用户名: 密码: 验证码:
基于进化算法的超宽带TEM喇叭天线阵列优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带雷达、超宽带通信、超宽带成像和超宽带电磁脉冲武器等领域的飞速发展,成为推动超宽带天线研究的巨大动力,并对超宽带天线提出了越来越高的要求。在众多形式的超宽带天线中,TEM(transverseelectromagnetic)喇叭天线及其变形天线是常用的高功率超宽带天线,工作于TEM模,定向辐射能力较强,易于工程实现,在超宽频带内具有恒阻抗特性,可以有效辐射时域窄脉冲信号。由于馈源、尺寸和功率等因素的限制,宜于采用阵列技术,以方便控制天线的辐射特性,减小波束宽度、降低副瓣电平和提高辐射功率,在诸如雷达系统、电子对抗、地下传感等众多军事和民用领域也有着非常广阔的应用前景。
     对超宽带天线阵列的分析存在一定难度,而对它的综合或优化将更具有挑战性,由于超宽带天线阵列中的优化变量与优化目标呈强烈的非线性关系,传统的优化方法往往无能为力--尽管如此,研究较为完善的适合于超宽带天线阵列优化的方法却是非常必要和迫切的,它将直接影响到超宽带天线阵列的各项性能指标以及阵列快速优化设计的实现。本文将以时域有限差分法(Finite-Difference Time-Domain Method,FDTD)为电磁辐射正问题的求解基础,以全局优化算法--微遗传算法、改进微遗传算法及其多目标进化算法分别处理天线及其阵列的优化问题(逆问题)。
     因此,论文首先对应用于超宽带TEM喇叭天线分析的数值方法--时域有限差分方法的特点和算法基本设置进行了简单介绍;对天线辐射问题的相关设置以及应用于超宽带TEM喇叭天线馈电的一维传输线馈电模型进行了描述;详细论述了获取天线远场信息的近-远场外推算法,对天线辐射问题应用改进的快速近-远场转换算法,对等效面近场数据在时域或空域上进行抽样,以尽量少的近场数据,实现不失真的远场转换,节约了计算时间,并给出了计算实例。
     论文接着介绍了描述超宽带天线时域特性的参数定义以及天线建模方法,并对其正确性进行了验证;详细论述了超宽带TEM喇叭天线的辐射特性。分析了各天线几何参数和激励源脉宽变化对其辐射特性的影响,介绍了超宽带天线阵列叠加原理,对叠状、槽状、面阵均匀排列和非均匀排列方式的阵列辐射特性进行分析,仿真分析了阵元间互耦影响和阵列波束电扫描特性;此外,还对超宽带TEM喇叭天线的变形结构--介质加载TEM喇叭天线和加脊TEM喇叭天线进行仿真模拟,并分析了天线的基本特性。
     随后重点论述了实现超宽带TEM喇叭天线优化设计所涉及的优化算法。介绍了单目标优化问题和多目标优化问题的不同处理方式,简述了传统优化算法的优缺点,随机优化方法特点和算法性能评估的相关准则;介绍了微遗传算法的实现过程,并对其交叉和变异操作等进行改进,提出了改进微遗传算法(Improve Micro Genetic Algorithm,I-MGA);针对超宽带天线多目标优化问题,基于Pareto最优解的概念,设计了基于自适应权重聚合和基于Pareto选择机制这两种不同形式的改进多目标微遗传算法;针对单目标和多目标优化问题的测试函数分别进行了性能测试,并与其它多种常用优化算法进行了比较。
     其后将微遗传算法及其改进算法与时域有限差分技术结合起来应用于超宽带天线阵列的优化问题。以天线阵列的增益、主瓣波束宽度、副瓣电平等作为优化目标,把难以求解的多阶方程组转化为适应度的约束条件,通过微遗传算法及其改进算法结合FDTD优化其电气、几何设计参数等,解决超宽带TEM喇叭天线阵的优化设计问题。论文论述了单天线优化及阵列优化的情况;对于多目标优化问题,分别以多目标加权法和基于Pareto的方法进行优化;为进一步提高超宽带TEM喇叭天线阵列的优化速度,提出了组合优化方法以缩小优化搜索范围,在不考虑阵元互耦情况下对天线阵列进行初次优化以获取先验知识,并根据初次优化的结果,在考虑阵元互耦情况下进行二次优化,以获取优化结果。
     最后,对论文工作进行了归纳总结并对下一步工作进行了展望。
     本文结合时域有限差分方法,从研究全时域的优化算法入手,完善了超宽带天线阵列的优化方法,从而实现超宽带天线TEM喇叭天线阵列的优化设计。
The rapid development in the fields of ultra wide band (UWB) radar, UWB communications, UWB imaging and UWB electromagnetic pulse weapon and so on becomes a tremendous impetus for studying UWB antenna while ever-increasing requirements are proposed for UWB antenna design. Among various forms of UWB antennas, transverse electromagnetic (TEM) horn antenna and its transformative forms are commonly used in domain of high power microwave, working under TEM mode.They have strong-directional radiation and are easy to project implementing.They also have constant impedance characteristics in very broad frequency range and radiate time-domain narrow pulse signal effectively. Because of the limitation factors of feed, size, power, etc. and consideration of antenna-radiation controllability, it is fit for applying array technology to reduce the beam width and side lobe level and improve the radiation power. They have wide application prospects in the realm of military and civil, such as radar system, electronic warfare, underground detection and the like.
     There are not only some difficulties in UWB antenna analyzing, but also more challenges in UWB antenna synthesis and optimization. Because of the strong nonlinearity between the optimized variables and optimized objects of UWB antenna array, the traditional optimization methods sometimes can not deal with it. In spite of this, studying on more suitable and high-powered optimization methods for UWB antenna array is very necessary and urgent, which may influences the performance and optimization speed of antenna array directly.
     In this dissertation, finite-difference time-domain method (FDTD) is applied to be the basic analysis method for electromagnetic radiation problems and micro genetic algorithm (MGA), improved micro genetic algorithm (I-MGA) and improved multi-objective evolutiaonary micro-genetic algorithms are used to process the optimization problems of antenna and array respectively.
     Firstly, FDTD is introduced here as UWB antennas analysis method, whose advantages and the involved algorithms will be discussed. A simple FDTD model for transient excitation by transmission lines is expound, which divides the computational region into excitation source region and antenna region to reduce computational cost. The improved rapid time-domain near-far extrapolation method based on FDTD calculations is used to obtain far-field information of antennas. In order to minimize the calculation data for far-field transforming, the data in Huygens' equivalent surface are sampled in space-domain or time-domain, which saves the computing time consumedly. An example is given.
     Secondly, the definition of parameters that describe the time-domain characteristics of UWB antenna and the method for antenna modeling are introduced. The validity of program is proved subsequently. After that the radiation characteristics of TEM horn antenna are told out. The impact of antenna variables' changing on its radiation characteristic is analyzed. Then the superposition principle of UWB antenna array, the different influence of array arrangement style, mutual coupling effect between array elements and time-domain electric scanning characteristic are introduced. The transformative antennas of TEM horn antenna, dielectric loaded TEM antenna and double-ridged TEM horn antenna, are also simulated, whose characteristics are analyzed as well.
     Thirdly, the involved optimization algorithms focusing on the realization of UWB TEM horn antenna design are mainly discussed here. The different process measures for sigle-objective and multi-objective optimization problem will be mentioned.The advantage and disadvantage of traditional optimization algorithms and the characteristics of stochastic optimization algorithms are introduced subsequently.The criterion of performance evaluation of the stochastic optimization algorithms will be given as well. Micro genetic algorithm (MGA) is compared with genetic algorithm (GA). The former who searches more efficiently is improved here and the improved micro genetic algorithm (I-MGA) is proposed, whose performance is tested. In addition, two different forms of improved multi-objective MGA are designed based on non-domain Pareto optimal concept for multi-objective optimization problem.The two kinds of multi-objective optimization algirithms are tested by testing functions, compared with the other optimization algorithm. The detail is presented.
     In addition, MGA, I-MGA and improved multi-objective evolutiaonary micro-genetic algorithms are combined with FDTD respectively for UWB antenna array optimization problem. We take gain, beam-width, side lobe level, etc. as the optimization objects, changeing the high-order equation groups that are hard to solve to be the restrict conditions of evaluation fitness. MGA and I-MGA are applied to optimize the electric and geometric design variables and so on while radiation problem is analyzing by FDTD. This dissertation discusses the single antenna optimization and array optimization problems here. For multi-objective optimization problem, we use weighted sum approach and Pareto-based approach respectively to proceed. In order to further accelerate the optimization speed, combination-optimization method is proposed. Regardless of couple effects of array elements, we optimize the antenna array for the first time to acquire prior knowledge. After that, according to the first optimization results, we take the couple effects into account and do secondary optimization to get the final outcome.
     Finally, the work is summarized and the next research directions are predicted.
     In this dissertation, we start from full-time domain optimization algorithm and improve the performent of the optimization method of UWB antenna array. Combined with FDTD, the optimization of UWB TEM antenna array is achieved.
引文
[1]E A Oliver,A H David.Time-domain antenna characterizations[J].IEEE Trans.on EMC,1993,35(3):339-346
    [2]Shlivinski A,Heyman E,Kastner R.Antenna Characterization in the Time Domain[J].IEEE Trans on Antenna and Propagation,1997,45(7):1140-1149.
    [3]Henry L.Bertoni,Lawrence Carin,Leopold B.Felsen,Ultra-Wideband Short-Pulse Electromagnetics[C],Plenum Press,1993.
    [4]L.Peters Jr.,D.J.Daniels,and J.D.Young.Ground Penetrating Radar as a Subsurface Environmental Sensing Tool,Proceedings of the IEEE,1994,vol.82(12):1802-1822.
    [5]James D.Taylor,Introduce to Ultra-Wideband Radar Systems[M],CRC Press,1995.
    [6]Anatoliy,Time Domain Studies of Ultra-wide Band Antennas[J],Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering:1999,95-100.
    [7]Prather,W.D.Baum,C.E.,et al,Ultra-wideband Source and Antenna Research[J],Plasma Science,IEEE Transactions on Antennas and Pro,2000,28(5):1624-1630.
    [8]黄裕年,任国光,高功率超宽带电磁脉冲技术[J],微波学报,2002,18(4):90-94.
    [9]Adrian Neal.Ground-penetrating and Its Use in Sediment Logy:Principles,Problems and Progress[J],Earth-Science Reviews 2004,66:261-330.
    [10]陈义群,肖柏勋,探地雷达现状与发展[J],工程地球物理学报,2005,2(2):149-155.
    [11]李长勇,杨士中,张承畅,超宽带脉冲天线研究综述[J].电波科学学报,2008,23(5):1003-1008.
    [12]C.E.Baum,Some Characteristics of Planar Distributed Sources for Radiating Transient Pulses[J],Sensor Simulation[J],1970,Note 100.
    [13]M.Kanda,The Effects of Resistive Loading of "TEM" Horn[J],IEEE Trans.EMC,1982,24(2):245-255.
    [14]W.L.Stutzman,G.A.Thiele,天线理论与设计[M],第二版,朱守正译,人民邮政出版社,2006.
    [15]E.G.Farr,et al.Multifunction Impulse Radiating Antennas:Theory and Experiment.Intl.11th.Conf.High Power Electromagnetic[J],EUROEM 98,1998,131-144.
    [16]M.H.Vogel,Design of the Low-Frequency Compensation of an Extreme-Bandwidth TEM Horn and Lens IRA[A].Sensor and Simulation Notes[C],1996,Note 391.V Carl E.Baum.Low-Frequency-Compensation TEM Horn[A],Sensor and Simulation Notes[C],1995,Note 377.
    [17]V Carl E.Baum.Low-Frequency-Compensation TEM Horn[A],Sensor and Simulation Notes[C],1995,Note 377.
    [18]刘峰,樊亚军,张雪霞,电-磁振子组合型小型化超宽带天线研究[J],强激光与粒子束,2004,16(8):1037-1040.
    [19]廖勇,张秦岭等,TEM喇叭天线低频补偿实验研究[J],强激光与粒子束,2005,17(8):1247-1250.
    [20]V.A.Kolobov,G.A.Polukhin,An Ultrabroadband Microwave Antenna [J],Telecommun Radio Eng,1991,47(1):113-115.
    [21]Carl E.Baum.Impulse Radiating Antenna.Ultra-Wideband,Short Pulse Eletromagnetics[C].Edited by H.Bertoni,et al,New York,Plenum Press,1993.
    [22]E.G.Farr,C.E.Baum,and C.J.Buchenauer,Impulse Radiating Antennas,Part Ⅱ,Ultra-Wideband,Short Pulse Eletromagnetics[C],Part Ⅱ,Edited by H.Bertoni,et al,New York,Plenum Press,1995.
    [23]Forrest Anderson,Wideband Beam Patterns from Sparse Array[A],Ultra-Wideband Rader[C],Proc.of the 1~(st) Los Alamos Symp.,1990:273-285.
    [24]C.C.Terms,Impulse Arrays[A],Naval Research Lab,Report,Nr19303-91-00377,1991.
    [25]杨周炳.超宽带天线阵列特性研究[A],第一届高能电子学学术交流会会议文集[C],1999,166-168.
    [26]葛德彪,闫玉波,电磁场时域有限差分方法[M],西安:西安电子科技大学出版社,2002.
    [27]王秉中,计算电磁学[M],北京:科学出版社,2002.
    [28]Carl E.Baum edited,Ultra-Wideband Short-Pulse Electromagnetics 3[C],Plenum Press,1997.
    [29]Baum E C.Radiation of Impulse-like transient field,sensor and simulation notes,1989,Note 321.
    [30]J.G.Maloney and G.S.Smith,Optimization of Pulse Radiation from a Simple Antenna Using Resistive Loading",Microwave Opt.Technol.Lett.,1992,5(7):299-303.
    [31]J.G.Maloney and G.S.Smith,A study of transient radiation from the Wu-King resistive monopole-FDTD analysis and experimental measurements,IEEE Trans.Antennas Propagat.,1993,41(5):668-676.
    [32]J.G.Maloney and G.S.Smith,Optimization of a Conical Antenna for Pulse Radiation:An Efficient Design Using Resistive Loading,IEEE Trans.Antennas Propagation,1993,41(7):940-947.
    [33]J G Maloney,K L Shlager,G S Smith.A simple FDTD model for transient excitation of antennas by transmission lines[J].IEEE Trans.on Antennas and Propagation,1994,42(2):289-292.
    [34]K.L.Shlager,G.S.Smith,and J.G.Maloney,Optimization of Bow-tie Antennas for Pulse Radiation,IEEE Trans.Antennas Propagat.,1994,42(7):975-982.
    [35]K L Shlager,G S Smith,J G Maloney.TEM Horn Antenna for Pulse Radiation:An Improved Design,Microwave Opt.Technol.Letters,1996,12(2):86-90.
    [36]K L Shlager,G S Smith,J G Maloney.Accurate Analysis of TEM Horn Antennas for Pulse Radiation[J].IEEE Trans.on EMC,1996,38(3):414-423.
    [37]D.T.McGrath and C.E.Baum,Scanning and Impedance Properties of TEM Horn Arrays for Transient Radiation[J],IEEE Trans.Antennas and Propagation,1999,47(3):469-473.
    [38]Dennis Sulliven,et al.,Far-field Time-domain Calculation from Aperture Radiators Using the FDTD Method,IEEE Trans.on AP,2001,49(3):464-469.
    [39]刘小龙,王向晖,汪文秉,蒋延生,单极性亚纳秒脉冲激励口径的辐射特性[J],强激光与粒子束,2003,15(11):1103-1106.
    [40]刘小龙,王向晖,蒋延生等,口径天线辐射脉冲持续时间的研究,微波学报,2004,20(3):30-32.
    [41]刘小龙,樊亚军,刘国治等,线框馈电抛物面高功率电磁脉冲辐射天线[J],强激光与粒子束,2001,13(5):619-622.
    [42]王建国,田春明,刘小龙,葛德彪,超宽带TEM天线的数值模拟,强激光与粒子束,2001,13(4):493-497
    [43]刘小龙,刘国治,汪文秉,恒阻抗TEM喇叭辐射特性[J],强激光与粒子束,2003,15(11):1127-1129
    [44]孟凡宝,杨周炳,吴文涛等,高功率超宽带同轴双锥天线的设计和实验,强激光与粒子束,1999,11(2):245-247.
    [45]孟凡宝,杨周炳等,高功率半抛物面冲击脉冲辐射天线系统实验研究,强激光与粒子束,1999,11(6):725-728.
    [46]廖勇.超宽带TEM喇叭天线阵列辐射特性初步研究,硕士学位论文,中国工程物理研究院,2003.
    [47]袁乃昌,何建国,刘克成等,集成鳍线为脊的新型圆锥及方锥TEM 喇叭及其在目标瞬态特性中的应用,电子学报,1999,27(6):115-117.
    [48]何建国,冲激雷达反隐身机理及关键技术的理论与实验研究,博士学位论文,国防科技大学,1994.
    [49]刘培国,刘克成,何建国等,加脊喇叭天线的时域分析,国防科技大学学报,2001,2(1):28-30
    [50]刘培国,刘克成,何建国等,一种新型超宽带平面天线的FDTD分析,电子学报,2000,28(6):86-88
    [51]张光甫,瞬态天线及其在超宽带雷达中的应用,博士学位论文,国防科技大学2004.
    [52]吴锋涛,张光甫,张伟军等.FDTD分析时域平面TEM喇叭天线阵[J],国防科技大学学报,2006,28(4):54-58
    [53]Holland J H.Genetic algorithms[J].Scientific American,1992,(6):44-50.
    [54]Haupt R L.An introduction to genetic algorithms for electromagnetic [J].IEEE Antennas and Propagation,1995,37(2):7-15.
    [55]王小平 曹立明,遗传算法--理论、应用与软件实现[M],西安:西安交通大学出版社,2002.
    [56]陈国良,王熙法,庄镇全等,遗传算法及其应用[M],北京:人民邮电出版社,1996.
    [57]K.C.Lee,Genetic Algorithms Based Analyses of Nonlinearly Loaded Antenna Arrays Including Mutual Coupling Effects[J],IEEE Trans.Antennas and Propagation,2003,51(4):776-781.
    [58]Ares-Pena,F.J.,Rodriguez-Gonzalez,J.A.,et al,Genetic Algorithms in the Design and Optimization of Antenna Array Patterns[J],IEEE Trans.Antennas Propagat.,1999,47(3):506-510.
    [59]K.K.Yan and Y.Lu,Sidelobe Reduction in Array-Pattern Synthesis Using Genetic Algorithm[J],IEEE Trans.Antennas and Propagat.,1997,41(7):1117-1122.
    [60]Zwi Altman,Raj Mittra.,New Designs of Ultra Wide-Band Communication Antennas Using a Genetic Algorithm[J],IEEE Trans. Antennas and Propagat.,1997,45(10):1494-1501.
    [61]A.Tennant,M.M Dawoud.and Anderson,Array Pattern Nulling by Element Position Perturbations Using a Genetic Algorithm[J],Electron.Lett.,1994,30(3):174-176.
    [62]D.Marcano and F.Duran,Synthisi of Antenna Array Using Genetic Algorithm[J],IEEE Antennas and Propagat.Magazine,2000,42(3):12-20.
    [63]任盛海,吴志忠.遗传算法在阵列方向图综合设计中的应用[J].电波科学学报,1996,11(4):62-67.
    [64]马云辉.阵列天线的遗传算法优化[J],电波科学学报,2001,16(2):172-176.
    [65]胡星航,林德云,矩形平面阵列天线旁瓣电平优化的遗传算法[J],电子学报,1999,27(12):119-120
    [66]王宏建,高本庆,刘瑞祥,基于遗传算法的单脉冲阵列天线优化[J],中国工程科学,2002,4(5):84-87.
    [67]Choo.H L.ING H.Design of Multiband Microstrip Antennas Using a Genetic Algorithm[J].IEEE Micro Wireless Compon Lett.,2002,12(9):345-347.
    [68]Katsuki Kiminami,Akimasa Hirata.Double-sided Printed Bow-tie Antenna for UWB Communications[J].IEEE Antennas Wireless Propagat Lett.,2004,13(1):152-153
    [69]J.Kim,T.Yoon,and J.Kim,et al.Design of An Ultra wide-band Printed Monopole Antenna Using FDTD and Genetic Algorithm[J].Micro Op t Tech Lett.,2005,15(6):395-397
    [70]肖志平,卢万铮,何建国等,一种平面超宽带天线的优化设计及其分析[J],微波学报,2006,22(4):28-31.
    [71]盛洁,杨雪霞,孙江涛,遗传算法优化设计超宽带天线[J],上海大学学报(自然科学版),2008,14(4):346-348.
    [72]Goldberg D E,Sizing Population for Serial and parallel Genetic Algorithm[J],In J David Schaffer(editor),Proceeding of the Third International Conference on Genetic Algorithm,San Mateo:Morgen kaufmannPublishers,1989,70-79.
    [73]Krishnakumar Kalmanje,Micro-Genetic Algorithms for Stationary and Non-stationary Optimization[J],Intelligent Control and Adaptive Systems(SPIE Proceedings),1989,Vol.1196:289-296.
    [74]S A Kazarlis,S E Papadakis,J B Theocharis.Microgenetic Algorithm As Generalized Hill-climbing Operators for GA Optimization[J],IEEE Trans.on Evolutionary Computation,2001,5(3):204-217.
    [75]S Chakravarty,R Mittra,N R Wolliams.Application of A Microgenetic Algorithm to the Design of Broad-band Microwave Absorbers Using Multiple Frequency Selective Surface Screens Buried in Dielectrics[J].IEEE Trans.Antenna and Propagation,2002,50(3):284-296.
    [76]肖绍球,王秉中.基于微遗传算法的微带可重构天线设计[J].电子科技大学学报,,2004,32(2):137-141.
    [77]胡毓达.实用多目标最优化[M],上海:上海科学技术出版社,1990.
    [78]玄光男,程润伟,遗传算法与工程优化[M].北京:清华大学出版社,2004
    [79]Schaffer J D.Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[J],Proc.of 1st Int.Conf.on Genetic Algorithms and Their Application,Lawrence Erlbaum Associates,1985:93-100.
    [80]Goldberg D E,Genetic Algorithms in Search,Optimization and Machine Learning[J],Addison-Wesley,1989,148-217.
    [81]Fonseca C M,Fleming P J.Genetic Algorithms for Multiobjective Optimization:Formulation,Discussion and Generalization[J],S.Forrest edited,Proceedings of the Fifth International Conference on Genetic Algorithms,San Marco,California,1993:416-423.
    [82]Horn J,Nafpliotis N,Goldberg D E.A Niched Pareto Genetic Algorithm for Multiobjective Optimization[J],Proceedings of the First IEEE Conference on Evolutionary Computation,IEEE World Congress on Computational Computation Piscataway,NJ,1994,1:82-87.
    [83]Srinivas N,Deb K.Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms[J].Evolutionary Computation,1994,2(3):221-248.
    [84]Osyczka A,Kundu S.A New Method to Solve Generalized Multicriteria Optimization Problems Using the Simple Genetic Algorithm[J].Structural Optimization,1995,10(2):94-99
    [85]Kita H,Yabumoto Y,Mori N,et al.Multi-objective Optimization by Means of Thermo Dynamical Genetic Algorithm[J],Proceedings of Parallel Problem Solving from Nature Ⅳ,1996:504-512.
    [86]Veldhuizen D V.Multiobjective Evolutionary Algorithms:Classifications,Analyses,and New Innovations[M].Dayton,Air Force Institute of Technology Air University,1999,95-113.
    [87]Zitzler E,Thiele L.Multiobjective Evolutionary Algorithms:A Comparative case study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [88]Coello Coello Carlos A and Gregorio Toscano Pulido,Multiobjective Optimization Using a Micro-Genetic Algorithm[J],Lee Spector,et al edited,Proceedings of the Genetic and Evolutionary Computation Conference(GECCO-2001 ),San Francisco:Morgan Kaufmann Publishers,2001,274-282.
    [89]Zitzler E,Thiele L.SPEA2:Improving the Strength Pareto Evolutionary Algorithm[J],Evolutionary Methods for Design,Optimization and.Control with Applications to Industrial Problems(EUROGEN 2001),UK,2001,95-114.
    [90]Deb K,Pratap A,Agarwal S,et al.A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J],IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [91]K.F.Man,T.M.Chan,K.S.Tang,and S.Kwong,Jumping-Genes in Evolutionary Computing[J],Proc.30th Annu.Conf.IEEE Ind.Electron.Society,Busan,Korea,2004,vol.2:1268-1272.
    [92]郑金华,多目标进化算法[M],北京:科学出版社,2007.
    [93]万小平,袁茹,王三民,环形可展开卫星天线的多目标结构优化设计[J],机械科学与技术,2005,24(8):914-916.
    [94]权琳,陶海红,廖桂生.基于多目标遗传算法的星载天线干扰抑制算法[J],雷达科学与技术,2007,6(5):470-476.
    [95]高波,多目标进化算法及其在天线方向图综合问题中的应用[D],硕士论文,上海交通大学,2007.
    [96]欧阳骏,杨峰,杨仕文,聂在平,INSGA-Ⅱ算法及其在天线综合中的应用[J],电子科技大学学报,2008,37(6):886-889.
    [97]Yoshihiko Kuwahara,Multiobjective Optimization Design of Yagi-Uda Antenna[J],IEEE Trans.on AP.,2005,53(6):1984-1992.
    [98]Nanbo Jin,Yahya Rahmat-Samii,Advances in Particle Swarm Optimization for Antenna Designs:Real-Number,Binary,Single-Objective and Multiobjective Implementations,IEEE,IEEE Trans.on AP.,2007,55(3):556-567.
    [99]Yang Xue-Song,Man Kim Fung,Yeung,Sai Ho,etc.Ultra-wideband planar antenna optimized by a multi-objective evolutionary algorithm[J],2007 Asia-Pacific Microwave Conference,APMC,2007,Num.4554873.
    [100]Poian M.,Poles S.,Bernasconi F.,Leroux,E.,Steffe W.,Zolesi M.,Multi-objective optimization for antenna design[J],2008 IEEE International Conference on Microwaves,Communications,Antennas and Electronic Systems,2008,Num.4562817.
    [101]林昌禄,聂在平等,天线工程手册[M],北京:电子工业出版社,2002.
    [102]Goldberg M.Stability Criteria for Finite Difference Approximation to Parabolic Systems[J],Applied Numerical Mathematics,2000,Vol.33:509-515.
    [103]Martin T,Pettersson L,Dispersive Compensation for Huygens Sources and Far-zone Transformation in FDTD[J],IEEE Trans.Antennas and Propagation,2000,48(4):494-501.
    [104]J.S.Juntunen and T.D.Tsiboukis,Reduction of Numerical Dispersion in FDTD Method through Artificial Anisotropy.IEEE Trans.Microwave Theory Tech.,2000,48(4):582-588.
    [105]Mur G.Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations[J].IEEE Trans.Electromagnetic Compatibility,1981,23(3),377-382.
    [106]Berenger J.A perfectly matched layer medium for the absorption of electromagnetic waves[J].J.Comput.,1994,114(10),185-200.
    [107]Gedney S.An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[J].IEEE Trans.Antennas and Propagat.,1996,44(12),1630-1639.
    [108]Boonzaaier J J and Pistonius C W I,Finite-Difference Time-Domain Approximations for Thin Wires with a Lossy Coating[J],IEEE Proc.-Microw.Antennas Proprag.,1994,141(2):107-113.
    [109]K.S.Yee,D.Ingham and K.Shlager.,Time-domain Extrapolation to the Far Field Based on FDTD Calculations[J],IEEE Trans.on Antennas and Propagation,1991,39(3):410-423.
    [110]K.L.Shlager and G.S.Smith.Near-Field to Near-Field Transform for the use with the FDTD Method and Its Application to Pulsed Antenna Problems.Electronics Letters[J],1999,30(16):1262-1264.
    [111]Omar M.Ramahi,Near- and Far-Field Calculations in FDTD Simulations Using Kirchhoff Surface Integral Representation[J],IEEE Trans.on Antennas and Propagation,1997,45(5):753-759.
    [112]R.Pascaud,R.Gillard,R.Loison,et al,Near-Field Data Compression for the Far-Field Computation in FDTD[J],Microwave Opt.Technol.Lett.,2006,Vol.48:1155-1157.
    [113]卫涛,导体目标的超宽带微波成像研究[D],博士学位论文,西南交通大学,2008.
    [114]蒋长宏、张云华,基于空-时抽样的FDTD近远场转换[J],2007全国天线年会,2007,Vol.2:461-464.
    [115]Antcnna Standards Committee of the IEEE Antennas and Propagation Society[J],IEEE Standard Definitions of Terms for Antennas,IEEE Transactions on Antennas and Propagation,1983,31(6):202-205.
    [116]E.O.Hammerstad,O.Jensen,Accurate Models for Microstrip Computer-Aided Design[J],IEEE International Microwave Symposium Digest,1980:407-409.
    [117]艾礼宾,用于探地雷达的TEM加载喇叭天线[D],硕士学位论文,长沙:国防科学技术大学,2005
    [118]郭晨,张安学,蒋延生等.楔形介质填充TEM喇叭天线设计[A],2007年全国天线年会,2007:593-595
    [119]J L Kerr.Short Axial Length Broad-Band Horns[J],IEEE Trans.Antennas Propagation,1973,21(9):710 - 714.
    [120]Coello,C.A.C.,A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques[J],Knowledge and Information Systems,1999,1(3):269-308.
    [121]胡毓达,实用多目标最优化[M],上海:上海科学技术出版社,1990.
    [122]D.A.Knoll,D.E.Keyes Jacobian-Free Newton-Krylov Methods:A Survey of Approaches and Applications[J],Journal of Computational Physics,2004:357-397.
    [123]Fonseca C M,Fleming P J,An Overview of Evolutionary Algorithms in Multi-objective Optimization[J],Evolutionary Computation,1995,3(1):1-16
    [124]Knowles J D,Corne D W.Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy[J],Evolutionary Computation,2000,8(2):149-172.
    [125]郑向伟,刘弘,多目标进化算法研究进展[J],计算机科学,2007,34(7):187-192.
    [126]Hajela P,Lin C Y,Genetic Search Strategies in Multi-criterion Optimal Design[J],Structural Optimization,1992,4(1):99-107.
    [127]Jin Y C,Okabe T,Sendhoff B,Adapting Weighted Aggregation for Multi-Objective Evolution strategies[J],Proceedings of the First International Conference on Evolutionary Multicriterion Optimization,Berlin,2001:96- 110.
    [128]Leung Y W,Wang Y P,Multi-Objective Programming Using Uniform Design and Genetic Algorithm[J],IEEE Transaction on Systems,Man and Cybernetics C,2000,30(3):293- 304.
    [129]Jin Y C,Olhofer M,Sendhoff B,Dynamic Weighted Aggregation for Evolutionary Multi-Objective Optimization:Why Does It Work and How?[J],Proceedings of Genetic and Evolutionary Computation Conference,Morgan Kaufmann,2001:1042- 1049.
    [130]范喻,金荣洪,刘波等,阵列天线方向图综合中的遗传算法目标函数研究[J],电子与信息学报,2005,27(5):801-804.
    [131]吴锋涛,张光甫,张伟军等,FDTD分析时域平面TEM喇叭天线阵[J],国防科技大学学报,2006,28(4):54-58.
    [132]王宏建,高本庆,刘瑞祥等,遗传算法在波导裂缝阵列天线设计中的应用[J],电子学报,2002,30(3):309-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700