用户名: 密码: 验证码:
具有串并混联形式与变自由度特性的空间多环机构的拓扑设计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间多环机构主要包含了并联与混联的各种布局形式,而对于混联非拓展树网状结构与变自由度的设计,仍然没有具体的设计方法可利用。因此,为了实现空间多环复杂机构的系统化结构设计和变自由度运动分析,本文提出了一种全新的具有串并混联形式与变自由度特性空间多环机构的拓扑设计方法。
     本研究从全新的数理逻辑学角度对空间机构进行了二进制12位数组矩阵的表示,同时运用逻辑命题推理,提出3阶逻辑的6值非经典逻辑矩阵表示空间的拓扑运动、关系及坐标选取,建立机构的组合逻辑库,并将其公理化用于拓扑结构的设计当中。由此可将运动与约束关系进行逻辑矩阵的结构运算定义,从而可对机构做数据结构的逻辑运算与推理,实现拓扑结构的逻辑设计算法。
     在拓扑结构的设计中,提出支链与平台连接形式的拓扑布局矩阵,其拓扑布局的形式可利用杆组映射和分形的方法得到,并建立拓扑布局对于空间几何体的映射组合规律,包含单末端输出的闭型与多末端输出的开型拓扑布局。进而针对末端输出与支链运动关系的分析,提出了拓扑布局结构的空间多环逻辑拆分方法(SMD),并由此结果建立了支链运动位移子集的结构配置卡(CCDS),从而可解决非拓展树网状拓扑结构的设计,并系统化方法于应用当中。对于多环的运动约束结构,考虑其多环变自由度特性,可建立运动的拓扑结构库,并分析变自由度的原理,从而得到混联结构变自由度的系统设计方法。
     论文研究的最后由实例说明了逻辑拓扑结构设计方法的应用,设计了各种全新的空间多环机构,其中特别设计了一种全新双轴变自由度混联操作器KHPM-Ⅰ对其进行了运动学特性的分析,并建立此样机原型用于实际运动输出的操作测试当中。
     本论文提出的设计方法有助于空间多环机构的复杂拓扑结构设计,同时数理逻辑的表示与算法有利于实现拓扑结构设计的自动化。
The spatial multi-loop mechanisms can be categorized into parallel and hybrid forms. However, as far as the design of hybrid non-spanning tree netted forms and variable mobility are concerned, there are no any developed method are available. Thus, to realize the systematic design of spatial hybrid mechanisms and kinematotropic analysis of mobility, this research presents a novel topological design method of spatial mutli-loop mechanisms with serial-parallel hybrid forms and kinematotropic properties.
     This research adopts12bits of binary string matrices to represent the spatial mechanisms based on mathematical logic method. Meanwhile, the three orders of six values non-classical logical matrices are developed to represent spatial topological motions, relations and determination of reference frames. The combinatorial logical sets are built and axiomatized for the design of topological structures. Thus, the motions and constraint relations can be defined in the structural operation of logical matrices, and the logical operation and reasoning can be developed in the design of topological structures.
     To realize the design of topological structures, the matrices of topological arrangements are presented in the connected forms of subchains and platforms. The topological arrangements can be generated by the linkage group mapping and fractal methods. The mapping relationships between the topological arrangement and geometry are developed which include the closed type and opened type of topological arrangements with single and multiple ending output manipulators respectively. Furthermore, the logical method of Spatial Multi-loop Detachment (SMD) is presented for the topological arrangements to analyze the relationships between the ending output motions and motions of subchains. Meanwhile, the Configuration Card of Displacement subsets of Subchains (CCDS) is developed for the structural configuration of subchains according to the results of SMD. The design of topological structure with non-spanning tree netted forms can be solved to build the novel systematic method of topological structural design. As far as the kinematotropic properties of multi-loop structures are concerned, the principles of kinematotropic mechanisms and topological structural sets are developed to design the spatial multi-loop mechanisms with kinematotropic properties.
     At last, various novel spatial multi-loop mechanisms are built as examples to illustrate the applications of the presented method. A novel kinematotropic hybrid parallel manipulator in dual axes KHPM-Ⅰ is built in particular, and the kinematic properties are analyzed. Meanwhile, the corresponding prototype is manufactured and applied into the testing of the practical output motions.
     On the one hand, the presented method is helpful to the topological structural design of the complicate spatial multi-loop mechanisms, and on the other is that the mathematical logical representation and operations of structures are programmable, and it is somewhat to realize the automatic design of spatial multi-loop mechanisms easily.
引文
[1]M. Chew, S. Shen, G F. Issa, Kinematic Structural Synthesis of Mechanisms Using Knowledge-Based Systems, ASME J. Mech. Des.,1995,117, pp.96-103.
    [2]D. B. Warnaar, M. Chew, Kinematic Synthesis of Deployable-Foldable Truss Structures Using Graph Theory, Part 1:Graph Generation, ASME J. Mech. Des.,1995,117, pp.112-116.
    [3]F. Harary, H. S. Yan, Logical Foundations of Kinematic Chains:Graphs, Line Graphs, and Hypergraphs. ASME J. Mech. Des.,1990,112, pp.79-83.
    [4]J. M. Herve, The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mech. Mach. Theory,1999,34, pp.719-730.
    [5]J. M. Herve, Design of Parallel Manipulators via the Displacement Group, Proceedings of the Ninth World Congress on Theory of Machine and Mechanisms, Milan,1995, pp.2079-2082.
    [6]P. Fanghella, C. Galletti, Metric Relations and Displacement Groups in Mechanism and Robot Kinematics, ASME J. Mech. Des.,1995,117, pp.470-478.
    [7]J. M. Rico, J. C. Jesus, T. Alejandro, New Considerations on the Theory of Type Synthesis of Fully Parallel Platforms, ASME J. Mech. Des.,2008,130, pp.112302.
    [8]J. M. Rico, B. Ravani, On Mobility Analysis of Linkages Using Group Theory, ASME J. Mech. Design,2003,125, pp.70-80.
    [9]S. Refaat, J. M. Herve, S. Nahavandi, H. Trinh, Asymmetrical three-DOFs rotational-translational parallel-kinematics mechanisms based on Lie group theory, Eur. J. Mech. A/Solids,2006,25, pp.550-558.
    [10]Q. Li, Z. Huang, J. M. Herve, Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements, IEEE Trans. Rob. Autom.,2004,20, pp.173-180.
    [11]C. Lee, J. M. Herve, Translational parallel manipulators with doubly planar limbs, Mech. Mach. Theory,2006,41, pp.433-455.
    [12]C. Lee, J. M. Herve, Cartesian Parallel Manipulators With Pseudoplanar Limbs, ASME J. Mech. Des.,2007,129, pp.1256-1264.
    [13]C. Lee, J. M. Herve, Type synthesis of primitive Schoenflies-motion generators, Mech. Mach. Theory,2009,44, pp.1980-1997.
    [14]C. Lee, J. M. Herve, Uncoupled actuation of overconstrained 3T-1R hybrid parallel manipulators, Robotica,2009,27, pp.103-117.
    [15]J. Angeles, The Qualitative Synthesis of Parallel Manipulators, ASME J. Mech. Des.,2004, 126, pp.617-624.
    [16]M. Karouia, J. M. Herve, Asymmetrical 3-dof spherical parallel mechanisms, Eur. J. Mech. A/Solids,2005,24, pp.47-57.
    [17]P. Huynh, J. M. Herve, Equivalent Kinematic Chains of Three Degree-of-Freedom Tripod Mechanisms With Planar-Spherical Bonds, ASME J. Mech. Des.,2005,127, pp.95-102.
    [18]L. W. Tsai, The Enumeration of a Class of Three-DOF Parallel Manipulators, Proceedings of the Tenth World Congress of the Theory of Machine and Mechanisms, Finland,1999, pp. 1121-1126.
    [19]Z. Huang, Q. Li, Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method, Int. J. Robot. Res.,2003,22, pp.59-79.
    [20]H. S. Kim, L. W. Tsai, Kinematic Synthesis of a Spatial 3-RPS Parallel Platform, ASME J. Mech. Des.,2003,125, pp.92-97.
    [21]X. Kong, C. M. Gosselin, Type Synthesis of Six-DOF Wrist-Partitioned Parallel Manipulators, ASME J. Mech. Des.,2008,130, pp.062302.
    [22]X. Kong, C. M. Gosselin, Type Synthesis of 3-DOF PPR Equivalent Parallel Manipulators Based on Screw Theory, ASME J. Mech. Des.,2005,127, pp.1113-1121.
    [23]X. Kong, C. M. Gosselin, Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory, ASME J. Mech. Design,2004,126, pp.101-108.
    [24]X. Kong, C. M. Gosselin, Type synthesis of 4-DOF SP-equivalent parallel manipulators:A virtual chain approach, Mech. Mach. Theory,2006,41, pp.1306-1319.
    [25]G. Gogu, Structural synthesis of fully-isotropic parallel robots with Schonflies motions via theory of linear transformations and evolutionary morphology, Eur. J. Mech. A/Solids,2007, 26, pp.242-269.
    [26]G. Gogu, Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations, Eur. J. Mech. A/Solids,2004,23, pp.1021-1039.
    [27]G. Gogu, Mobility and spatiality of parallel robots revisited via theory of linear transformations, Eur. J. Mech. A/Solids,2005,24, pp.690-711.
    [28]J. K. Eberharter, Synthesis of spatial parallel mechanisms with initial conditions using line geometry, Mech. Mach. Theory,2007,42, pp.1289-1297.
    [29]X. Wang, L. Baron, G Cloutier, Topological and Geometrical Synthesis of Three-Degree-of-Freedom Fully Parallel Manipulators by Instantaneous Kinematics, ASME J. Mech. Des.,2008,130, pp.032301.
    [30]O. Shai, G. R. Pennock, Extension of Graph Theory to the Duality Between Static Systems and Mechanisms, ASME J. Mech. Des.,2006,128, pp.179-191.
    [31]Q. Jin, T. Yang, Theory for Topology Synthesis of Parallel Manipulators and Its Application to Three-Dimension Translation Parallel Manipulators, ASME J. Mech. Design,2004,126, pp. 625-639.
    [32]T. L. Yang, A. X. Liu, Q. Jin, Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms, ASME J. Mech. Design,2009,131, pp.021001.
    [33]R. P. Sunkari, L. C. Schmidt, Structural synthesis of planar kinematic chains by adapting a Mckay-type algorithm, Mech. Mach. Theory,2006,41, pp.1021-1030.
    [34]Y. Liu, J. M. Phee, Automated Type Synthesis of Planar Mechanisms Using Numeric Optimization With Genetic Algorithms, ASME J. Mech. Des.,2005,127, pp.910-916.
    [35]P. Mitrouchev, Symbolic structural synthesis and a description method for planar kinematic chains in robotics, Eur. J. Mech. A/Solids,2001,20, pp.777-794.
    [36]C. S. Tang, T. Liu, The Degree Code A New Mechanism Identifier, ASME J. Mech. Des.,1993, 115, pp.627-630.
    [37]A. C. Rao, V. Raju, Pathapati, Loop Based Detection of Isomorphism Among Chains, Inversions and Type of Freedom in Multi Degree of Freedom Chain, ASME J. Mech. Des., 2000,122, pp.31-42.
    [38]H. S. Yan, C. C. Hung, Identifying and Counting the Number of Mechanisms from Kinematic Chains Subject to Design Constraints, ASME J. Mech. Des.,2006,128, pp.1177-1182.
    [39]E. Bribiesca,3D-Curve Representation by Means of a Binary Chain Code, Math. Comput. Modell,2004,40, pp.285-295.
    [40]X. Wang, L. Baron, G. Cloutier, Topology of serial and parallel manipulators and topological diagrams, Mech. Mach. Theory,2008,43, pp.754-770.
    [41]H. S. Yan, C. H. Kuo, Topological Representations and Characteristics of Variable Kinematic Joints, ASME J. Mech. Des.,2006,128, pp.384-391.
    [42]T. Liu, C. H. Yu, Identification and Classification of Multi-Degree-of-Freedom and Multi-Loop Mechanisms, ASME J. Mech. Des.,1995,117, pp.104-111.
    [43]H. Ding, Z. Huang, A unique representation of the kinematic chain and the atlas database, Mech. Mach. Theory,2007,42, pp.637-651.
    [44]J. S. Dai, J. R. Jones, Matrix Representation of Topological Configuration Transformation of Metamorphic Mechanisms, ASME J. Mech. Design,2005,127, pp.837-840.
    [45]L. C. Schmidt, S. C. Chase, A Graph Grammar Approach for Structure Synthesis of Mechanisms, ASME J. Mech. Des.,2000,122, pp.371-376.
    [46]R. Alizade, C. Bayram, Structural synthesis of parallel manipulators, Mech. Mach. Theory, 2004,39, pp.857-870.
    [47]R. Alizade, Structural synthesis of serial platform manipulators, Mech. Mach. Theory,2007,42, pp.580-599.
    [48]R. Alizade, F. C. Can, E. Gezgin, Structural synthesis of Euclidean platform robot manipulators with variable general constraints, Mech. Mach. Theory,2008,43, pp.1431-1449.
    [49]H. Shen, T. Yang, L. Ma, Synthesis and structure analysis of kinematic structures of 6-dof parallel robotic mechanisms, Mech. Mach. Theory,2005,40, pp.1164-1180.
    [50]A. Campos, C. Budde, J. Hesselbach, A type synthesis method for hybrid robot structures, Mech. Mach. Theory,2008,43, pp.984-995.
    [51]L. Romdhane, Design and analysis of a hybrid serial-parallel manipulator, Mech. Mach. Theory,1999,34, pp.1037-1055.
    [52]K. T. Tanev, Kinematics of a hybrid (parallel-serial) robot manipulator, Mech. Mach. Theory, 2000,35, pp.1183-1196.
    [53]L. W. Tsai, S. Joshi, Kinematic Analysis of 3-DOF Position Mechanisms for Use in Hybrid Kinematic Machines, ASME J. Mech. Design,2002,124, pp.245-253.
    [54]A. Ramadan, K. Inoue, T. Arai, T. Takubo, T. Tanikawa, New Design of a Compact Parallel Micro-Nano Two-Fingered Manipulator Hand, IEEE International Conference on Nano/Micro Engineered and Molecular Systems,2007,59, pp.515-519.
    [55]C. Ishii, K. Kobayashi, Development of a New Bending Mechanism and Its Application to Robotic Forceps Manipulator, IEEE International Conference on Robotics and Automation, 2007,59, pp.238-243.
    [56]H. K. Jung, C. D. Crane, R. G. Roberts, Stiffness mapping of compliant parallel mechanisms in a serial arrangement, Mech. Mach. Theory,2008,43, pp.271-284.
    [57]H. Liu, T. Huang, J. Mei, Kinematic Design of a 5-DOF Hybrid Robot with Large Workspace/Limb-Stroke Ratio, ASME J. Mech. Des.,2007,129, pp.530-537.
    [58]K. H. Hunt, Structural Kinematics of In-Parallel-Actuated Robot-Arms, ASME J. Mech., Transm., Autom. Des.,1983,105, pp.705-712.
    [59]S. Bandyopadhyay, A. Ghosal, Analytical determination of principal twists in serial, parallel and hybrid manipulators using dual vectors and matrices, Mech. Mach. Theory,2004,39, pp. 1289-1305.
    [60]S. Lee, S. Kim, Efficient Inverse Kinematics For Serial Connections Of Serial And Parallel Manipulators, IEEE/RSJ International Conference on Intelligent Robots and Systems,1993,93, pp.1635-1641.
    [61]T. K. Tanev, Kinematics of a hybrid (parallel-serial) robot manipulator, Mech. Mach. Theory, 2000,35, pp.1183-1196.
    [62]G. Gogu, Chebychev-Grubler-Kutzbach's criterion for mobility calculation of multi-loop mechanisms revisited via theory of linear transformations, Eur. J. Mech. A/Solids,2005,24, pp. 427-441.
    [63]G. Gogu, Mobility of mechanisms:a critical review, Mech. Mach. Theory,2005,40, pp. 1068-1097.
    [64]Andreas Muller, Generic mobility of rigid body mechanisms, Mech. Mach. Theory,2009,44, pp.1240-1255.
    [65]A. Liberati, N. Belfiore, A method for the identification of the connectivity in multi-loop kinematic chains:Analysis of chains with total and partial mobility, Mech. Mach. Theory,2006, 41, pp.1443-1466.
    [66]C. Bagci, Determining General and Overclosing Constraints in Mechanism Mobility Using Structural Finite Element Joint Freedoms, ASME J. Mech. Des.,1992,114, pp.376-383.
    [67]D. Mao, Y. Luo, Z. You, Planar closed loop double chain linkages, Mech. Mach. Theory,2009, 44, pp.850-859.
    [68]M. Zoppi, D. Zlatanov, R. Molfino, On the velocity analysis of interconnected chains mechanisms, ASME J. Mech. Des.,2006,41, pp.1346-1358.
    [69]S. Krishnamurty, D. A. Turcic, Branching Determination in Nondyadic Planar Multiloop Mechanisms, ASME J. Mech. Des.,1992,114, pp.245-250.
    [70]H. Chaudhary, S. K. Saha, Constraint Wrench Formulation for Closed-Loop Systems Using Two-Level Recursions, ASME J. Mech. Des.,2007,129, pp.1234-1242.
    [71]H. Shen, K. L. Ting, T. Yang, Configuration analysis of complex multiloop linkages and manipulators, Mech. Mach. Theory,2000,35, pp.353-362.
    [72]P. Kovacs, G. Hommel, An algorithm for the kinematic analysis and optimal input joint assignment of recursive mechanisms, Mech. Mach. Theory,1999,34, pp.615-635.
    [73]J. M. Rico, B. Ravani, On Calculating the Degrees of Freedom or Mobility of Overconstrained Linkages:Single-Loop Exceptional Linkages, ASME J. Mech. Des.,2007,129, pp.301-311.
    [74]J. S. Dai, J. R. Jones, Mobility in metamorphic mechanisms of foldable/erectable kinds, Proceedings of ASME Design Engineering Technical Conferences, Atlanta, Georgia,1998, pp. 5902.
    [75]J. S. Dai, J. R. Jones, Mobility in metamorphic mechanisms of foldable/erectable kinds, ASME J. Mech. Des.,1999,121, pp.375-382.
    [76]D. Gan, J. S. Dai, Q. Liao, Mobility Change in Two Types of Metamorphic Parallel Mechanisms, ASME J. Mech. Rob.,2009,1, pp.041007.
    [77]L. Zhang. J. S. Dai, Reconfiguration of Spatial Mechanisms, ASME J. Mech. Rob.,2009,1, pp. 011012.
    [78]M. Li, T. Huang, D. Zhang, Conceptual Design and Dimensional Synthesis of a Reconfigurable Hybrid Robot, ASME J. Manuf. Sci. and Eng.,2005,127, pp.647-653.
    [79]T. S. Zhao, H. Bian, Type synthesis of overconstrained dual parallel mechanisms with three and four degrees of freedom, ASME/IFToMM Int. Conf. Reconfigurable Mechanisms and Robots, 2008, pp.200-204.
    [80]T. Sun, Y. Song, Y. Li, J. Zhang, Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot, ASME J. Mech. Rob.,2010,2, pp.031009.
    [81]C. Galletti, P. Fanghella, Single-loop kinematotropic mechanisms, Mech. Mach. Theory,2001, 36, pp.743-761.
    [82]K. Wohlhart, Kinematotropic mechanisms, Kluwer Academic Publishers, Dordrecht, Recent Advances in Robot Kinematics,1996, pp.359-368.
    [83]O. Roeschel, Moebius mechanisms, Kluwer Academic Publishers, Dordrecht, Recent Advances in Robot Kinematics,2000, pp.375-382.
    [84]C. Galletti, P. Fanghella, Kinematotropic properties and pair connectivities in single-loop spatial mechanisms, Proc.10th World Congr. Theory Mach. Mechanisms, Oulu, Finland,1999, pp.560-565.
    [85]C. Galletti, E. Giannotti, Multiloop kinematotropic mechanisms, Proceedings of ASME Design Engineering Technical Conference, Montreal, Canada,2002, pp.342-350.
    [86]D. Zlatanov, I. A. Bonev, C. M. Gosselin, Constraint Singularities as C-Space Singularities, Advances in Robot Kinematics Theory and Applications, Kluwer Academic Publishers, Dordrecht,2002, pp.183-192.
    [87]P. Fanghella, C. Galletti, E. Giannotti, Parallel robots that change their group of motion, Advances in Robot Kinematics, The Netherlands:Springer,2006, pp.49-56.
    [88]P. Fanghella, C. Galletti, Mobility Analysis of Single-loop Kinematic Chains:An Algorithmic Approach Based on Displacement Groups, Mech. Mach. Theory,1994,29, pp.1187-1204.
    [89]S. Refaat, J. M. Herve, S. Nahavandi, H. Trinh, Two-mode over-constrained three-dofs rotational-translational linear-motor-based parallel-kinematics mechanism for machine tool applications, Robotica,2007,25, pp.461-466.
    [90]X. Kong, C. M. Gosselin, P. L. Richard, Type Synthesis of Parallel Mechanisms With Multiple Operation Modes, ASME J. Mech. Des.,2007,129, pp.595-601.
    [91]Q. Li, J. M. Herve, Parallel Mechanisms With Bifurcation of Schoenflies Motion, IEEE Trans. Rob.,2009,25, pp.158-164.
    [92]G. Gogu, Maximally Regular T2R1-Type Parallel Manipulators With Bifurcated Spatial Motion, ASME J. Mech. Rob.,2011,3, pp.011010.
    [93]C. Lee, J. M. Herve, Discontinuously movable seven-link mechanisms via group-algebraic approach, Journal of Mechanical Engineering Science, Proceedings of the Institution of Mechanical Engineers,2005,219, pp.577-587.
    [94]C. Lee, J. M. Herve, Discontinuously movable 8R mechanisms with an infinity of bifurcations, Proceedings of 12th IFToMM Word Congress, Besancon, France,2007, pp.256-267.
    [95]C. Lee, J. M. Herve, Synthesis of two kinds of discontinuously movable spatial 7R mechanisms through the group algebraic structure of displacement set, Proceedings of 11th IFToMM Word Congress, Tianjin, China,2004, pp.197-201.
    [96]S. S. Balli, S. Chand, Synthesis of a planar seven-link mechanism with variable topology for motion between two dead-center positions, Mech. Mach. Theory,2003,38, pp.1271-1287.
    [97]S. S. Balli, S. Chand, Synthesis of a five-bar mechanism of variable topology type with transmission angle control, ASME J. Mech. Des.,2004,126, pp.128-134.
    [98]H. S. Yan, C. H. Kang, Configuration synthesis of mechanisms with variable topologies, Mech. Mach. Theory,2009,44, pp.896-911.
    [99]Q. Zeng, Y. Fang, Structural Synthesis of Serial-Parallel Hybrid Mechanisms Based on Representation and Operation of Logical Matrix, ASME J. Mech. Rob.,2009,1, pp.041003.
    [100]Q. Zeng, Y. Fang, Structural synthesis of serial-parallel hybrid mechanisms via group theory and representation of logical matrix, IEEE Int. Conf. Information and Automation,2009, pp. 1392-1397.
    [101]H. B. Choi, A. Konno, M. Uchiyama, Design, implementation, and performance evaluation of a 4-DOF parallel robot, Robotica,2010,28, pp.107-118.
    [102]O. Salgado, O. Altuzarra, E. Amezua, A. Hernandez, A Parallelogram-Based Parallel Manipulator for Schonflies Motion, ASME J. Mech. Des.,2007,129, pp.1243-1250.
    [103]O. Salgado, O. Altuzarra, V. Petuya, A. Hernandez, Synthesis and Design of a Novel 3T1R Fully-Parallel Manipulator, ASME J. Mech. Des.,2008,130, pp.042305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700