用户名: 密码: 验证码:
米心水青冈(Fagus engleriana)生态及遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以浙江、湖北、四川、贵州等省份9个居群的米心水青冈为研究材料,采用RAPD分子标记,主要探讨了米心水青冈的遗传变异,同时还研究了米心水青冈生态和水青冈属5种植物的遗传变异,提出了米心水青冈的保护措施,研究结果如下:
     1.米心水青冈在我国分布范围广,一般喜湿润和阴凉的环境。四川南江的米心水青冈群落中占优势的科为壳斗科、槭树科和桦木科。乔木层一般分为3层:在第一层,落叶阔叶树种占优势,米心水青冈的重要值为47.53,是优势种,其次为锐齿槲栎和短柄枹栎,重要值分别为11.43和10.85;第二及第三层以常绿树种为主,主要为青冈、小叶青冈和刺叶栎。四川南江米心水青冈群落的建群种为米心水青冈。
     2.本研究采用四种DNA提取方法,通过比较得出改良CTAB法提出的DNA纯度较高,能够达到扩增要求,因此采用此方法用于正式DNA的提取。适合米心水青冈RAPD反应体系:反应体积为25μl,模板DNA40ng,引物0.8μM,Taq聚合酶1.25u,Mg2+浓度2.0 mM,dNTP浓度0.16 mM。适合米心水青冈RAPD扩增程序: 94℃预变性3min,一个循环, 94℃变性30s,37℃退火1min,72℃延伸2min,45个循环。
     3.20条随机引物共扩出260条带,平均每条引物扩增出13个条带,其DNA带的分子量在200-3000bp之间。其中多态性条带有180条,多态位点比率(PPL)为69.2%。种内的Shannon多样性指数为0.3021,群体内占的比例为72.10%,群体间占的比例为27.90%。种内的Nei's基因多样性0.2045,群体内的平均基因多样性为0.1502,基因分化系数GST为0.2631。
     4.巴山水青冈、浙江水青冈和亮叶水青冈之间的亲缘关系较近,长柄水青冈和米心水青冈之间的亲缘关系较近,它们之间的遗传分化较大。
     5.米心水青冈的遗传多样性水平处于中等,遗传分化也处于中等。本文同意将巴山水青冈和浙江水青冈并到台湾水青冈。
     6.建议,水青冈以就地保护为主,同时进行人工育苗和造林。米心水青冈群体间已经出现了一定程度的遗传分化,建议在天然群体间进行植株和种子幼苗相互移栽,以增强群体间的基因流,最大限度地保护米心水青冈的遗传多样性。
In this paper, nine populations of F.engleriana from four provinces were analyzed by random amplified polymorphic DNA (RAPD) markers to determine genetic diversity and genetic variations. In addition, ecology of F.engleriana and genetic variations among five species of Fagus were studied. The main results were as follows:
     1.F.engleriana ,growing best on loamy soils, was sensitive to reduced soil moisture. In the community of Nan jiang town, the dominant families were Fagaceae, Aceraceae and Betulaceae. The tree crown could be divided into three layers. In the first layer, deciduous trees were dominant, and dominant species was F. engleriana. Its important value was 47.43. Relatively dominant species were Quercus aliena var.acuteserrata and Quercus glandulifera.Their important values were 11.43 and 10.85. In the second and third layers, evergreen species were dominant species. They were Cyclobalanopsis. myrsinaefolia, Cyclobalanopsis glauca and Quercus spinosa. So F.engleriana was the key species of this community.
     2.Total DNA in leaf tissue of F. engleriana was extracted by four methods. Improved CTAB method was proven to be the best one. The DNA sample obtained by this method was fit for RAPD experiment. RAPD reaction system(25μl):40ngDNA template, 0.8μM primer,Taq DNA polymerase 1.25u,2.0 mM Mg2+, 0.16 mM each dNTP. PCR amplification program was denaturation at 94℃in advance for 3min,then followed 45 cycles,every cycle: denaturation at 94℃for 30s,anneal at 37℃for 1 min, extention at 72℃for 2 min.
     3.260 bands were amplified by 20 primers in Fagus engleriana,180 bands were polymorphic and percentage of polymorphic loci was 69.2%. The average Shannon index within species of F. engleriana was 0.3021,and percentages that among and within nine populations were respectively 72.10% and 27.90%.The average genetic diversity within species of F. engleriana was 0.2045, and 0.1502 for that within population.The coefficient of genetic differentiation was 0.2631.
     4.F. hayatae var. zhengjiangensis, F. pashanica and F.lucida had closer relationship, and F. longipetiolata and F. engleriana had closer relationship.There was much gene differentiation between them.
     5. Compared with other species,the genetic diversity of F. engleriana was at a moderate level.And the great mass of genetic variance was within populations.F. hayatae var. zhengjiangensis , F. pashanica should be clustered into Fagus hayatae.
     6.Natural populations of F. engleriana protected in situ was advised. Forestation and seading cultivation of F. engleriana were necessary. In addition,base on the certain level of genetic differentiation of among the natural populations,it was advised that adult plants or seedlings of F. engleriana be transPlanted in order to enhance the gene fiow among them and preserve the genetic diversity of F. engleriana.
引文
1.曹铁如,祁承经,喻勋林.湖南八大公山亮叶水青冈群落物种多样性的研究. 生物多样性,1997,5(2):112-120.
    2.陈灵芝.中国的生物多样性—现状及其保护对策.北京: 科学出版社,1993.
    3.崔艳秋.神农架米心水青冈林的结构特点.信阳师范学院学报(自然科学 版),1999,12(1).
    4.范复生主编.浙江森林.北京:中国林业出版社,1993.
    5.方建初主编。湖北森林.北京:中国林业出版社,1991
    6.方精云等.浙江水青冈属植物的解剖特征及分类学意义.北京大学学报(自然 科学版),2000,36(4):509-515.
    7 葛颂等.马尾松 GOT,LDH 和 MDH 同工酶的遗传方式和连锁关系.植物学报, 1987,14(6):428-435.
    8.葛颂.植物群体遗传结构研究的回顾和展望. 见:李承森(主编).植物科学 进展(第一卷).北京:高等教育出版社,1997.1-15
    9.葛颂,洪德元.遗传多样性及其检测方法.见:钱迎倩.生物多样性研究的原理 与方法.北京:中国科学技术出版社,1994.123-140.
    10 洪必恭.中国水青冈属植物地理分布初探.植物学报,1993,35(3):229-233.
    11.顾红雅,瞿礼嘉.植物分子生物学实验手册.北京:高等教育出版,1998.3-12
    12.黄瑞复主编.生态遗传学.北京:科学出版社,1991.
    13.吉成均,沈海花,方精云.基于 RAPD 标记的我国水青冈属植物的分类研究.北 京大学学报(自然科学版),2002,36(2).
    14.李力等.青岛耐冬山茶的多样性(II)-居群的遗传多样性分析.生物多样性, 1996,4(1):1-6
    15.李建强.湖北山毛榉科修订.武汉植物学研究,1998,16(3):241-252
    16.李建强,王恒昌. 基于细胞核 rDNA ITS 片段的水青冈属的分子系统发育. 武汉植物学研究, 2003,21(l):31-36
    17.李建强.山毛样科的起源和地理分布.植物分类学报,1996,34(6):597- 609.
    18.李俊清,中国水青冈种内种间遗传多样性的初步研究.生物多样性, 1996, 4(2):63-68.
    19.李俊清.亮叶水青冈(Fagus lucida)种群遗传多样性初步研究.生态学报, 1996,16 (2).
    20.李俊清,吴刚,刘雪萍.四川南江两种水青冈种群遗传多样性初步研究.生态 学报, 1997,34(6):597-609.
    21.陆朝福,朱立煌.植物育种中的分子标记辅助选择.生物工程进展,1995,15(4):11-17.
    22.马克平.试论生物多样性的概念.生物多样性,1993,1(1):20-22.
    23.马克平.生物群落多样性的测度方法Ⅰ.α多样性的测度方法(上).生物多 样性,1994,2(3):162-168.
    24.钱韦,葛颂.居群遗传结构研究中显性标记数据分析方法初探.遗传学报, 2001,28(3):244-255.
    25.汪小全,邹喻苹,张大明等.银杉遗传多样性的 RAPD 分析.中国科学(C 辑) , 1996,26(5): 436-441.
    26.王青锋,陈家宽.染色体显带技术及其在植物进化生物学中的应用.武汉:武 汉大学出版社,1994,128-152.
    27.王中仁.植物等位酶分析.北京:科学出版社,1996,120-163.
    28.吴征镒主编.中国植被北京:科学出版社,1980.
    29. 温 远 光 , 曹 坤 芳 . 亮 叶 水 青 冈 幼 树 的 生 态 学 研 究 . 广 西 农 业 大 学 学报,1994,13(4).
    30.夏铭,周晓峰,赵士洞.天然蒙古栎群体遗传多样性的 RAPD 分析.林业科学,2001,37(5):126-131.
    31.夏铭,周晓峰,赵士洞.天然红松群体遗传多样性的 RAPD 分析.生态学报, 2001,21(5):730-737.
    32.肖 顺 元 , 黄 舒 .RAPD 分 析 — 鉴 定 柑 桔 体 细 胞 杂 种 的 快 速 方 法 .遗 传 ,1995,017(004): 40-42
    33.杨玉坡,;李承彪主编.四川森林.北京:中国林业出版社,1992
    34 张大勇,姜新华.遗传多样性与濒危植物保护生物学研究进展.生物多样性,1999,7(1):31-37
    35.张日清等.林木 RAPD 标记技术研究进展.吉首大学学报(自然科学 版),2001,22(3).
    36.张永田,黄成就.壳斗科植物摘录Ⅱ.植物分类学报,1988,26(2):111-119.
    37.张永田,黄成就主编.中国植物志(22 卷).北京:科学出版社,1998.1-8.
    38.张方钢. 浙江清凉峰台湾水青冈林的群落学特征浙江大学学报(农业与生 命科学版) 2001,27(4):403- 406.
    39.中国森林编写组.中国森林.北京:中国林业出版社,1991.
    40.中国木本植物种子.北京:中国林业出版社,2001.
    41.邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版 社,2001.47-49
    42.邹喻苹,汪小全,雷一丁等.几种濒危植物及其近缘类群总 DNA 的提取与鉴定. 植物学报,1994,36(7):528-533.
    43.邹喻苹,蔡美琳,王子平.芍药属牡丹组的系统学研究—基于 RAPD 分析.植 物分类学报,1999,37(3):220-227.
    44.Bhatt G M.Comparison of various methods of selecting parents for Hybridization in commonbread wheat(Triticum aestivum).Aust. J. Agri. Res.1993, 24: 457-484.
    45.Bielawski J P, Pumo D E. Random amplified polymorphic DNA (RAPD) analysis of Atlantic coast striped bass. Heredity,1997,78:32-40.
    46.Brown A H D. Isozymes, Plant population genetic structure and genetic conservation.Theoretical and Applied Genetics,1978,(2): 145-157.
    47.Comps, B., Thiébaut, B., Paule, L., Merzeau, D. and Letouzey, J. (1990). Allozymic variability in beechwoods (Fagus sylvatica L.)over central Europe: spatial differentiation among and within populations. Heredity 65: 407-417.
    48.Demesure,B.,Comps,and Petit R.J. (1996).Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. Evolution 50:2515-2520
    49.Daniel B. Houston and David R. Houston Allozyme genetic diversity among Fagus grandifolia trees resistant or susceptible to beech bark disease in natural populations. Canadian Journal of Forest Research, 2000,30:5.
    50.Elias T S. The Genera of the Juglandaceae in the South-eastern United States.Jounr. 1972,53:26-51.
    51.Elizabeth J, Esselman, Daniel J. RAPD marker diversity within and among species of Dendroseris(Asteraceae). American Journal of Botany,2000,87:591-596.
    52.Ellstand N C,Elam D R.Population genetic consequences of small population size:implications for plant conservation.Annual Review of Ecology and Systematics,1993(24):217-242.
    53.Epperson B K. Spatial patterns of genetic variation within plant populations. In: Brown A H D, Cleg M T, Kahler A L et al. Plant Population Genetics, Breeding and Genetic Resources. Sinauer Associates,1990,229-253.
    54.Furman, B.J., Grattapaglia, D., Dvorak, W.S. and Malley, D.M. (1997). Anaysis of genetic relationships of Central American and Mexican pines usiing RAPD markers that distinguish species.Ecology,1999,19 (1):321-331.
    55.Gallois A., Audran, J.C. and Burrus, M. (1998). Assessment of Genetic relationships and population discrimination among Fagus sylvatica L. by RAPD. Theoretical and Applied Genetics 97: 211-219.
    56.Hamrick, J.L. and Godt, M.J.W (1996). Conservation genetics of endemic plant species. In: Avise, J.C. and Hamrick, J.L. (eds.) Conservation genetics:case histories from nature. Chapman and Hall, New York, pp. 281-304.
    57.Houston, D.B. and Houston, D.R. (1994). Variation in American beech (Fagus grandifolia Ehrh), isozyme analysis of genetic structure in selected stands.Silvae Genetica 43: 277-284.
    58.Keiko Kitamura and Shoichi Kawano Demographic genetics of the American beech (Fagus grandifolia Ehrh.) III. Genetic substructuring of coastal plain populationin Maryland. Plant Species Biology, 2003 ,18:13-33.
    59.Keiko Kitamura and Shoichi Kawano.(2001)Regional Differentiation in GeneticComponents for the American Beech, Fagus grandifolia Ehrh. in Relation toGeological History and Mode of Reproduction .J.Plant Res, 2001,114: 353-368.
    60.Konnert, M. (1995). Investigation on the genetic variation of beech (Fagus sylvatica L) in Bavaria. Silvae Genetica 44: 346-351.
    61.Konnert, M. and Henkel, W. (1997). Investigations on the genetic variation of beech (Fagus sylvatica L.) in Thuringia. Allgemeine forst und Jagdze-itung 168: 182-190.
    62.Leonardi,S and Menozzi,P.(1995).Genetic variability of Fagus sylvatica in Italy: the role of postglacial recolonization.Heredity 75: 35-44.
    63.M. Scalfi M.Troggio P.Piovani S.Leonardi. A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech ( Fagus sylvatica L.).Theor Appl Genet, 2004,108:433-441.
    64.Tomaru, N., Mitsutsuji, T., Takahashi, M., Tsumura, Y., Uchida, K. and Ohba,K. (1997). Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late Quaternary.Heredity 78: 241-251.
    65.Tomaru, N., Takahashi, M., Tsumura, Y., Takahashi, M. and Ohba, K.(1998).Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA.American Journal of Botany 85: 629-636.
    66.Wilkie S E, Isaac P G, Slater R J. Random amplified polymorphic DNA(RAPD) markers for genetic analysis in Allium. Theoretical and Applied Genetics,1993, 86(4):497-504.
    67.Williams J G K, Kubelik A R, Livak K J. DNA Polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res.,1990,18:6231-6235.
    68.Yan Zhigang LiJunqing. Study on Geographic Variation and Genetic Diversity ofthe Eurasian Beechs.Journal of Beijing Forest university ,1997,vol.6,No2:35-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700