用户名: 密码: 验证码:
东亚地区栓皮栎(Quercus variabilis)叶片性状的变异格局及其对环境变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物叶片的性状(例如,叶形态、叶脉密度、气孔大小和密度、表皮毛类型和密度等)是植物对环境因子长期适应的结果,与植物叶片的蒸腾及光合作用两大生理过程密切相关。对不同植物叶片性状及其特点,已有大量研究报导。但是,在区域尺度上,对植物叶片性状沿气候梯度的变异格局和主要控制因子以及叶片性状对气候变化的响应等,还缺乏系统的研究和综合分析。这些方面研究是植物生理生态学的重要内容,特别是对了解气候变化条件下植物响应、群落构成变化、植物迁移等具有重要的理论意义,研究结果对在气候变化形势下合理地开展森林经营具有指导作用。
     栓皮栎(Quercus variabilis)是东亚地区分布最广泛的落叶阔叶树种之一(19–42°N、97–140°E,海拔50–2000m)。在中国、韩国和日本,栓皮栎林分均都具有重要经济价值(木材、栓皮、果实、叶片等),发挥着生物多样性和环境保护作用,形成了重要森林景观。由于栓皮栎具有较强的抗旱特性,在我国华北和西北的干旱半干旱地区,是重要的荒山造林树种。栓皮栎分布区域较大,分布区内环境复杂,不同地区的种群经过长期的自然选择和种群内的遗传分化,形成了遗传结构不同的地理种群。因而,栓皮栎是在种的水平上,研究植物叶片性状变异格局及其与环境因子关系的理想树种。
     在本项研究中,我们采集了44个野外种群林分样地(包括中国大陆、台湾、舟山、韩国和日本等岛屿)的叶片样品,并获得了各样点气候数据。应用光学显微镜和扫描电镜等技术和方法,观察测量了叶片大小、比叶面积、叶柄长度、各级叶脉密度、气孔大小和密度、表皮毛密度等指标,分析了这些叶片性状的地理变异格局及其与环境因子间的关系。同时,我们在2008年采集了野外15个栓皮栎种群种子,在栓皮栎分布区中部的上海地区建立了栓皮栎苗木同质园(common garden),通过野外和同质园样品数据对比,研究了叶片性状对环境因子变化的响应。主要研究结果如下:
     1、在东亚地区分布范围内,栓皮栎不同种群间的叶形态性状(叶片长度、叶片宽度及叶片长宽比值等)存在显著差异(P <0.001),变异格局与环境变量显著相关。在野外条件下,栓皮栎叶片的长宽比值随纬度升高显著降低(r~2=0.134, P=0.015),叶片长度(r~2=0.132, P=0.016)、叶片宽度(r~2=0.109, P=0.028)、叶柄长(r~2=0.289, P <0.001)随样地的经度升高而显著降低。野外栓皮栎种群的叶片的长宽比值与年平均温度(MAT)呈显著正相关关系(r~2=0.135,P=0.014),叶片长度(r~2=0.207, P=0.002)及叶片的长宽比值(r~2=0.278, P <0.001)与MDSH极显著负相关。栓皮栎的叶长(r~2=0.131, P=0.033)及叶片的长宽比值(r~2=0.235, P=0.003)与土壤中的K含量显著负相关。多元回归分析结果表明,环境因子中影响叶片形状的首要因子是MDSH,其次为MAT。在同质园中生长两年后,除了叶柄长度外,不同地理种群间栓皮栎的幼苗其余叶形态性状的差异缩小,其中叶长(P=0.160)与叶面积(P=0.105)在不同地理种群间无显著差异。同质园中叶形态特性与原产地经度、纬度均不相关(P=0.081–0.949)。栓皮栎叶形态性状对环境因子敏感,野外种群间的栓皮栎叶形态变异主要是由于各样地间的环境差异,由环境引起的栓皮栎叶形态的变异的可遗传性较低。
     2、在分布区范围内,野外栓皮栎种群的叶片细脉密度随原产地的纬度升高而极显著减小(r~2=0.63, P <0.001);而且,在同质园生长条件下,不同种群的栓皮栎叶脉密度与原产地纬度仍然呈现与野外一致的变异格局(r~2=0.63, P <0.001)。也就是说,栓皮栎叶片的细脉密度是一种遗传性状(genotypic trait)。野外与同质园样地的栓皮栎叶片细脉密度的年平均降水量(MAP)显著正相关(野外r~2=0.30, P <0.001;同质园r~2=0.29, P=0.04),与年平均温度(MAT)显著正相关(野外r~2=0.53, P <0.001;同质园r~2=0.35, P=0.02)。野外叶片细脉密度与样地平均日照时数(MDSH)极显著负相关(r~2=0.24, P=0.001),而同质园叶片细脉密度与MDSH不具显著相关性(r~2=0.23, P=0.07)。野外栓皮栎种群的叶片细脉密度与叶长(r~2=0.12, P=0.02)和叶片长宽比(r~2=0.36, P <0.001)显著正相关,而同质园样地的栓皮栎细脉密度与叶长表现为显著负相关(r~2=0.44, P=0.007)。此外,野外栓皮栎种群的细脉密度与土壤中K、Ca含量显著负相关(r~2=0.16, P=0.02和r~2=0.21, P=0.007)。通径分析结果表明,影响栓皮栎叶片细脉密度的主要因子为MAT及叶片形状,而MAP与MDSH对栓皮栎细脉密度具有较大的间接影响。栓皮栎叶片的叶脉密度是对当地气候因子长期适应的结果,叶脉密度是基因型性状对于短期生长环境条件的改变不是非常敏感。
     3、在栓皮栎分布区尺度上,栓皮栎叶片气孔密度(SD)及叶片气孔面积指数(SOI)随样地经度升高而显著变小(气孔密度, r~2=0.098, P=0.039; SOI, r~2=0.120, P=0.021),而对于同质园中15个不同地理种群栓皮栎来说,气孔密度及SOI都不存在显著差异,并与种群地的纬度不相关(P=0.278–0.540)。野外种群的叶片气孔密度与样地的年平均降水量(MAP)呈现极显著负相关(r~2=0.157,P=0.008),而与其它气候因子不具显著相关性(P=0.321–0.740)。与气孔密度相比,栓皮栎叶片的SOI对环境因子更为敏感。野外种群的SOI与年平均温度(MAT)(r~2=0.12, P=0.02)和MAP显著负相关(r~2=0.39, P <0.001),而与平均月太阳辐射量(MMSR)显著正相关(r~2=0.16, P=0.011)。同质园中的栓皮栎种群的气孔密度和SOI与种群地的气候因子都不相关(P=0.101–0.775)。野外栓皮栎种群的叶片的气孔密度与气孔长度(r~2=0.236, P=0.001)及气孔长宽比值(r~2=0.266, P <0.001)负相关。野外栓皮栎种群的叶片气孔密度和SOI都与单位叶面积的叶片干重(LMA)及叶柄长度显著正相关(r~2=0.199–0.299, P=<0.001–0.002),而同质园样地的气孔密度和SOI与叶片LMA及叶柄长度不相关(P=0.056–0.568)。野外种群的SOI与土壤中Ca(r~2=0.18, P=0.012)及K(r~2=0.15, P=0.019)元素含量显著正相关。野外栓皮栎种群的气孔Rp值与纬度极显著正相关(r~2=0.210, P=0.002),同质园中栓皮栎气孔Rp值与种群地纬度不相关(r~2=0.006, P=0.781)。野外种群的气孔Rp值与样地的年平均降水量(MAP)极显著负相关(r~2=0.160, P=0.007),与气孔长度及宽度显著正相关(r~2=0.231–0.235, P=0.001)。多元回归分析结果表明,栓皮栎叶片的气孔密度与SOI的主要影响因子为气孔大小、LMA及MAP,叶片气孔Rp值的主要影响因子为气孔长度与MAP。本研究结果表明栓皮栎叶片的气孔密度及SOI对于自身生长的生态环境具有长期的基因上的适应性,并对于适应短期的环境的改变具有较高的可塑性,而栓皮栎叶片的气孔Rp值相对较稳定,环境因子对栓皮栎气孔R值的影响并未改变栓皮栎气孔的非随机分布格局。
     4、在栓皮栎分布区尺度上,44个样地的栓皮栎叶片表皮毛密度间差异极显著(P <0.001),而在同质园中,15个不同地理种群间的栓皮栎叶片的表皮毛密度无显著差异(P=0.521)。野外及同质园栓皮栎叶片的表皮毛密度不存在明显的变异格局,与样地纬度、经度及海拔均不相关(P=0.107–0.650)。野外栓皮栎种群的叶片表皮毛密度与样地MAP极显著负相关(r~2=0.159, P=0.007),与MMSR在临界水平上显著正相关(r~2=0.095, P=0.053),与其他气候因子不相关(P=0.074–0.613)。同质园不同地理种群的栓皮栎叶片表皮毛密度与原产地气候因子均不相关(P=0.404–0.985)。野外栓皮栎种群的叶片的表皮毛密度与叶片的叶柄长度(r~2=0.145, P=0.011)及LMA(r~2=0.235, P=0.001)均显著正相关,与叶片的气孔密度呈极显著正相关关系(r~2=0.510, P <0.001)。对栓皮栎叶片表皮毛密度而言,主要影响因子为叶片LMA与MAP。本文研究结果表明,栓皮栎叶片的表皮毛与叶片的气孔可能存在着协同演化关系。栓皮栎叶片的表皮毛密度对环境变化高度敏感,具有较强的表现型可塑性。
For plants, the leaf anatomical traits (leaf morphology traits, vein density, stomata sizeand density, trichomes types and density) were closely related with transpiration andphotosynthesis. They are the results of adaption for environmental factors during long-term evolution. There were many reports about leaf traits and characters. In regionalscales, yet there is no general conclusion about the relationships between leaf traits, thevariation pattern along a climate gradient, the main factors that drive the variations andhow do leaf traits respond to climate changes. They were important in ecology researchfield, and had important theoretical significance in understanding how plant respondedto climatic changes, community composition changes as well as plant migration. Theywould guide the resonable forest management under climatic change conditions.
     Orienatal oak (Quercus variabilis) was the most wide distributioned tree species ineastern Asia (19–42°N、97–140°E,50–2000m a.s.l). Oriental oak had importanteconomic value (timber, cork, fruits and so on), biological diversity, environmentalprotection, urban and rural landscape function et al. The natural environment oforiental oak distributed sites were complex due to the large distribution area, and theoriental oak growing in different sites formed geographical populations with differentgenetic composition. This made oriental oak be an ideal plant species for investigatingthe relationship between leaf traits and environmental factors.
     We examined both the variation in leaf size, LMA, leaf petiole length, leaf veindensity, stomatal size and density, leaf trichome density and other leaf traits of orientaloak (Quercus variabilis) from44in situ Populations include the mainland of China,Taiwan Island, Zhoushan Archipelago, Korea Peninsula and Japan Archipelago across temperate-subtropical biomes. We investigated the variation patterns of leaf traits andinvestigated the relationships between leaf traits and environmental factors. Theresponse of leaf traits to environmental changes were also examined by commongarden experiment with seedlings of15populations from different provenances grownin a common garden. The main results were as follows:
     1) Leaf morphogy traits of oriental oak significantly differed among different insitu populations (P <0.001), and the differences among common garden populationsreduced after two years growing in common garden except for leaf petiole length.Particularly, leaf length(P=0.160) and leaf area (P=0.105)had no significantdifference among common garden populations. Leaf length to width was negativelycorrelated with latitude for in situ populations (r~2=0.134, P=0.015). Leaf length,width and petiole length showed negative correlations with longitude for in situpopulations (r~2=0.132, P=0.016for leaf length; r~2=0.109, P=0.028for leaf width;r~2=0.289, P <0.001for leaf petiole length). While leaf morphology traits wereindependent of latitude and longitude of origins (P=0.081–0.949). Leaf morphologytraits were invariant with MAP (P=0.070–0.511). Leaf length to width rationegatively correlated with MAT (r~2=0.135, P=0.014). Leaf length and leaf length towidth ratio were significantly negatively correlated with MDSH (r~2=0.207, P=0.002for leaf length and r~2=0.278, P <0.001for leaf length to width ratio). Additionally,leaf length and leaf length to width were negatively correlated with soil Kconcentrations (r~2=0.131, P=0.033for leaf length and r~2=0.235, P=0.003for leaflength to width). We concluded that the main factor that affected leaf morphology wasMDSH, secondly was MAT by multiple regression analysis. Leaf morphology traits oforiental oak were sensitive to climatic factors. The variances in field observed in thisstudy were mainly due to environmental differences among different sampling sites.The heritability of leaf morphology traits variations caused by environment was low.
     2) Minor vein density (≥3rdorder) of oriental oak decreased significantly with theincreasing latitude (r~2=0.63and P <0.001) for the in situ populations, and this patternremained unchanged for the garden-Populations (r~2=0.63and P <0.001). Minor veindensity both positively correlated with mean annual precipitation (MAP) and mean annual temperature (MAT) of the origins for both the garden-Populations (r~2=0.29, P=0.04and r~2=0.35, P=0.02, respectively) and the in situ Populations (r~2=0.30, P <0.001and r~2=0.53, P <0.001, respectively). Leaf vein density significantly positivelycorrelated with mean daily sunshine hours (MDSH) of the origins for the in situpopulations (r~2=0.24, P=0.001), but were invariant for the common gardenpopulations (r~2=0.23, P=0.07). Minor vein density significantly increased with leaflength and leaf length to width for in situ populations (r~2=0.12, P=0.02and r~2=0.36,P <0.001, respectively). Leaf minor vein density were negatively correlated with leaflength (r~2=0.44, P=0.007). Additionally, leaf minor vein density showed a negativelyrelationships with soil K and Ca concentrations (r~2=0.16, P=0.02and r~2=0.21, P=0.007, respectively). MAT and leaf shape were the main factors that had directed effecton leaf minor vein density of oriental oak through Path Coefficient analysis, whileMAP and MDSH had strong in-directed effects. These results implied that leaf veindensity was a genotypic trait for adapting for local climatic factors, and this trait did notsensitively respond to temporal change in growing conditions.
     3) Stomatal density and SOI of in situ populations decreased with longitude (r~2=0.098, P=0.039of stomata density; r~2=0.120, P=0.021of SOI), while stomataldensity and SOI were independent of longitude, and have no significant differencesamong15garden populations (P=0.278–0.540). Stomatal density was significantlynegatively correlated with MAP of the origins (r~2=0.157, P=0.008), but wereinvariant with other climatic factors for the in situ populations (P=0.321–0.740).Compared with stomatal density, leaf SOI was more sensitive to climatic factors. SOIshowed a negative relationship with MAT (r~2=0.12, P=0.02) and MAP (r~2=0.39, P <0.001), and a positive correlation with mean monthly solar radiation (MMSR) of theorigins for the in situ populations (r~2=0.16, P=0.011). For the common gardenpopulations, both stomatal density and SOI were invariant with climatic factors oforigins (P=0.101–0.775). Stomatal density was negatively correlated with stomatal length (r~2=0.236, P=0.001) and stomatal width-to-length (r~2=0.266, P <0.001)across in situ populations. Both of stomatal density and SOI were positively correlatedwith leaf dry mass per area (LMA) and leaf petiole length (r~2=0.199–0.299, P=<0.001–0.002) for the in situ populations, while no significant correlation for thegarden populations (P=0.056–0.568). SOI was positively correlated with soil Ca (r~2=0.18, P=0.012) and K concentrations for the in situ populations (r~2=0.15, P=0.019). Stomatal Rpvalue was significantly positively correlated with latitude for the insitu populations (r~2=0.210, P=0.002), while showed no correlations for the commongarden populations (r~2=0.006, P=0.781). Stomatal Rpvalue were negativelycorrelated with MAP of the origins (r~2=0.160, P=0.007), positively correlated withstomatal length and width for the in situ populations (r~2=0.231–0.235, P=0.001).The main factors that affected stomatal density and SOI of oriental oak were stomatalsize, LMA and MAP by multiple regression analysis. The main factors influencingstomatal Rpvalue were stomatal length and MAP. The present results implied thatstomatal density of oriental oak were genetically adaptive to long-term ecologicalenvironments and had high flexibilities in response to temporary climatic changes. Thestomatal Rpvalue was relatively stable, environmental factors influenced the stomatalRpvalue in some extent, but did not change the non-random distribution pattern ofstomata.
     4) Leaf trichome density of oriental oak had significant differences among in situpopulations (P <0.001), while had no significant differences among15gardenpopulations (P=0.521). Trichome density was invariant with latitude, longitude andaltitude of the origins for both in situ and common garden populations (P=0.107– 0.650). Leaf trichome density was significantly negatively correlated with MAP (r~2=0.159, P=0.007), positively correlated with MMSR (r~2=0.095, P=0.053) and wasinvariant with other climatic factors for in situ populations (P=0.074–0.613).Trichome density was independent of climatic factors of origins for common gardenpopulations (P=0.404–0.985). Leaf trichome density was significantly positivelycorrelated with leaf petiole length (r~2=0.145, P=0.0110) and LMA (r~2=0.235, P=0.001), and significantly positively correlated with stomatal density (r~2=0.510, P <0.001) for in situ populations. Leaf LMA and MAP were the main factors that affectedleaf trichome density of oriental oak. The present study suggested that the leaf trichomeand stomata may be two leaf traits that have coevolution relationships during long-termenvironmental adaptation. Leaf trichome density of oriental oak was very sensitive toenvironmental changes and had strong phenotypic plasticity.
引文
[1]陈玮玮,万里强,何峰等.温度和光照时间对3个秋眠型紫花苜蓿品种形态特征的影响.草业科学.2010,27(12):113-119.
    [2] Hamann O. On climatic conditions, vegetation types, and leaf size in the GalápagosIslands. Biotropica.1979:101-122.
    [3] Bongers F., Popma J. Leaf characteristics of the tropical rain forest flora of LosTuxtlas, Mexico. Bot. Gaz.1990,151(3):354-365.
    [4] Gonzalez N., Stefanie D.B., Ronan S., et al. Increased leaf size: different means toan end. Plant physiol.2010,153(3):1261-1279.
    [5] Price C.A., Enquist B.J. Scaling mass and morphology in leaves: an extension of theWBE model. Ecology.2007,88(5):1132-1141.
    [6] McDonald P.G., Fonseca C.R., Overton J., et al. Leaf‐size divergence alongrainfall and soil‐nutrient gradients: is the method of size reduction commonamong clades? Funct. Ecol.2003,17(1):50-57.
    [7] Jacobs B.F. Estimation of low-latitude paleoclimates using fossil angiospermleaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology.2002,28(3):399-421.
    [8] Wolfe J.A., Uemura K. Using fossil leaves as paleoprecipitation indicators: anEocene example. Geology.1999,27:91-92.
    [9] Ackerly D.D., Reich P.B. Convergence and correlations among leaf size andfunction in seed plants: a comparative test using independent contrasts. Am. J. Bot.1999,86(9):1272-1281.
    [10] Bayramzadeh V., Attarod P., Ahmadi M.T. et al. Variation of leaf morphologicaltraits in natural populations of Fagus orientalis Lipsky in the Caspian forests ofNorthern Iran. Ann. For. Res.2012,55(1):33-42.
    [11] Gurevitch J. Variation in leaf dissection and leaf energy budgets amongpopulations of Achillea from an altitudinal gradient. Am. J. Bot.1988:1298-1306.
    [12] King D.A. Influence of leaf size on tree architecture: first branch height and crowndimensions in tropical rain forest trees. Trees-Struct. Funct.1998,12(7):438-445.
    [13] Coble A.P. Investigating vertical gradients of leaf morphology and anatomy in asugar maple (Acer saccharum) forest. Physiol. Ecol. III, The Preliminary Programfor97th ESA Annual Meeting.2012, August:5-10.
    [14] Boyce C.K. Seeing the forest with the leaves-clues to canopy placement from leaffossil size and venation characteristics. Geobiology.2009,7(2):192-199.
    [15] de Casas R.R., Vargas P., Pérez-Corona E. et al. Sun and shade leaves of Oleaeuropaea respond differently to plant size, light availability and genetic variation.Funct. Ecol.2011,25(4):802-812.
    [16] Ackerly D.D. Adaptation, niche conservatism, and convergence: comparativestudies of leaf evolution in the California chaparral. Am. Nat.2004,163(5):654-671.
    [17] Grubb P.J. Control of forest growth and distribution on wet tropical mountains:with special reference to mineral nutrition. Ann. Rev. Ecol. Syst.1977:83-107.
    [18] Testo W.L., Watkins J.E. Influence of plant size on the ecophysiology of theepiphytic fern Asplenium auritum (Aspleniaceae) from Costa Rica. Am. J. Bot.2012,99(11):1840-1846.
    [19] Kim K.W., Koo Y.K., Yoon C.J. Age-related leaf characteristics of surfacefeatures and ultrastructure of Dendropanax morbifera. J. Electron Microsc.2012,61(1):37-46.
    [20] Scott S.L., Aarssen L.W. Within-species leaf size-number trade-offs in herbaceousangiosperms. Botany.2012,90(3):223-235.
    [21] Samuelson L.J., Stokes T.A. Leaf physiological and morphological responses toshade in grass-stage seedlings and young trees of longleaf pine. Forests.2012,3(3):684-699.
    [22] Rozendaal D.M.A., Hurtado V.H., Poorter L. Plasticity in leaf traits of38tropicaltree species in response to light: relationships with light demand and adult stature.Funct. Ecol.2006,20(2):207-216.
    [23] Horiguchi G., Ferjani A., Fujikura U., et al. Coordination of cell proliferation andcell expansion in the control of leaf size in Arabidopsis thaliana. J. Plant Res.2006,119:37-42.
    [24] Gregory-Wodzicki K.M. Relationships between leaf morphology and climate,Bolivia: implications for estimating paleoclimate from fossil floras. Paleobiology.2000,26(4):668-688.
    [25] Dolph G.E., Dilcher D.L. Variation in leaf size with respect to climate in CostaRica. Biotropica.1980:91-99.
    [26] Cunningham S.A., Summerhayes B., Westoby M.. Evolutionary divergences inleaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol.Monogr.1999,69(4):569-588.
    [27] Guo X., Guo W., Luo Y., et al. Morphological and biomass characteristicacclimation of trident maple (Acer buergerianum Miq.) in response to light andwater stress. Acta Physiol. Plant.2012:1-11.
    [28] Givnish T.J., Vermeij G.J. Sizes and shapes of liane leaves. Am. Nat.1976:743-778.
    [29] Tang C.Q., Ohsawa M. Altitudinal distribution of evergreen broad-leaved treesand their leaf-size pattern on a humid subtropical mountain, Mt. Emei, Sichuan,China. Plant Ecol.1999,145(2):221-233.
    [30] Royer D.L., McElwain J.C., Adams J.M., et al. Sensitivity of leaf size and shape toclimate within Acer rubrum and Quercus kelloggii. New Phytol.2008,179(3):808-817.
    [31] Morecroft M.D., Woodward F.I., Marris R.H. Altitudinal trends in leaf nutrientcontents, leaf size and delta13C of Alchemilla alpina. Funct. Ecol.1992:730-740.
    [32] Hovenden M.J., Vander Schoor J.K. Nature versus nurture in the leaf morphologyof Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytol.2004,161:585-594.
    [33] Ackerly D.D., Knight C.A., Weiss S.B., et al. Leaf size, specific leaf area andmicrohabitat distribution of woody plants in a California chaparral: contrastingpatterns in species level and community level analyses. Oecologia.2002,130:449-457.
    [34] Dilcher D.L. The Eocene florasof south eastern North America. In, A. Graham.(Ed.). Vegetation and Vegetational History of Northern Latin America. Elsevier,New York.1973,39-59.
    [35] Gurevitch J. Sources of variation in leaf shape among two populations of Achillealanulosa. Genetics.1992,130(2):385-394.
    [36] Peppe D.J., Royer D.L., Cariglino B., et al. Sensitivity of leaf size and shape toclimate: global patterns and paleoclimatic applications. New Phytol.2011,190(3):724-739.
    [37] Baker-Brosh K.F., Peet R.K. The ecological significance of lobed and toothedleaves in temperate forest trees. Ecology.1997,78:1250-1255.
    [38] Roth A., Mosbrugger V., Belz G., et al. Hydrodynamic modeling study ofangiosperm leaf venation types. Bot. Acta.1995,108:121-126.
    [39] Mosbrugger V., Roth A. Biomechanics in fossil plant biology. Rev. Palaeobot.Palyno.1996,90:195-207.
    [40] Jacobs B.F. Estimation of rainfall variables from leaf characters in tropical Africa.Palaeogeogr. Palaeoclimat. Palaeoecol.1999,145:231-250.
    [41] Royer D.L. Leaf shape responds to temperature but not CO2in Acer rubrum. PloSone.2012,7(11): e49559.
    [42] Balsamo R.A., Willigen C.V., Bauer A.M. et al. Drought tolerance of selectedEragrostis species correlates with leaf tensile properties. Ann. Bot.2006,97:985-991.
    [43] Ristic Z., Cass D.D. Leaf anatomy of Zea mays L. in response to water shortageand high temperature: a comparison of drought resistant and drought-sensitivelines. Bot.Gaz.1991,152:173-185.
    [44] Bayramzadeh V., Funada R., Kubo T. Relationships between vessel elementanatomy and physiological as well as morphological traits of leaves in Faguscrenata seedlings originating from different provenances. Trees.2008,22(2):217-224.
    [45] Takahashi K., Miyajima Y. Relationships between leaf life span, leaf mass perarea, and leaf nitrogen causes different altitudinal changes in leaf δ13C betweendeciduous and evergreen species. Botany.2008,86:1233-1241.
    [46] Reich P.B., Uhl C., Walters M.B., et al. Leaf life span as a determinant of leafstructure and function among23Amazonian tree species. Oecologia.1991,86:16-24.
    [47] Gratani L., Catoni R., Pirone G., et al. Physiological and morphological leaf traitvariations in two Apennine plant species in response to different altitudes.Photosynthetica.2012:1-9.
    [48] Zhang Y.X., Equiza M.A., Zheng Q., et al. Factors controlling plasticity of leafmorphology in Robinia pseudoacacia L. II: the impact of water stress on leafmorphology of seedlings grown in a controlled environment chamber. Ann. ForestSci.2012,69(1):39-47.
    [49] Brodribb T.J., Field T.S., Jordan G.J. Leaf maximum photosynthetic rate andvenation are linked by hydraulics. Plant Physiol.2007,144:1890-1898.
    [50] Brodribb T.J., Feild T.S. Leaf hydraulic evolution led a surge in leaf photosyntheticcapacity during early angiosperm diversification. Ecol. Lett.2010,13:175-183.
    [51] Jacobs W.P. The role of auxin in the differentiation of xylem round a wound. Am. J.Bot.1952,39:301-309.
    [52] Sachs T. Polarity and the induction of organized vascular tissues. Ann. Bot.1969,33:263-275.
    [53] Sach T. The control of the patterned differentiation of vascular tissues. Adv. Bot.Res.1981,9:151-162.
    [54] Klee H.J., Horsch R.B., Hinchee M.A., et al. The effects of overproduction of twoAgrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenicpetunia plants. Genes Dev.1987,1:86-96.
    [55] Mattsson J., Sung Z.R., Berleth T. Responses of plant vascular systems to auxintransport inhibition. Development.1999,126:2979-2991.
    [56] Sieburth L.E. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol.1999,121:1179-1190.
    [57] Rolland-Lagan A.G., Prusinkiewicz P. Reviewing models of auxin canalization inthe context of leaf vein pattern formation in Arabidopsis. Plant J.2005,44:854-865.
    [58] Cheng Y., Dai X., Zhao Y. Auxin biosynthesis by the YUCCA flavinmonooxygenases controls the formation of floral organs and vascular tissues inArabidopsis. Genes Dev.2006,20:1790-1799.
    [59] Koizumi K., Sugiyama M., Fukuda H. A series of novel mutants of Arabidopsisthaliana that are defective in the formation of continuous vascular network: callingthe auxin signal flow canalization hypothesis into question. Development.2000,127:3197-3204.
    [60] Meinhardt H. Models of pattern formation and their application to plantdevelopment. In―Positional Controls in Plant Development―.1984:1-32.Cambridge Univ. Press, Cambridge.
    [61] Candela H., Martínez-Laborda A., Micol J.L. Venation pattern formation inArabidopsis thaliana vegetative leaves. Dev. Biol.1999,205(1):205-216.
    [62] Robert F., Klee H., White F., et al. Expression and fine structure of the geneencodinN-(indole-3-acetyl)-L-lysine synthetase from Pseudomona savastanoi. Proc.Natl. Acad. Sci. USA.1990,87:5797-5801.
    [63] Okada K., Ueda J., Komaki M.K., et al. Requirement of the auxin polar transportsystem in early stages of Arabidopsis floral bud formation. Plant Cell.1991,3:677-684.
    [64] Roth-Nebelsick A., Uhl D., Mosbrugger V., et al. Evolution and function of leafvenation architecture: a review. Ann. Bot.2001,87:553-566.
    [65] Boyce C.K., Brodribb T.J., Feild T.S. et al. Angiosperm leaf vein evolution wasphysiologically and environmentally transformative. Proc. R. Soc. B.2009,276:177-1776.
    [66] McKown A.D., Dengler N.G. Key innovations in the evolution of kranz anatomyand C4vein pattern in Flaveria (Asteraceae). Am. J. Bot.2007,94(3):382-399.
    [67] Zwieniecki M.A., Boyce C.K., Holbrook N.M. Hydraulic limitations imposed bycrownplacement determine final size and shape of Quercus rubra L. leaves. PlantCell Environ.2004,27:357-365.
    [68] Rolland-Lagan A.G., Amin M., Prusinkiewicz P. Quantifying leaf venationpatterns: two-dimensional maps. Plant J.2009,57:195-205.
    [69] Schuster W. Die Blattaderung des Dicotylenblattes und ihre Abh ngigkeit vonuβeren Einflüssen. Ber. Deutsch Bot. Ges.1908,26:194-237.
    [70] Uhl D., Mosbrugger V. Leaf venation density as a climate environmental proxy: acritical review and new data. Palaeogeogr. Palaeoclimat. Palaeoecol.1999,149:15-26.
    [71] Edwards E.J. Correlated evolution of stem and leaf hydraulic traits in Pereskia(Cactaceae). New Phytol.2006,172(3):479-789.
    [72] Gupta B. Correlation of tissues in leaves.1. Absolute vein-islet numbers andabsolute veinlet termination numbers. Ann. Bot.1961,25:65-70.
    [73] Manze U. Die nervaturdichte der bl tter als hilfsmittel der pal oklimatologie.Sonderver ff. Geol Inst Univ K ln14.1968.
    [74] Esau K. Plant anatomy. New York: Wiley and Sons.1965.
    [75] Kull U, Herbig A. Das Blattadersystem der Angiospermen: Form und Evolution.Naturwissenschaften.1995,82:441-451.
    [76] Lebedincev E. Physiologische und anatomische Besonderheiten der in trockenerund feuchter Luft gezogenen Panzen. Berichte der Deutschen BotanischenGesellschaft.1927,45:83-96.
    [77] Herbig A., Kull U. Leaves and ramification. Stuttgart: Mitteilungen des SFB230.1991,7:109-117.
    [78] Pyykk M. Morphology and anatomy of leaves from some woody plants in ahumid tropical rainforest of Venezuelan Guayana. Acta Botony Fennica.1979,112:1-41.
    [79] Hetherington A.M., Woodward F.I. The role of stomata in sensing and drivingenvironmental change. Nature.2003,424:901-908.
    [80] Salisbury E.J. On the causes and ecological significance of stomatal frequency,with special reference to the woodland flora. Philoosophical Transactions of theRoyal Society of London, Series B, Containing Papers of a Biological Character.1928,216:1-65.
    [81] Zeiger E. The biology of stomatal guard cells. Ann. R. Plant Physiol.1983,34:441-475
    [82] Woodward F.I. Stomatal numbers are sensitive to increases in CO2from pre-industrial levels. Nature.1987,327:617-618.
    [83]陈温福,徐正进,张龙步等.水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究.中国水稻科学.1990,4(4):163-168.
    [84] Khazaei H., Monneveux P., Shao H.B., et al. Variation for stomatal characteristicsand water use efficiency among diploid tetraploid and hexaploid Iranian wheatlandraces. Genet. Resour. Crop Evol.2010,57:307-314.
    [85]张凌媛,郭启高,李晓林等.枇杷气孔保卫细胞叶绿体数目与倍性相关性研究.果树学报.2005,22(3):229-233.
    [86] Chen L.Q., Li C.S., Chaloner W.G., et al. Assessing the potential for the stomatalcharacters of extant and fossil Ginkgo leaves to signal atmospheric CO2change.Am. J. Bot.2001,88:1309-1315.
    [87]吉春容,李世清,冯宏昭等.不同株型夏玉米冠层叶片气孔特性的差异.西北农林科技大学学报(自然科学版).2008,36(5):57-63.
    [88] Reich P.B. Leaf stomatal density and diffusive conductance in threeamphistomatous hybrid poplar cultivars. New Phytol.1984,98(2):231-239.
    [89]何若天,吕成群.若干阔叶树树冠各层叶气孔密度及光照条件对气孔密度的影响.广西农业大学学报.1995,14(4):311-316.
    [90] Beerling D.J., Chaloner W.G. Stomatal density as an indicator of atmospheric CO2concentration. Holocene.1992,2(1):71-78.
    [91]尹秀玲,王金霞,段志青等.小麦气孔密度及日变化规律研究.中国农学通报.2006,22(5):237-242.
    [92] Poole I., Weyer J.D.B., Lawson T., et al. Variations in stomatal density and index:implications of palaeoclimated reconstructions. Plant Cell Environ.1996,19:705-712.
    [93] Xu Z.Z., Zhou G.S. Responses of leaf stomatal density to water status and itsrelationship with photosynthesis in a grass. J Exp. Bot.2008,59(12):3317-3325.
    [94] Gay A.P., Hurd R.G. The influence of light on stomatal density in the tomato. NewPhytol.1975,75(1):37-46.
    [95] Beerling D.J., Chaloner W.G. Stomatal density responses of Egyptian Oleaeuropaea L. leaves to CO2change since1327BC. Ann. Bot.1993,71:431-435.
    [96] Lin J.X., Jach M.E., Ceulemans R. Stomatal density and needle anatomy of Scotspine (Pinus sylvestris) are affected by elevated CO2. New Phytol.2001,150(3):665-674.
    [97] Penuelas J., Matamala R. Changes in N and S leaf content stomatal density andspecific leaf area of14plant species during the last three centuries of CO2increase.J Exp. Bot.1990,41(9):1119-1124.
    [98]郑凤英,彭少麟,赵平.两种山黄麻属植物在近一世纪里气孔密度和潜在水分利用率的变化.植物生态学报.2001,25(4):19-25.
    [99]杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响.植物生态学报.2001,25(3):312-316.
    [100]郑淑霞,上官周平.近一世纪黄土高原区植物气孔密度变化规律.生态学报.2004,24(11):2457-2464.
    [101] Thomas P.W., Woodward F.I., Quick W.P. Systemic irradiance signalling intobacco. New Phytol.2004,161(1):193-198.
    [102] Ferris R., Taylor G. Stomatal characteristics of four native herbs followingexposure to elevated CO2. Ann. Bot.1994,73:447-453.
    [103] Wilkinson M. Inter and intra-specific variation in photosynthetic acclimationresponse to long-term exposure to elevated carbon dioxide.[Thesis]. Colchester,UK: University of Essex,1996.
    [104]Bettarini I., Vaccari F.P., Miglietta F. Elevated CO2concentrations and stomataldensity: observations from17plant species growing in a CO2spring central Italy.Global Change Biol.1998,4:17-22.
    [105] Oberbauer S.F., Strain B.R. Effects of canopy position and irradiance on the leafphysiology and morphology of Pentaclethra macroloba (Mimosaceae). Am J Bot.1986,73:409-416.
    [106] Morison J.I.L. Stomatal response to increased CO2concentration. J Exp. Bot.1998,49:443-452.
    [107] Friend A.D., Woodward F.I. Evolutionary and ecophysiological responses ofmountain plants to the growing season environment. Adv. Ecol. Res.1990,20:59-124.
    [108] Reddy K.R., Robana R.R., Hodges H.F., et al. Interactions of CO2enrichmentand temperature on cotton growth and leaf characteristics. Environ. Exp. Bot.1998,39:117-129.
    [109] Beerling D.J., Chaloner W.G. The impact of atmospheric CO2and temperaturechange on stomatal density: observations from Quercus robur lammas leaves. Ann.Bot.1993,71:231-235.
    [110]王秀玲,赵明,王启现等.玉米不同基因型气孔特征和叶温差的研究.华北农学报.2004,19(1):71-74.
    [111]张大鹏.水稻叶片气孔的研究Ⅱ、不同生态条件下的气孔动态.福建农学院学报.1989,18(3):302-307.
    [112]左闻韵,贺金生,韩梅等.植物气孔对大气CO2浓度和温度升高的反应—基于在CO2浓度和温度梯度中生长的10种植物的观测.生态学报.2005,25:565-574.
    [113] Fraser L.H., Greenall A., Carlyle C., et al. Response of stomatal density, leaf areaand biomass to changes in water supply and increased temperature. Ann. Bot.2009,103:769-775.
    [114]徐坤,邹琦,赵燕.土壤水分胁迫与遮荫对生姜生长特性的影响.应用生态学报.2003,14:1645-1648.
    [115]关军锋,张彦武,冯振斌等.山楂叶片气孔的研究Ⅰ不同生物学因素和土壤条件下叶片的气孔特征.河南农业技术师范学院学报.1995,9(3):6-9.
    [116]孟雷,李磊鑫,陈温福等.水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响.沈阳农业大学学报.1999,30(5):477-480.
    [117]贺静,胡进耀,杨冬生等.不同生境的巴山水青冈幼苗气孔密度比较研究.绵阳师范学院学报.2007,26:71-73.
    [118]戴凌峰.四种灌木树种的耐荫性研究.[硕士论文].北京:北京林业大学.2007.
    [119]盂雷,陈温福.减弱光照强度对水稻叶片气孔性状的影响.沈阳农业大学学报.2002,33:87-89.
    [120] Sun B.N., Dilcher D.L., Beerling D.J., et al. Variation in Ginkgo biloba L. leafcharacters across a climatic gradient in China. PNAS.2003,100(12):7141-7146.
    [121]蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应.应用生态学报.2004,15:201-204.
    [122] Qiang W.Y., Wang X.L., Chen T., et al. Variations of stomatal density andcarbon isotope values of Picea crassifolia at different altitudes in the QilianMountains. Trees-Struct. Funct.2003,17:258-262.
    [123] Kondo T., Kajita R., Miyazaki A., et al. Stomatal density is controlled by amesophyll-derived signaling molecule. Plant Cell Physioly.2010,51(1):1-8.
    [124] Gray J.E., Holroyd G.H., Frederique M., et al. The HIC signalling pathway linksCO2perception to stomatal development. Nature.2000,408:713-716.
    [125] Nadeau J.A., Sack F.D. Control of stomatal distribution on the Arabidopsis leafsurface. Science.2002,296:1697-1700.
    [126] Sugano S.S., Shimada T., lmai Y., et al. Stomagen positively regulates stomataldensity in Arabidopsis. Nature.2010,463:241-246.
    [127] Lake J.A., Woodward F.I., Quick W.P. Long-distance CO2signaling in plants. JExp. Bot.2002,53:183-193.
    [128]黄勇,周冀衡,杨虹琦.植物生长调节物质对烟草叶片下表皮气孔的影响.烟草科技.2008,4:53-64.
    [129] Aucour A.M., Gomez B., Sheppard S.M.F., et al. δ13C and stomatal numbervariability in the Cretaceous conifer Frenelopsis. Palaeogeogr. Palaeoclimat.Palaeoecol.2008,257:462-473.
    [130]李海波,李全英,陈温福.氮素不同用量对水稻叶片气孔密度及有关生理性状的影响.沈阳农业大学学报.2003,34(5),340-343.
    [131]游明安,盖钧镒,马育华等.田间条件下大豆气孔特性的初步研究.大豆科学.1992,11(2):152-158.
    [132] Gitz D.C., Gitz L.L., Britz S.J., et al. Ultraviolet-B effects on stomatal density,water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars. Environ. Exp. Bot.2004,53:343-355.
    [133]徐文铎,齐淑艳,何兴元等.大气中CO2、O3浓度升高对银杏成年叶片气孔数量特征的影响.生态学杂志.2008,27(7):1059-1063.
    [134]张浩,王祥荣,王寿兵.城市胁迫环境下的二球悬铃木叶片气孔数量特征分析.复旦学报.2004,43(4):651-656.
    [135] Quiring D.T., Timmins P.R., Park S.J. Effect of variations in hooked trichomedensities of Phaseolus vulgaris on longevity of Liriomyza trifolii (Diptera:Agromyzidae) Adults. Environ. Entomol.1992,21(6):1357-1361.
    [136]陈惠,遆清平,杨瑞林等.珍稀濒危植物翅果油树表皮毛的微形态观察研究.西北植物学报.2004,24(8):1390-1396.
    [137]段瑞军,熊辉岩.拟南芥表皮毛发育的分子调控研究进展.青海大学学报.2005,23(5):9-12.
    [138] Gange A.C. Aphid performance in an Alder (Alnus) hybrid zone. Ecology.1995,76(7):2074-2083.
    [139]梁红平,任宪威,刘一樵.中国常绿栎类叶表皮形态与分类的研究.植物分类学报.1990,28(2):112-121.
    [140] Hardin J.W. Patterns of variation in foliar trichomes of eastern north AmericanQuercus. Am. J. Bot.1979,66(5):576-585.
    [141] Chen G., Sun W., Sun H. Leaf epidermal characteristics of Asiatic Buddleja L.under scanning electron microscope: Insights into chromosomal and taxonomicsignificance. Flora.2010,205:777-785.
    [142] Kim K.W., Cho D.H., Kim P.G. Morphology of foliar trichomes of the Chinesecork oak (Quercus variabilis) by electron microscopy and three-dimensionalsurface profiling. Microsc. Microanal.2011,17:461-468.
    [143] van Dam N.M., Hare J.D., Elle E. Inheritance and distribution of trichomephenotypes in Datura wrightii. J. Hered.1999,90:220-227.
    [144] Binns W.W. Comparative leaf anatomy of Salix species and hybrids. Bot. J. Linn.Soc.1980,81:205-214.
    [145]税玉民,李启任,黄素华.云南秋海棠属叶表皮及毛被的扫描电镜观察.云南植物研究.1999,21(3):309-316.
    [146]何子灿,钟扬,刘洪涛等.中国猕猴桃属植物叶表皮毛微形态特征及数量分类分析.植物分类学报.2000,38(2):121-136.
    [147]张志翔,高宗庆,张勇.沙棘属和胡颓子属叶表皮形态与分类的扫描电镜研究:叶表皮及表皮附属物的形态.植物研究.1992,12(2):169-176.
    [148] Snyder J.C., Hyatt J.P. Influence of daylength on trichome densities and leafvolatiles of Lycopersicon species. Plant Sci. Lett.1984,37:177-181.
    [149] Handley R., Ekbom B., Agren J. Variation in trichome density and resistanceagainst a specialist insect herbivore in natural populations of Arabidopsis thaliana.Ecol Entomol.2005,30:284-292.
    [150] Dahlin R.M., Brick M.A., Barry O. Characterization and density of trichomes onthree common bean cultivars. Econ. Bot.1992,46(3):299-304.
    [151]张勇,尹祖棠.中国产委陵菜属叶表皮毛的研究.西北植物学报.1997,17(6):72-76.
    [152] Pullin A.S., Gilbert J.E. The stinging nettle, Urtica dioica, increases trichomedensity after herbivore and mechanical damage. Oikos.1989,54:275-280.
    [153] Liakoura V., Stefanou M., Manetas Y., et al. Trichome density and its UV-Bprotective potential are affected by shading and leaf position on the canopy.Environ. Exp. Bot.1997,38:223-229.
    [154] Leite G.L.D., Picano M., Guedes R.N.C., et al. Influence of canopy height andfertilization levels on the resistance of Lycopersicon hirsutum to Aculopslycopersici (Acari: Eriophyidae). Exp. Appl. Acarol.1999,23:633-642.
    [155] Karabourniotis G., Kotsabassidis D., Manetas Y. Trichome density and itsprotective potential against ultraviolet-B radiation damage during leafdevelopment. Can. J. Bot.1995,73:376-383.
    [156] Chu C.C., Freeman T.P., Buckner J.S., et al. Silverleaf whitefly colonization andtrichome density relationships on upland cotton cultivars. Southwest. Entomol.2000,25(4):237-242.
    [157] Ntefidou M., Manetas Y. Optical properties of hairs during the early stages ofleaf development in Platanus orientalis. Aust. J. Plant Physiol.1996,23:535-538.
    [158] Ehleringer J.R., Mooney H.A. Leaf hairs: effects on physiological activity andadaptive value to a desert shrub. Oecologia.1978,37:183-200.
    [159] Leite G.L.D., Picanco M., Guedes R.N.C., et al. Role of plant age in theresistance of Lycopersicon hirsutum f. glabratum to the tomato leafminer Tutaabsoluta (Lepidoptera: Gelechiidae). Sci. Hortic.2001,89:103-113.
    [160] Mauricio R. Ontogenetics of QTL: the genetic architecture of trichome densityover time in Arabidopsis thaliana. Genetica.2005:75-85.
    [161] Traw M.B., Dawson T.E. Differential induction of trichomes by three herbivoresof black mustard. Oecologia.2002,131:526-532.
    [162] Baur R., Binder S., Benz G. Nonglandular leaf trichomes as short-term inducibledefense of the grey alder, Alnus incana L., against the chrysomelid beetle,Agelastica alni L. Oecologia.1991,87:219-226.
    [163] Mauricio R. Costs of resistance to natural enemies in field populations of theannual plant, Arabidopsis thaliana. Am. Nat.1998,151:20-28.
    [164] Gannon A.J., Bach C.E. Effects of Soybean Trichome Density on Mexican BeanBeetle (Coleoptera: Coccinellidae) Development and Feeding Preference. Environ.Entomol.1996,25(5):1077-1082.
    [165] Agrawal A.A., Fishbein M., Jetter R., et al. Phylogenetic ecology of leaf surfacetraits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insectbehavior. New Phytol.2009,183:848-867.
    [166] Chiang H., Norris D.M. Morphological and physiological parameters of soybeanresistance to agromyzid beanflies. Environ. Entomol.1983,12(1):260-265.
    [167]胡绍安,赵清林.棉属种表皮毛性状的电镜观察.中国棉花.1990,20:7-9.
    [168] Shaik M., Steadman J.R. Nonspecific resistance to bean rust and its associationwith leaf pubescence. Ann. Rept. Bean Imp. Coop.1988,31:62-63.
    [169] Johnson H.B. Plant pubescence: an ecological perspective. Bot. Rev.1975,41:233-258.
    [170] Crawley M.J. Life history and environment. In: Crawley, M.J.(Ed.), PlantEcology. Academic Press, New York.1997:73-131.
    [171] Barnes J.D., Percy K.E., Paul N.D., et al. The influence of UV-B radiation in thephysicochemical nature of tobacco (Nicotiana tabacum L.) leaf surfaces. J. Exp.Bot.1996,47:99-109.
    [172]王金照.不同类型栓皮栎营养器官生态解剖学比较研究.[硕士论文].陕西:西北农林科技大学.2004.
    [173] Pérez-Estrada L.B., Cano-Santana Z., Oyama K. Variation in leaf trichomes ofWigandia urens: environmental factors and physiological consequences. TreePhysiol.2000,20:629-632.
    [174] Molina-Montenegro M.A., ávila P., Hurtado R., et al. Leaf trichome density mayexplain herbivory patterns of Actinote sp.(Lepidoptera: Acraeidae) on Liabummandonii (Asteraceae) in a montane humid forest (Nor Yungas, Bolivia). Actaoecol.2006,30:147-150.
    [175] Marques A.R., Garcia Q.S., Rezende J. L.P. Variations in leaf characteristics oftwo species of Miconia in the Brazilian cerrado under different light intensities.Trop. Ecol.2000,41(1):47-60.
    [176] Ehleringer J.R., Clark C. Evolution and adaptation in Encelia (Asteraceae). In:Gottlieb L, Jain S (eds). Plant Evol. Biol. Chapman and Hall, New York.1988,221-248.
    [177] Nobel P.S. Biophysical Plant Physiology and Ecology. Freeman and Co: SanFrancisco.1983.
    [178] Ehleringer J.R., Bj rkman O. Pubescence and leaf spectral characteristics in adesert shrub, Encelia farinosa. Oecologia.1978,36:151-162.
    [179] Ehleringer J., Mooney H.A., Gulmon S.L., et al. Parallel evolution of leafpubescence in Encelia in coastal deserts of north and south American. Oecologia.1981b,49:38-41.
    [180] Grammatikopoulos G., Karabourniotis G., Kyparissis A., et al. Leaf hairs ofOlive (Olea europaea) prevent stomatal closure by Ultraviolet-B radiation. Aust. J.Plant Physiol.1994,21:293-301.
    [181] Ehleringer J.R., Cook C.S. Photosynthesis in Encelia farinose gray in response todecreasing leaf water potential. Plant physiol.1984,75:688-693.
    [182] Kennedy G.G., Yamamoto R.T., Dimock M.B., et al. Effect of day length andlight intensity on2-tridecanone levels and resistance in Lycopersicon hirsutum f.glabratum to Manduca sexta. J. Chem. Ecol.1981,7:707-716.
    [183] Gianfagna T.J., Carter C.D., Sacalis J.N. Temperature and photoperiod influencetrichome density and sesquiterpene content of Lycopersicon hiesutum f. hirsutum.Plant Physiol.1992,100:1403-1405.
    [184] Ba on S., Fernandez J.A., Franco J.A., et al. Effects of water stress and nighttemperature preconditioning on water relations and morphological and anatomicalchanges of Lotus creticus plants. Sci. Hortic.2004,101:333-342.
    [185] Wolpert A. Heat transfer analysis of factors affecting plant leaf temperature.Significance of leaf hairs. Plant Physiol.1962,37:113-120.
    [186] Wooley J.T. Water relations of soybean leaf hairs. Agron. J.1964,56:569-571.
    [187] Ehleringer J. The influence of water stress and temperature on leaf pubescencedevelopment in Encelia farinose. Am. J. Bot.1982,69(5):670-675.
    [188] Clawson K.L., Spect J.E., Blad B.L., et al. Water use efficiency in soybeanpubescence density isolines–a calculation procedure for estimating daily values.Agron. J.1986,78:483-487.
    [189] Morales M.A., Alarcón J.J., Torrecillas A., et al. Growth and water relations ofLotus creticus creticus plants as affected by salinity. Biol. Plant.20004,3:413-417.
    [190] Brewer C.A., Smith W.K. Influence of simulated dewfall on photosynthesis andyield in soybean isolines (Glycine Max L.Merr. CV Williams) with differenttrichome densities. Int. J. Plant Sci.1994,155(4):460-466.
    [191] SmithW.K., McClean T.M. Adaptive relationship between leaf water repellency,stomatal distribution, gas exchange. Am. J. Bot.1989,76:465-469.
    [192] Zaiter H.Z., Coyne D.P., Steadman J.R., et al. Inheritance of abaxial leafpubescence in beans. J. Amer. Soc. Hort. Sci.1990,115:158-160.
    [193] Szymanski D.B., Lloyd A.M., Marks M.D. Progress in the molecular geneticanalysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci.2000,5:214-219.
    [194] Larkin J.C., Oppenheimer D.G., Pollock S., et al. Arabidopsis GLABROUS1generequires downstream sequences for function. Plant cell.1993,5:1739-1748.
    [195] Szymanski D.B., Marks M.D. GLABROUS1overexpression and TRIPTYCHONalter the cell cycle and trichome cell fate in Arabidopsis. Plant Cell.1998,10:2047-2062.
    [196] Larkin J.C., Oppenheimer D.G., Llord A.M., et al. Roles of the GLABROUS1andTRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development.Plant Cell.1994,6(8):1065-1076.
    [197] Payne C.T., Zhang F., Lloyd A.M. GL3encodes a bHLH protein that regulatestrichome development in Arabidopsis through interaction with GL1and TTG1.Genetics.2000,156:1349-1362.
    [198] Wada T., Tachibana T., Shimura Y., et al. Epidermal cell differentiation inArabidopsis determined by a Myb homolog, CPC. Science.1997,277:1113–1116.
    [199] Szymanski D.B., Jilk D.A., Pollock S.M., et al. Control of GL2expression inArabidopsis leaves and trichomes. Development.1998,125:1161-1171.
    [200] Szymanski D.B., Klis D.A., Larkin J.C., et al. cot1: a regulator of Arabidopsistrichome initiation. Genetics.1998b,149:565-577.
    [201] Hülskamp, Miséra S., Jürgens G. Genetic dissection of trichome celldevelopment in Arabidopsis. Cell.1994,76:555-566.
    [202] Barbour J.D., Farrar R.R., Kennedy G.G. Interaction of fertilizer regime withhost-plant resistance in tomato. Entomol. Exp. Appl.1991,60(3):289-300.
    [203] Roy B.A., Stanton M.L., Eppley S.M. Effects of environmental stress on leaf hairdensity and consequences for selection. J. Evol. Biol.1999,12:1089-1103.
    [204] Sharma G.K., Butler J. Environmental pollution: leaf cuticular patterns inTrifolium pretense L. Ann. Bot.1975,39:1087-1090.
    [205] Boyce R.L., McCuve D.C., Berlyn G.P. A comparison of foliar wettability of redspruce and balsam fir growing at high and low elevation. New Phytol.1991,117:543-555.
    [206] Levizou E., Drilias P., Psaras G., et al. Nondestructive assessment of leafchemistry and physiology through spectral reflectance measurements may bemisleading when changes in trichome density co-occur. New Phytol.2004,165:463-472.
    [207] Royer D.L., Meyerson L.A., Robertson K.M., et al. Phenotypic plasticity of leafshape along a temperature gradient in Acer rubrum. PLoS One,2009,4(10): e7653.
    [208] Abrams M.D. Genotypic and phenotypic variation as stress adaptations intemperate tree species: a review of several case studies. Tree Physiol.1994,14:833-842.
    [209] Avramov S., Pemac D., Tuci B. Phenotypic plasticity in response to anirradiance gradient in Iris pumila: adaptive value and evolutionary constraints.Plant Ecol.2007,190(2):275-290.
    [210] Bradshaw AD. Evolutionary significance of phenotypic plasticity in plants. AdvGenet.1965,13:115-155.
    [211] Matesanz S., Gianoli E., Valladares F. Global change and the evolution ofphenotypic plasticity in plants. Ann. N. Y. Acad. Sci.2010,1206(1):35-55.
    [212] Eller F. Brix H. Different genotypes of Phragmites australis show distinctphenotypic plasticity in response to nutrient availability and temperature. Aquat.Bot.2012,103:89-97.
    [213] Coleman J.S., McConnaughay K.D.M., Ackerly D.D. Interpreting phenotypicvariation in plants. Trends Ecol. Evol.1994,9:187-191.
    [214] Sultan S.E. Phenotypic plasticity for plant development, function and life history.Trends Plant Sci.2000,5:537-542.
    [215] Grulke N.E. Plasticity in physiological traits in conifers: implications forresponse to climate change in the western US. Environ. Pollut.2010,158:2032-2042.
    [216] Sultan S.E., Phenotypic plasticity and plant adaptation. Acta. Bot. Neerl.1995,44:363-383.
    [217] DeLucia E.H., Maherali H., Carey E.V. Climate-driven changes in biomassallocation in pines. Glob. Change Biol.2000,6:587-593.
    [218] Markesteijn L., Poorter L. Seedling root morphology and biomass allocation of62tropical tree species in relation to drought-and shade-tolerance. J. Ecol.2009,97:311-325.
    [219] Garbutt K., Bazzaz F.A. Population niche structure. Differential response ofAbutilon theophrasti progeny to resource gradients. Oecologia.1987,72:291-96.
    [220] Fraser L.H., Greenall A., Carlyle C., et al. Adaptive phenotypic plasticity ofPseudoroegneria spicata: response of stomatal density, leaf area and biomass tochanges in water supply and increased temperature. Ann. Bot.2009,103(5):769-775.
    [1] Price C.A., Enquist B.J. Scaling mass and morphology in leaves: an extension of theWBE model. Ecology.2007,88(5):1132-1141.
    [2] Bayramzadeh V., Attarod P., Ahmadi M.T. et al. Variation of leaf morphologicaltraits in natural populations of Fagus orientalis Lipsky in the Caspian forests ofNorthern Iran. Ann. Forest Res.2012,55(1):33-42.
    [3] Ackerly D.D., Reich P.B. Convergence and correlations among leaf size andfunction in seed plants: a comparative test using independent contrasts. Am. J. Bot.1999,86(9):1272-1281.
    [4] Bongers F., Popma J. Leaf characteristics of the tropical rain forest flora of LosTuxtlas, Mexico. Bot. Gaz.1990:354-365.
    [5] Juenger T., Perez-Perez J., Bernal S., et al. Quantitative trait loci mapping of floraland leaf morphology traits in Arabidopsis thaliana: evidence for modular geneticarchitecture. Evol. Dev.2005,7:259-271.
    [6] Perez-Perez J., Serrano-Cartagena J., Micol J. Genetic analysis of natural variationsin the architecture of Arabidopsis thaliana vegetative leaves. Genetics.2002,162:893-915.
    [7]吴丽丽,康宏樟,庄红蕾等.区域尺度上栓皮栎叶性状变异及其与气候因子的关系.生态学杂志.2010,12:2309-2316.
    [8]李永华,卢琦,吴波等.干旱区叶片形态特征与植物响应和适应的关系.植物生态学报.2012,36(1):88-98.
    [9] Arney, S. E. Studies of growth and development in the genus Fragaria VI. The effectof photoperiod and temperature on leaf size. J. Exp. Bot.1956,7(1):65-79.
    [10] Klem K., Alexander A., Petr H., Daniel K., et al. Interactive effects of PAR andUV radiation on the physiology, morphology and leaf optical properties of twobarley varieties. Environ. Exp. Bot.2012,75:52-64.
    [11] Royer D.L., McElwain J.C., Adams J.M., et al. Sensitivity of leaf size and shape toclimate within Acer rubrum and Quercus kelloggii. New Phytolt.2008,179(3):808-817.
    [12] Samuelson L.J., Stokes T.A. Leaf physiological and morphological responses toshade in grass-stage seedlings and young trees of longleaf pine. Forests.2012,3(3):684-699.
    [13] Ackerly D.D. Adaptation, niche conservatism, and convergence: comparativestudies of leaf evolution in the California chaparral. Am. Nat.2004,163(5):654-671.
    [14] McDonald P.G., Fonseca C.R., Overton J., et al. Leaf‐size divergence alongrainfall and soil‐nutrient gradients: is the method of size reduction commonamong clades? Funct. Ecol.2003,17(1):50-57.
    [15] Gray R.A. Alteration of leaf size and shape and other changes caused bygibberellins in plants. Am. J. Bot.1957:674-682.
    [16] Hovenden M.J., Vander Schoor J.K. Soil water potential does not affect leafmorphology or cuticular characters important for palaeo-environmentalreconstructions in southern beech, Nothofagus cunninghamii (Nothofagaceae).Aust. J. Bot.2012,60(2):87-95.
    [17] Chen D., Zhang X., Kang H., et al.2012. Phylogeography of Quercus variabilisbased on chloroplast DNA sequence in eastern Asia: multiple glacial refugia andmainland-migrated island populations. PLoS ONE. DOI:10.1371/journal.pone.0047268.
    [18] Sack L., Frole K. Leaf structure diversity is related to hydraulic capacity intropical rain forest trees. Ecology.2006,87:483-491.
    [19] Givnish T.J., Vermeij G.J. Sizes and shapes of liane leaves. Am. Nat.1976:743-778.
    [20] Raunkiaer C. The life-forms of plants and statistical plant geography. OxfordUniversity Press, Oxford.632.
    [21] Jacobs B.F. Estimation of rainfall variables from leaf characters in tropical Africa.Palaeogeogr. Palaeoclimat. Palaeoecol.1999,145:231-250.
    [22] Zhang Y.X., Equiza M.A., Zheng Q., et al. Factors controlling plasticity of leafmorphology in Robinia pseudoacacia L. II: the impact of water stress on leafmorphology of seedlings grown in a controlled environment chamber. Ann. ForestSci.2012,69:39-47.
    [23] Dolph G.E., Dilcher D.L. Variation in leaf size with respect to climate in CostaRica. Biotropica.1980:91-99.
    [24] Guo X., Guo W., Luo Y., et al. Morphological and biomass characteristicacclimation of trident maple (Acer buergerianum Miq.) in response to light andwater stress. Acta Physiol. Plant.2012:1-11.
    [25] Takahashi K., Miyajima Y. Relationships between leaf life span, leaf mass perarea, and leaf nitrogen causes different altitudinal changes in leaf δ13C betweendeciduous and evergreen species. Botany.2008,86:1233-1241.
    [26] Reich P.B., Uhl C., Walters M.B., et al. Leaf life span as a determinant of leafstructure and function among23Amazonian tree species. Oecologia.1991,86:16-24.
    [27] Tang C.Q., Ohsawa M. Altitudinal distribution of evergreen broad-leaved treesand their leaf-size pattern on a humid subtropical mountain, Mt. Emei, Sichuan,China. Plant Ecol.1999,145(2):221-233.
    [28] Morecroft M.D., Woodward F.I., Marris R.H. Altitudinal Trends in Leaf NutrientContents, Leaf Size and|delta13C of Alchemilla alpina. Funct. Ecol.1992:730-740.
    [29] Peppe D.J., Royer D.L., Cariglino B., et al. Sensitivity of leaf size and shape toclimate: global patterns and paleoclimatic applications. New Phytol.2011,190(3):724-739.
    [30] Royer D.L. Leaf shape responds to temperature but not CO2in Acer rubrum. PloSone.2012,7(11): e49559.
    [31] Yates M.J., Verboom G.A., Rebelo A.G., et al. Ecophysiological significance ofleaf size variation in Proteaceae from the Cape Floristic Region. Funct. Ecol.2010,24:485-492.
    [32] Hovenden M.J., Vander Schoor J.K. Nature versus nurture in the leaf morphologyof Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytol.2004,161:585-594.
    [33] Jordan G.J., Hill R.S. Past and present variability in leaf length of evergreenmembers of Nothofagus subgenus lophozonia related to ecology and populationdynamics. New Phytol.1994,127:377-390.
    [34]陈玮玮,万里强,何峰等.温度和光照时间对3个秋眠型紫花苜蓿品种形态特征的影响.草业科学.2010,27(12):113-119.
    [35] Santiago L.S., Wright S.J., Harms K.E., et al. Tropical tree seedling growthresponses to nitrogen, phosphorus and potassium addition. J. Ecol.2012,100:309-316.
    [36] Marschner H. Mineral Nutrition in Higher Plants. Academic Press, London.1995
    [37] Santiago L.S. Wright S.J. Leaf functional traits of tropical forest plants in relationto growth form. Funct. Ecol.2007,21:19–27.
    [38]徐艳丽,鲁剑巍,周世立等.氮磷钾肥对高羊茅生长季抗寒性的影响.植物营养与肥料学报.2007,13(6):1173-1177.
    [39] Scott S.L., Aarssen L.W. Within-species leaf size–number trade-offs in herbaceousangiosperms. Botany.2012,90(3):223-235.
    [40] Gratani L., Catoni R., Pirone G., et al. Physiological and morphological leaf traitvariations in two Apennine plant species in response to different altitudes.Photosynthetica.2012:1-9.
    [41] Theurillat J.P., Guisan A. Potential impact of climate change on vegetation in theEuropean Alps: A review. Climatic Change.2001,50:77-109.
    [42] Hovenden M.J., Vander Schoor J.K. The response of leaf morphology to irradiancedepends on altitude of origin in Nothofagus cunninghamii. New Phytol.2005,169(2):291-297.
    [1] Roth-Nebelsick A., Uhl D., Mosbrugger V., et al. Evolution and function of leafvenation architecture: a review. Ann. Bot.2001,87:553-566.
    [2] Chapin F.S., Matson P.A., Mooney H.A. Principles of Terrestrial EcosystemEcology. Springer, New York.2002.
    [3] Brodribb T.J., Feild T.S. Leaf hydraulic evolution led a surge in leaf photosyntheticcapacity during early angiosperm diversification. Ecol. Let.2010,13:175-183.
    [4] Brodribb T.J., Field T.S., Jordan G.J. Leaf maximum photosynthetic rate andvenation are linked by hydraulics. Plant Physiol.2007,144:1890-1898.
    [5] Boyce C.K., Brodribb T.J., Feild T.S., et al. Angiosperm leaf vein evolution wasphysiologically and environmentally transformative. Proc. R. Soc. Lond. B.2009,276:1771-1776.
    [6] Morley R.J. Origin and Evolution of Tropical Rainforests. Wiley, New York.2000.
    [7] Uhl D., Mosbrugger V. Leaf venation density as a climate environmental proxy: acritical review and new data. Palaeogeogr. Palaeoclimatol. Palaeoecol.1999,149:15-26.
    [8] Stiling P.D., Simberloff D., Anderson L.C. Non-random distribution patterns of leafminers on oak trees. Oecologia,1987:102-105.
    [9] Dunbar-Co S., Sporck M.J., Sack L. Leaf trait diversification and design in sevenrare taxa of the Hawaiian Plantago radiation. Int. J. Plant Sci.2009,170:61-75.
    [10] Manze U. Die nervaturdichte der bl tter als hilfsmittel der pal oklimatologie.Sonderver ff. Geol Inst Univ K ln14.1968.
    [11] Zalenski W.V. Materials for the study of the quantitative anatomy of differentleaves of the same plant. Mem. Inst. Polytech Kiew,1904,4:1-203.
    [12] Boyce C.K. Seeing the forest with the leaves-clues to canopy placement from leaffossil size and venation characteristics. Geobiology.2009,7:192-199.
    [13] Zwieniecki M.A., Boyce C.K., Holbrook N.M. Hydraulic limitations imposed bycrown placement determine final size and shape of Quercus rubra L. leaves. PlantCell Environ.,2004,27:357-365.
    [14] Esau K. Plant Anatomy. New York: Wiley and Sons.1965.
    [15] McKown A.D., Dengler N.G. Key innovations in the evolution of kranz anatomyand C4vein pattern in Flaveria (Asteraceae). Amer. J. Bot.2007,94:382-399.
    [16] Sack L., Cowan P.D., Holbrook N.M. The major veins of mesomorphic leavesrevisited: tests for conductive overload in Acer Saccharum (Aceraceae) andQuercus rubra (Fagaceae). Am. J. Bot.2003,90:32-39.
    [17] Sack L., Frole K. Leaf structure diversity is related to hydraulic capacity intropical rain forest trees. Ecology.2006,87:483-491.
    [18] Brodribb T.J., Field T.S., Sack L. Viewing leaf structure and evolution from ahydraulic perspective. Funct. Plant. Biol.2010,37:488-498.
    [19] Sack L., Dietrich E.M., Streeter C.M., et al. Leaf palmate venation and vascularredundancy confer tolerance of hydraulic disruption. Proc. Nati. Acad. Sci. USA.2008,105:1567-1572.
    [20] Bond BJ. Age-related changes in photosynthesis of woody plants. Trends PlantSCI.2000,5:349-353.
    [21] Mediavilla S., Escudero A. Stomatal responses to drought of mature trees andseedlings of two co-occurring Mediterranean oaks. Forest Ecol. Manag.2004,187:281-294.
    [22] Marshall J.D., Monserud R.A. Foliage height influences specific leaf area of threeconifer species. Can. J. Forest Res.2003,33:164-170.
    [23] Hubbard R.M., Bond B.J., Ryan M.G. Evidence that hydraulic conductance limitsphotosynthesis in old Pinus ponderosa trees. Tree Physiol.1999,19:165-172.
    [24] Givnish T.J., Montgomery R.A., Guillermo G. Adaptive radiation ofphotosynthetic physiology in the Hawaiian lobeliads: light regimes, static lightresponses, and whole plant compensation points. Am. J. Bot.2004,91:228-246.
    [25] Feild T.S., Arens N.C., Doyle J.A., et al. Dark and disturbed: a new image of earlyangiosperm ecology. Paleobiology.2004,30:82-107.
    [26] Pyykk M. Morphology and anatomy of leaves from some woody plants in ahumid tropical rainforest of Venezuelan Guayana. Acta. Bot. Fenn.1979,112:1-41.
    [27] Carins Murphy MR, Jordan GJ, Brodribb TJ. Differential leaf expansion canenable hydraulic acclimation to sun and shade. Plant Cell Environ.2012,35:1407-1418.
    [28] Brodribb T.J., Field T.S., Jordan G.J. Leaf maximum photosynthetic rate andvenation are linked by hydraulics. Plant Physiol.2007,144:1890–1898.
    [29] Nicotra A.B., Leigh A., Boyce C.K., et al. The evolution and functionalsignificance of leaf shape in the angiosperms. Funct. Plant Biol.2011,38:535-552.
    [30] Philpott J. Blade tissue organization of foliage leaves of some Carolina shrub-bogspecies as compared with their Appalachian mountain affinities. Bot. Gaz.1956,118:88-105.
    [31] Shinozaki K., Yoda K., Hozumi K. A quantitative analysis of plant form: The pipemodel theory. I. Basic analyses. Jpn. J. Ecol.1964,14:97-105.
    [1] Abrash E.B, Lampard G.R. A view from the top: new ligands controlling stomataldevelopment in Arabidopsis. New Phytol.2010,186:561-564.
    [2] Berry J.A., Beerling D.J., Franks P.J. Stomata: key players in the system, past andpresent. Curr. Opin. Plant Biol.2010,13:233-240.
    [3] Hetherington A.M., Woodward F.I.The role of stomata in sensing and drivingenvironmental change. Nature.2003,424:901-908.
    [4] Zhang S., Guan Z., Sun M., et al. Evolutionary association of stomatal traits withleaf vein density in Paphio pedilum, Orchidaceae. Plos One.2012,7(6):1-10.
    [5] Tay A., Akio F. Variations in leaf stomatal density and distribution of53vinespecies in Japan. Plant Spec. Biol.2008,23:2-8.
    [6] Willmer C., Fricker M. Stomata. In: Black M&Charlwood B.(eds).Topics in PlantFunctional Biology, Vol.2.Chapman and Hall, London.1996,95-125.
    [7] Salisbury E.J. On the causes and ecological significance of stomatal frequency, withspecial reference to the woodland flora. Philos. T. R. Soc. B., Containing Papersof a Biological Character.1928,216:1-65.
    [8] Dunbar-Co S., Sporck M., Sack L. Leaf trait diversification and design in seven raretaxa of the Hawaiian Plantago Radiation. Int. J.Plant Sci.2009,170(1):61-75.
    [9] Pearce D.W., Millard S., Bray D.F., et al. Stomatal characteristics of riparianspecies in a semi-arid environment. Tree Physiol.2006,26:211-218.
    [10] Yang L., Han M., Zhou G., et al. The changes in water-use efficiency and stomadensity of Leymus chinensis along Northeast China Transect. Acta Ecol. Sinica.2007,27(1):16-24.
    [11] Wu C.A., Lowry D.B., Nutter L.I., et al. Nature variation for drought-responsetraits in the Mimulus guttatus species complex. Oecologi.2010,162:23-33.
    [12] Zeiger E. The biology of stomatal guard cells. Ann. R. Plant Physiol.1983,34:441-475.
    [13] Qiang W.Y., Wang X.L., Chen T., et al. Variations of stomatal density and carbonisotope values of Picea crassifolia at different altitudes in the Qilian Mountains.Trees.2003,17:258-262.
    [14] Beerling D.J., Chaloner W.G., Huntley B., et al. Stomatal density responds to theglacial cycle of environmental change. Proc. R. Soc. Lond. B.1993,251(1331):133-138.
    [15] Wang Y., Chen X., Xiang C.B. Stomatal density and bio-water saving. J. Integr.Plant Biol.2007,49(10):1435-1444
    [16] Nadeau J.A., Sack F.D. Control of stomatal distribution on the Arabidopsis leafsurface. Science.2002,296:1697-1700.
    [17] Beerling D.J., Chaloner W.G. Stomatal density as an indicator of atmospheric CO2concentration. Holocene.1992,2(1),71-78.
    [18] Beerling D.J., Chaloner W.G. The impact of atmospheric CO2and temperaturechange on stomatal density: observations from Quercus robur lammas leaves. Ann.Bot.1993,71:231-235.
    [19] Haworth M., Elliott-Kingston C., Gallagher A., et al. Sulphur dioxide fumigationeffects on stomatal density and index of non-resistant plants: Implications forstomatal palaeo-[CO2] proxy method. Rev. Palaeobot. Palyno.2012,182:44-54.
    [20] Oberbauer S.F., Strain B.R. Effects of canopy position and irradiance on the leafphysiology of Pentaclethra macroloba (Mimoscea). Am. J. Bot.1986,73:409-416.
    [21] Rahim M.A., Fordham R. Effect of shade on leaf and cell size and number ofepidermal cells in garlic (Allium sativum). Ann. Bot.1991,67:167-171.
    [22] Aphalo P.J., Jarvis P.G. Do stomata respond to relative humidity? Plant CellEnviron.1991.14:127-132.
    [23] Sadras V.O., Montoro A., Moran M.A., et al. Elevated temperature altered thereaction norms of stomatal conductance in field-grown grapevine. Agr. ForestMeteorol.2012,165:35-42.
    [24] Clay K., Quinn J.A. Density of stomata and their responses to a moisture gradientin danthonia sericea populations from dry and wet habitats. Bull. Torrey Bot.Club.1978,105(1):45-49.
    [25] Abrams M.D., Kubiske M.E., Mostoller S.A. Relating wet and dry yearecophysiology to leaf structure in contrasting temperate tree species. Ecology.1994,75(1):123-133.
    [26] Xu Z.Z., Zhou G.S. Responses of leaf stomatal density to water status and itsrelationship with photosynthesis in a grass. J. Exp. Bot.2008,1-9.
    [27] Amaral C.B., Vaini J.O., Grisolia A.B., et al. Biomonitoring the genotoxic effectsof pollutants on Tradescantia pallid (Rose) D.R. Hunt in Dourados, Brazil.Environ. Sci. Pollut. Res.2012,19:718-723.
    [28] Chen L.Q., Li C.S., Chaloner W.G., et al. Assessing the potential for the stomatalcharacters of extant and fossil Ginkgo leaves to signal atmospheric CO2change.Am. J. Bot.2001,88:1309-1315.
    [29] Woodward F.I.Stomatal numbers are sensitive to increases in CO2from pre-industrial levels. Nature.1987,327:617-618.
    [30] Bonis N.R., Van K.C.J., Kürschner W.M. Changing CO2conditions during theend-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis(Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeogr.Palaeoclimat. Palaeoecol.2010,295:146-161.
    [31] Hardy J.P., Anderson V.J., Gardner J.S. Stomatal characteristics, conductanceratios, and drought-induced leaf modifications of semiarid grassland species. Am.J. Bot.1995,82(1):1-7.
    [32] Clark P.J., Evans F.C. Distance to nearest neighbor as a measure of spatialrelationships in populations. Ecology.1954,35:445-453.
    [33] Korn R.W. Evidence in Dicots for Patterning by Inhibition. Int. J. Plant Sci.1993,54:367-377.
    [34] Tang M., Hu Y.X., Lin J.X., et al. Developmental mechanism and distributionpattern of stomatal clusters in Begonia peltatifolia. Acta Bot. Sinica.2002,44:384-389.
    [35] Croxdale J.L. Stomatal patterning in angiosperms. Am. J. Bot.2000,87(8):1069-1080.
    [36] Gay A.P., Hurd R.G. The influence of light on stomatal density in the tomato. NewPhytol.1975,75:37-46.
    [37] Royer D.L. Stomatal density and stomatal index as indicators of paleoatmosphericCO2concentration. Rev. Palaeobot. Palyno.2001,14:1-28.
    [38] Wang H., Ross F.C.M., Shi J., et al. Anatomy of leaf abscission in the Amurhoneysuckle (Lonicera maackii, Caprifoliaceae): a scanning electron microscopystudy. Protoplasma.2010,247(1-2):111-116.
    [39] Sack L., Cowan P.D., Jaikumar N., et al. The hydrology‘of leaves: co-ordinationof structure and function in temperate woody species. Plant Cell Environ.2003,26:1343-1356.
    [40] Sack L., Tyree M.T., Holbrook N.M. Leaf hydraulic architecture correlates withregeneration irradiance in tropical rainforest trees. New Phytol.2005,167:403-413.
    [41] Teare I.D., Peterson C.J., Law A.G. Size and frequency of leaf stomata in cultivarsof Triticum aestivum and other Triticum species. Crop Sci.1971,11:496-498.
    [42] Wang H., Clark J.M. Genotypic intraplant, and environmental variation instomatal frequency and size in wheat. Can. J. Plant Sci.1993,73:671-678.
    [43] Zhu Y., Kang H., Xie Q., et al. Pattern of leaf vein density and climate relationshipof Quercus variabilis populations remains unchanged with environmental changes.Trees-Struct. Funct.2012,26(2):597-607.
    [44] Beerling D.J., Chaloner W.G. Evolutionary responses of stomatal density to globalCO2change. Biol. J. Linn. Soc.1993,48:343-353.
    [45] Hill R.S. The history of selected Australian taxa. In: Hill RS, ed. History of theAustralian Vegetation: Cretaceous to Recent. Cambridge, UK: CambridgeUniversity Press.1994,390-419.
    [46] Klooster B., Palmer-Young E. Water stress marginally increases stomatal densityin E. Canadensis, but not in A. gerardii. Tillers.2004,5:35-40.
    [47]杨利民,韩梅,周广胜等.中国东北样带关键种羊草水分利用效率与气孔密度.生态学报.2007,27:16-24.
    [48] He S., Liu G., Yang H. Water use efficiency by alfalfa: Mechanisms involvinganti-oxidation and osmotic adjustment under drought. Russ. J. Plant physiol.2012,59(3):348-355.
    [49] Friend A.D., Woodward F.I. Evolutionary and ecophysiological responses ofmountain plants to the growing season environment. Adv. Ecol. Res.1990,20:59-124.
    [50] Shearman R.C., Beard J.B. Environmental and cultural preconditioning effects onthe water use rate of Agrostis palustris Huds., cultivar Penncross. Crop Sci.1973,13:424-427.
    [51] Grantz D.A. Plant response to atmospheric humidity. Plant Cell Environ.1990,13:667-679.
    [52] Blake T.J., Tschaplinski T.J., Eastham A. Stomatal control of water use efficiencyin poplar clones and hybrids. Can. J. Bot.1984,62(7):1344-1351.
    [53] Franks P.J., Beerling D.J. Maximum leaf conductance driven by CO2effects onstomatal size and density over geologic time. PNAS.2009,106(25):10343-10347.
    [54] Russo S.E., Cannon W.L., Elowsky C., et al. Variation in leaf stomatal traits of28tree species in relation to gas exchange along an edaphic gradient in a bornean rainforest. Am. J. Bot.2010,97(7):1109-1120.
    [55] Cowan I.R., Farquhar G.D. Stomatal function in relation to leaf metabolism andenvironment. Symp. Soc. Exp. Biol.(Cambridge Univ Press, Cambridge, UK).1977,31:471-505.
    [56] Franks P.J., Farquhar G.D. A relationship between humidity response, growthform and photosynthetic operating point in C3plants. Plant Cell Environ.1999,22:1337-1349.
    [57] Dunlap J.M., Stettler R.F. Variation in leaf epidermal and stomatal traits ofPopulus trichocarpa from two transects across the Washington Cascades. Can. J.Bot.2001,79(5):528-536.
    [58] Sparks J.P., Black R.A. Regulation of water loss in populations of populoustrichocarpa: the role of stomatal control in preventing xylem cavitation. TreePhysiol.1999,19(7):453-459.
    [59] Kozlowski T.T., Ahlgren C.E. Fire and Ecosystems. Academic Press,1974, NewYork.
    [60] Buckley T.N. The control of stomata by water balance. New Phytol.2005,168:275-292.
    [61] Brodribb T.J., Holbrook N.M. Declining hydraulic efficiency as transpiring leavesdesiccate:two types of response. Plant Cell Environ.2006,29:2205-2215.
    [62] Sack L., Frole K. Leaf structure diversity is related to hydraulic capacity intropical rain forest trees. Ecology.2006,87(2):483-491.
    [63] Zhang Y., Zheng Q., Tyree M.T. Factors controlling plasticity of leaf morphologyin Robinia pseudoacacia L. I: height-associated cariation in leaf structure. Ann.Forest Sci.2012,69:29-37.
    [64] Simonin K.A., Limm E.B, Dawson T.E. Hydraulic conductance of leavescorrelates with leaf lifespan: implications for lifetime carbon gain. New Phytol.2012,193:939-947.
    [65] Hanba Y.T., Miyazawa S.I., Terashima I. The influence of leaf thickness on theCO2transfer conductance and leaf stable carbon isotope ratio for some evergreentree species in Japanese warm temperate forests. Funct. Ecology.1999,13:632-639.
    [66] Raven J.A. Long distance transport of calcium. In: Trewavas A, ed. Molecular andcellular aspects of calcium in plant development. New York, USA: Plenum Press.1986,241-250.
    [67] Raven J.A. Selection pressure on stomatal evolution. New Phytol.2001,153:371-386.
    [68] Hamdan J., Ahmed H.O. Potassium dynamics of a forest soil developed on aweathered schist regolith. Arch. Agron. Soil Sci.2012,1-10.
    [69] Perry C.H., Amacher M.C. Patterns of soil calcium and aluminum across theconterminous United States (Chapter9). In: Potter, K.M.; Conkling, B. L., eds.Forest Health Monitoring:2008National Technical Report. GTR-SRS-158.Asheville, NC: U. S. Department of Agriculture, Forest Service, SouthernResearch Station.2012,119-130.
    [1] Woodman G.W., Fernandes G.W. Differential mechanical defence: herbivory,evapotranspiration and leaf-hairs. Oikos.1991,60:11–19.
    [2] Kennedy G.G., Yamamoto R.T., Dimock M.B., et al. Effect of day length and lightintensity on2-tridecanone levels and resistance in Lycopersicon hirsutum f.glabratum to Manduca sexta. J. Chem. Ecol.,1981,7:707-716.
    [3] Levizou E., Drilias P., Psaras G., et al. Nondestructive assessment of leaf chemistryand physiology through spectral reflectance measurements may be misleadingwhen changes in trichome density co-occur. New Phytol.2004,165:463-472.
    [4] Molina-Montenegro M.A., ávila P., Hurtado R., et al. Leaf trichome density mayexplain herbivory patterns of Actinote sp.(Lepidoptera: Acraeidae) on Liabummandonii (Asteraceae) in a montane humid forest (Nor Yungas, Bolivia). Actaoecol.2006,30:147-150.
    [5] Binns W.W. Comparative leaf anatomy of Salix species and hybrids. Bot. J. of Linn.Soc.1980,81:205-214.
    [6] Chen G., Sun W., Sun H. Leaf epidermal characteristics of Asiatic Buddleja L.under scanning electron microscope: Insights into chromosomal and taxonomicsignificance. Flora.2010,205:777-785.
    [7] Handley R., Ekbom B., Agren J. Variation in trichome density and resistanceagainst a specialist insect herbivore in natural populations of Arabidopsis thaliana.Ecol. Entomol.2005,30:284-292.
    [8] Kim K.W., Cho D.H., Kim P.G. Morphology of foliar trichomes of the Chinesecork oak (Quercus variabilis) by electron microscopy and three-dimensionalsurface profiling. Microsc. Microanal.2011,17:461-468
    [9] Snyder J.C., Hyatt J.P. Influence of daylength on trichome densities and leafvolatiles of Lycopersicon species. Plant Sci. Lett.1984,37:177-181.
    [10] van Dam N.M., Hare J.D., Elle E. Inheritance and distribution of trichomephenotypes in Datura wrightii. J. Hered.1999,90:220-227.
    [11] Hardin JW. Patterns of variation in foliar trichomes of eastern north AmericanQuercus. Am. J. Bot.1979,66(5):576-585.
    [12]张勇,尹祖棠.中国产委陵菜属叶表皮毛的研究.西北植物学报.1997,17(6):72-76.
    [13] Pullin A.S., Gilbert J.E. The stinging nettle, Urtica dioica, increases trichomedensity after herbivore and mechanical damage. Oikos.1989,54:275-280.
    [14] Leite G.L.D, Picano M., Guedes R.N.C., et al. Influence of canopy height andfertilization levels on the resistance of Lycopersicon hirsutum to Aculopslycopersici (Acari: Eriophyidae). Exp. Appl. Acarol.1999,23:633-642.
    [15] Liakoura V., Stefanou M., Manetas Y., et al. Trichome density and its UV-Bprotective potential are affected by shading and leaf position on the canopy.Environ. Exp. Bot.1997,38:223-229.
    [16] Chu C.C., Freeman T.P., Buckner J.S., et al. Silverleaf whitefly colonization andtrichome density relationships on upland cotton cultivars. Southwest. Entomol.2000,25(4):237-242.
    [17] Leite G.L.D., Picanco M., Guedes R.N.C., et al. Role of plant age in the resistanceof Lycopersicon hirsutum f. glabratum to the tomato leafminer Tuta absoluta(Lepidoptera: Gelechiidae). Sci. Hortic.2001,89:103-113.
    [18] Mauricio R. Ontogenetics of QTL: the genetic architecture of trichome densityover time in Arabidopsis thaliana. Genetica.2005,75-85.
    [19] Zaiter H.Z., Coyne D.P., Steadman J.R., et al. Inheritance of abaxial leafpubescence in beans. J. Amer. Soc. Hort. Sci.1990,115:158-160.
    [20] Johnson H.B. Plant pubescence: an ecological perspective. Bot. Rev.1975,41:233–258.
    [21] Chiang H., Norris D. Morphological and physiological parameters of soybeanresistance to agromyzid beanflies. Environ. Entomol.1983,12(1):260-265.
    [22]胡绍安,赵清林.棉属种表皮毛性状的电镜观察.中国棉花.1990,(20):7-9.
    [23] Kennedy G.G. Tomato, pest, parasitoids, and predators: tritrophic interactionsinvolving the genus Lycopersicon. Ann. R. Entomol.2003,48:51-72.
    [24] Ehleringer J. The influence of water stress and temperature on leaf pubescencedevelopment in Encelia farinose. Am. J. Bot.1982,69(5):670-675.
    [25] Ba on S., Fernandez J.A., Franco J.A., et al. Effects of water stress and nighttemperature preconditioning on water relations and morphological and anatomicalchanges of Lotus creticus plants. Sci. Hortic.2004,101:333-342.
    [26] Gianfagna T.J., Carter C.D., Sacalis J.N. Temperature and photoperiod influencetrichome density and sesquiterpene content of Lycopersicon hiesutum f. hirsutum.Plant Physiol.1992,100:1403-1405.
    [27] Ehleringer J.R., Clark C. Evolution and adaptation in Encelia (Asteraceae). In:Gottlieb L, Jain S (eds). Plant evolutionary biology. Chapman and Hall, New York.1988,221-248.
    [28] Wang H.F., Ross F.C.M, Shi J.C., et al. Anatomy of leaf abscission in the Amurhoneysuckle (Lonicera maackii, Caprifoliaceae): a scanning electron microscopystudy. Protoplasma.2010,247:111-116.
    [29]李苗苗,唐道城,曾萱.青海不同海拔高度下3种绿绒蒿表皮毛密度的变化.青海大学学报.2008,26(6):16-18.
    [30] Marques A.R., Garcia Q.S., Rezende P.J.L. Variations in leaf characteristics oftwo species of Miconia in the Brazilian cerrado under different light intensities.Trop. Ecol.2000,41(1):47-60.
    [31]王金照.不同类型栓皮栎营养器官生态解剖学比较研究.[硕士论文].陕西:西北农林科技大学.2004.
    [32] Filella I., Pe uela J. Altitudinal differences in UV absorbance, UV reflectance andrelated morphological traits of Quercus ilex and Phododentron ferrugineum in theMediterranean region. Plant Ecol.1999,145:157-165.
    [33] Pérez-Estrada L.B., Cano-Santana Z., Oyama K. Variation in leaf trichomes ofWigandia urens: environmental factors and physiological consequences. TreePhysiol.2000,20:629-632.
    [34] Sultan S.E. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl.1995,44:363-383.
    [35] Ehleringer J.R., Mooney H.A. Leaf hairs: effects on physiological activity andadaptive value to a desert shrub. Oecologia.1978,37:183-200.
    [36] Wolpert A. Heat transfer analysis of factors affecting plant leaf temperature.Significance of leaf hairs. Plant Physiol.1962,37:113-120.
    [37] Ntefidou M., Manetas Y. Optical properties of hairs during the early stages of leafdevelopment in Platanus orientalis. Aust. J. Plant Physiol.1996,23:535-538.
    [38] Wooley J T. Water relations of soybean leaf hairs. Agron. J.1964,56:569-571.
    [39] Clawson K.L., Spect J.E., Blad B.L., et al. Water use efficiency in soybeanpubescence density isolines--a calculation procedure for estimating daily values.Agron. J.1986,78:483-487.
    [40] Agrawal A.A., Fishbein M., Jetter R., et al. Phylogenetic ecology of leaf surfacetraits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insectbehavior. New Phytol.2009,183:848-867.
    [41] Ghorashy S.R., Penddleton J.W., Peters D.B., et al. Internal water stress andapparent photosynthesis with soybeans differing in pubescence. Agron. J.1971,63(5):674-676.
    [42] Morales M.A., Alarcón J.J., Torrecillas, A., et al. Growth and water relations ofLotus creticus creticus plants as affected by salinity. Biol. Plant.2000,43:413-417.
    [43] Gay A.P., Hurd R.G. The influence of light on stomatal density in the tomato. NewPhytol.1975,75(1):37-46.
    [44] Ehleringer J.R., Cook C.S. Photosynthesis in Encelia farinose gray in response todecreasing leaf water potential. Plant physiol.1984,75:688-693.
    [45] Sandquist D.R., Ehleringer J.R. Intraspecific variation of drought adaptation inbrittlebush: leaf pubescence and timing of leaf loss vary with rainfall. Oecologia.1998,113(2):162-169.
    [46] Nobel P.S. Biophysical Plant Physiology and Ecology.(Freeman and Co: SanFrancisco.).1983.
    [47] SmithW.K., McClean T.M. Adaptive relationship between leaf water repellency,stomatal distribution, gas exchange. Am. J. Bot.1989,76:465-469.
    [48] Orians G.H., Solbrig O.T. A cost-income model of leaves and roots with specialreference to arid and semiarid areas. Am Nat.1977,111:677-690.
    [49] Barbour J.D., Farrar R.R., Kennedy G.G. Interaction of fertilizer regime with host-plant resistance in tomato. Entomol. Exp. Appl.1991,60(3):289-300.
    [50] Roy B.A., Stanton M.L., Eppley S.M. Effects of environmental stress on leaf hairdensity and consequences for selection. J. Evol. Biol.1999,12:1089-1103.
    [51] Sack L., Tyree M.T., Holbrook N.M. Leaf hydraulic architecture correlates withregeneration irradiance in tropical rainforest trees. New Phytol.2005,167:403-413.
    [52] Cunningham G.L., Strain B.R. Ecological significance of leaf variability in adesert shrub. Ecology.1969,50:400-408.
    [53] Grantz D.A. Plant response to atmospheric humidity. Plant Cell Environ.1990,13:667-679.
    [54] Xu Z.Z., Zhou G.S. Responses of leaf stomatal density to water status and itsrelationship with photosynthesis in a grass. J. Exp. Bot.2008,1-9.
    [55] Reich P.B., Wright I.J., Cavender-Bares J., et al. The evolution of plant functionalvariation: traits, spectra, and strategies. Int. J. Plant Sci.2003,164:142-164.
    [56] Ackerly D.D. Adaptation, niche conservatism, and convergence: comparativestudies of leaf evolution in the California chaparral. Am. Nat.2004,163:654-671.
    [57] Dunbar-Co S., Sporck M., Sack L. Leaf trait diversification and design in sevenrare taxa of the Hawaiian Plantago Radiation. Int. J.Plant Sci.2009,170(1):61-75.
    [58] Givnish T.J. How a better understanding of adaptations can yield better use ofmorphology in plant systematic: towards eco-evo-devo. Taxon.2003,53:273-296.
    [59] Givnish T.J., Pires J.C., Graham S.W., et al. Repeated evolution of net venationand fleshy fruits among monocots in shaded habitats confirms a priori predictions:evidence from an ndhF phylogeny. Proc. R. Soc. B.2005,272:1481-1490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700