroepitaxy by organometallic chemical vapor deposition, J. Vac. Sci. Technol. A, 2000, 18(4): 1184~1189
    [31] K. Flock, S.-J. Kim, M. Asar, Integrated rotating-compensator polarimeter for real-time measurements and analysis of organometallic chemical vapor deposition, Thin solid Films, 2004, 455-456: 639~644
    [32] K. Hingerl, D. E. Aspnes, I. Kamiya, et al, Relationship among reflectance-difference spectroscopy, surface photoabsorption, and spectroellipsometry, Appl. Phys. Lett., 1993, 63(7): 885~887
    [33] S.E. Acosta-Ortiz, A. Lastras-Martínez, Electro-optic effects in the optical anistropies of (001) GaAs, Phys. Rev. B, 1989, 40(2): 1426~1429
    [34] I. Kamiya, D.E. Aspnes, L.T. Florez, et al, Reflectance-difference spectroscopy of (001) GaAs surfaces in ultrahigh vacuum, Phys. Rev. B, 1992, 46(24): 15 894~15 904
    [35] C. Meyne, M. Gensch, S. Peters, et al, In situ monitoring of ZnS/GaP and ZnSe/GaAs metalorganic vapor phase epitaxy using reflectance anisotropy spectroscopy and spectroscopic ellipsometry, Thin Solid Films, 2000, 364(1-2): 12~15
    [36] M. Zorn, K. Haberland, A. Knigge, et al, MOVPE process development for 650 nm VCSELS using optical in-situ techniques, J. Cryst. Growth, 2002, 235(1-4): 25~34
    [37] D.C.B. Law, Engineering of compound semiconductor nanostructures by metalorganic vapor-phase epitaxy: [ 博士学位论文 ], USA, Los Angeles, University of California, 2002
    [38] J. P. Harbison, D. E. Aspnes, A. A. Studna, et al, Oscillations in the optical response of (001)GaAs and AlGaAs surfaces during crystal growth by molecular beam epitaxy, Appl. Phys. Lett., 1988, 52(24): 2046~2048
    [39] T. Yasuda, S. Yamasaki, M. Nishizawa, Optical Anisotropy of Oxidized Si(001) Surfaces and Its Oscillation in the Layer-By-Layer Oxidation Process, Phys. Rev. Lett., 2001, 87(3): 037403~037406
    [40] R. Shioda, J.V. der Weide, Observation of hydrogen adsorption on Si(110) by reflectance difference spectroscopy, Appl. Surf. Sci., 1997, 130-132: 266~270
    [41] L.D. Sun, M. Hohage, P. Zeppenfeld, et al, Enhanced Optical Sensitivity to Adsorption due to Depolarization of Anisotropic Surface States, Phys. Rev. Lett., 2003, 90(10): 106104-1~4
    [42] M. Hohage, L.D. Sun, P. Zeppenfeld, Reflectance difference spectroscopy- a powerful tool to study adsorption and growth, Appl. Phys. A, 2005, 80(5): 1005~1010
    [43] L.D. Sun, M. Hohage, P. Zeppenfeld, et al, RDS investigation of adsorption and surface ordering processes on Cu(110), Phys. Stat. Sol. (c), 2003, 0(8): 3022~3026
    [44] M. Wahl, Th. Herrmann, N. Esser, et al, Structure and magneto optical properties of ferromagnetic Ni films grown on Cu(110), Phys. Stat. Sol. (c), 2003, 0(8): 3002~3006
    [45] D. S. Martin, P. Weightman, Reflection anisotropy spectroscopy: a new probe of metal surfaces, Surf. Interface Anal., 2001, 31(10): 915~926
    [46] L.D. Sun, M. Hohage, P. Zeppenfeld, Oxygen-induced reconstructions of Cu(110) studied by reflectance difference spectroscopy, Phys. Rev. B, 2004, 69: 045407~045412
    [47] B.F. Macdonald, W. Zheng, R.J. Cole, Reflection anisotropy spectroscopy: A probe of rubbed polyimide liquid crystal alignment layers, J. Appl. Phys., 2003, 93(8): 4442~4446
    [48] R.J. Cole, S. Kheradmand, D.D. Higgins, et al, Stress-induced optical anisotropy in polycrystalline copper studied by reflection anisotropy spectroscopy, J. Phys. D: Appl. Phys., 2003, 36(21): L115~L118
    [49] B.F. Macdonald, J.S. Law, R.J. Cole, Azimuth-dependent reflection anisotropy spectroscopy, J. Appl. Phys., 2003, 93(6): 3320~3327
    [50] V. Mazine, Y. Borensztein, L. Cagnon, et al, Optical Reflectance Anisotropy Spectroscopy of the Au(110) Surface in Electrochemical Environment, Phys. Status Solidi (a), 1999, 175(1): 311~316
    [51] D.S. Martin, R.J. Cole, P. Weightman, Effects of ion bombardment on the optical and electronic properties of Cu(110), Phys. Rev. B, 2005, 72:035408~035415
    [52] K. Schmidegg, L.D. Sun, G.A. Maier, et al, Characterization of optical anisotropy in oriented poly(ethylene terephthalate) films using reflectance difference spectroscopy, Polymer, 2006, 47(13): 4768~4772
    [53] B. Johs, J. A. Woollam, C. M. Herzinger, et al, Overview of Variable Angle Spectroscopic Ellipsometry (VASE), Part II: Advanced Applications, SPIE Proc., 1999, CR72: 29~58
    [54] Joungchel Lee, Robert W. Collins, Real-time characterization of film growth on transparent substrates by rotating-compensator multichannel ellipsometry, Appl. Opt., 1998, 37(19): 4230~4238
    [55] B. Drèvillon, J. Y. Parey, M. Stchakovsky, et al, Design of a new in-situ spectroscopic phase-modulated ellipsometer, Proc. SPIE, Multichamber and In Situ Processing of Electronic Materials, 1989, 1188: 174~184
    [56] 胡广书,数字信号处理理论、算法与实现(第二版),北京:清华大学出版社,2003.169~212
    [57] C. Hu, J.M. Flores-Camacho, K. Schmidegg, et al, On the development of a new reflectance difference spectrometer, ?PG 2005, Vienna, (Poster, P-OGD 18)
    [58] C. Hu, L.D. Sun, M. Hohage, et al, Improvement on data acquisition and processing in reflectance difference spectroscopy, ?PG 2006, Graz, (Poster, OGD-PO-12)
    [59] 林理忠,宋敏,微弱信号检测学导论,北京:中国计量出版社,1996.97~136
    [60] zone.ni.com/devzone/cda/tut/p/id/5613
    [61] J.C. Kemp, Piezo-Optical Birefringence Modulators: New Use for a Long-Known Effect, J. Opt. Soc. Am., 1969, 59(8): 950~954
    [62] O. Acher, E. Bigan, B. Drèvillon, Improvements of phase-modulated ellipsometry, Rev. Sci. Instrum., 1989, 60(1): 65~77
    [63] G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, Optics communications, 1999, 163(1): 95~102
    [64] www.cvilaser.com/Common/PDFs/Index of Refraction.pdf
    [65] T.C. Oakberg, Relative variation of stress-optic coefficient with wavelength in fused silica and calcium fluride, Proc. SPIE, 1999, 3754: 226~234
    [66] sine.ni.com/nips/cds/view/p/lang/zhs/nid/14128
    [67] sine.ni.com/nips/cds/view/p/lang/zhs/nid/11943
    [68] J. Lee, P.I. Rovira, llsin An, et al, Rotating-compensator multichannel ellipsometry: Application for real time Stokes vector spectroscopy of thin film growth, Rev. Sci. Instrum., 1998, 69(4): 1800~1810
    [69] R. Kleim, L. Kuntzler, A.El Ghemmaz, Systematic errors in rotating-compensator ellipsometry, J. Opt. Soc. Am. A, 1994, 11(9): 2550~2559
    [70] J.M.M.de Nijs, A. van Silfhout, Systematic and random errors in rotating-analyzer ellipsometry, J. Opt. Soc. Am. A, 1988, 5(6): 773~781
    [71] www.oceanoptics.com/products/hpx2000.asp
    [72] www.oceanoptics.com/Products/dh2000.asp
    [73] www.oceanoptics.com/products/ls450.asp
    [74] www.oceanoptics.com/products/opticalfibers.asp
    [75] www.oceanoptics.com/products/74series.asp
    [76] www.newport.com/store/genproduct.aspx?id=141082&lang=1033§ion=Pricing
    [77] www.newport.com/Concave-Broadband-Metallic-Mirrors/141091/1033/catalog.aspx
    [78] www.newport.com/Broadband-Metallic-Mirrors/141088/1033/catalog.aspx
    [79] www.b-halle.de/EN/Catalog/Polarizers/UV_Quartz_or_MgF2_Rochon_Polarizers.php
    [80] www.b-halle.de/EN/Catalog/Retarders/Achromatic_Quartz_and_MgF2_Retarders.php
    [81] www.b-halle.de/EN/Catalog/Retarders/Superachromatic_Quartz_and_MgF2_Retarders.php
    [82] www.oceanoptics.com/products/hr4000.asp
    [83] www.standa.lt/products/catalog/motorised_positioners?item=9&prod=motorized_rotation_stages
    [84] R.W. Collins, Automatic rotating element ellipsometers: Calibrantion, operation, and real-time applications, Rev. Sci. Instrum., 1990, 61(8):2029~2062
    [85] Ilsn An, J.A. Zapien, Chi Chen, et al, Calibration and data reduction for a UV-extended rotating-compensator multichannel ellipsometer, Thin Solid Film, 2004, 455-456:132~137
    [86] P. S. Hauge, Generalized rotating-compensator ellipsometry, Surf. Sci., 1976, 56: 148~160
    [87] www.altera.com/products/devices/cyclone2/cy2-index.jsp
    [88] 王庆友,CCD 应用技术,天津:天津大学出版社,2000,42~45
    [89] E2V-CCD-30-11 open electrode,e2v technologies limited, 2003
    [90] www.jobinyvon.com/usadivisions/Mono/ihr320.htm
    [91] E.赫克特,A.赞斯,光学(秦克诚,詹达三,林福成译),北京:人民出版社,1980,484~494
    [92] J.P.马蒂厄,光学(范少卿,于美文,张怀玉译),北京:科学出版社,1987,604~631
    [93] Charn-Kuo Wang, Yu-Faye Chao, Measurement of optical activity using a photoelastic modulator system, Jpn. J. Appl. Phys.,1999, 38(2): 941~944
    [94] AVSSSR Sarma , New experimental methods for determining the optical parameters of elliptic retarders, J. Phys. D: Appl. Phys., 1977, 10: 2019~2030
    [95] D.A. Holmes, Exact theory of retardation plates, J. Opt. Soc. Am., 1964, 54(9): 1115~1120
    [96] J. Lee, P.I. Rovira, Ilsin An, et al, Alignment and calibration of the MaF2 biplate compensator for applications in rotating-compensator multichannel ellipsometry, J. Opt. Soc. Am. A, 2001, 18(8): 1980~1985
    [97] ShiFang Li, J. Opsal, Hanyou Chu, Detection and analysis of depolarization artifacts in rotating-compensator polarimeters, J. Opt. Soc. Am. A, 2001, 18(2): 426~434
    [98] K. Ebert, D.E. Aspnes, Biplate artifacts in rotating-compensator ellipsometers, Thin solid films, 2004, 455-456: 779~783
    [99] D.B. Chenault, R.A. Chipman, Measurement of linear diattentuation and linear retardance spectra with a rotating sample spectropolarimeter, Applied Optics, 1993, 32(19): 3513~3519
    [100] B. Boulbry, B. Bousquet, B. Le Jeune, et al, Polarization errors associated with zero-order achromatic quarter-wave plates in the whole visible spectral range, Optics Express, 2001, 9(5): 225~235
    [101] S.M. Etzel, A.H. Rose, C.M. Wang, Dispersion of the temperature dependence of the retardance in SiO2 and MgF2, Applied Optics, 2000, 39(31): 5796~5800
    [102] P.D. Hale, G.W. Day, Stability of birefringent linear retarders (waveplates), Applied Optics, 1988, 27(24): 5146~5153
    [103] P. Gomez, C. Hernandez, High-accuracy universal polarimeter measurement of optical activity and birefringence of α-quartz in the presence of multiple reflections, J. Opt. Soc. Am. B., 1998, 15(3): 1147~1154
    [104] L.J. Guo, Recent progress in nanoimprint technology and its applications, J. Phys. D: Appl. Phys., 2004, 37: R123~R141
    [105] www.3dnanoprint.org/fileadmin/public/pdf/laser_article_1_.pdf
    [106] V. Grigaliūnas, S. Tamulevi?ius, M. Muehlberger, et al, Laser pulse assisted nanoimprint lithography, Thin Solid Film, 2004, 453-454: 13~15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700